首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the context of delta restoration and its impact on salmonid rearing, success is best evaluated based on whether out‐migrating juvenile salmon can access and benefit from suitable estuarine habitat. Here, we integrated 3 years of post‐restoration monitoring data including habitat availability, invertebrate prey biomass, and juvenile Chinook salmon (Oncorhynchus tshawytscha) physiological condition to determine whether individuals profited from the addition of 364 ha of delta habitat in South Puget Sound, Washington, United States. Productivity in the restored mudflat was comparable to reference sites 3 years after dike removal, surpassing a mean total of 6 million kJ energy from invertebrate prey. This resulted from the development of a complex network of tidal channels and a resurgence in dipteran biomass that was unique to the restoration area. Consequently, a notable shift in invertebrate consumption occurred between 2010 and 2011, whereby individuals switched from eating primarily amphipods to dipteran flies; however, dietary similarity to the surrounding habitat did not change from year to year, suggesting that this shift was a result of a change in the surrounding prey communities. Growth rates did not differ between restored and reference sites, but catch weight was positively correlated with prey biomass, where greater prey productivity appeared to offset potential density‐dependent effects. These results demonstrate how the realized function of restoring estuarine habitat is functionally dependent. High prey productivity in areas with greater connectivity may support healthy juvenile salmon that are more likely to reach the critical size class for offshore survival.  相似文献   

2.
For an estuarine restoration project to be successful it must reverse anthropogenic effects and restore lost ecosystem functions. Restoration projects that aim to rehabilitate endangered species populations make project success even more important, because if misjudged damage to already weakened populations may result. Determining project success depends on our ability to assess the functional state or “performance” and the trajectory of ecosystem development. Mature system structure is often the desired “end point” of restoration and is assumed to provide maximum benefit for target species; however, few studies have measured linkages between structure and function and possible benefits available from early recovery stages. The Salmon River estuary, Oregon, U.S.A., offers a unique opportunity to simultaneously evaluate several estuarine restoration projects and the response of the marsh community while making comparisons with a concurring undiked portion of the estuary. Dikes installed in three locations in the estuary during the early 1960s were removed in 1978, 1987, and 1996, creating a “space‐for‐time substitution” chronosequence. Analysis of the marsh community responses enables us to use the development state of the three recovering marshes to determine a trajectory of estuarine recovery over 23 years and to make comparisons with a reference marsh. We assessed the rate and pattern of juvenile salmon habitat development in terms of fish density, available prey resources, and diet composition of wild juvenile Oncorhynchus tshawytscha (chinook salmon). Results from the outmigration of 1998 and 1999 show differences in fish densities, prey resources, and diet composition among the four sites. Peaks in chinook salmon densities were greatest in the reference site in 1998 and in the youngest (1996) site in 1999. The 1996 marsh had higher densities of chironomids (insects; average 864/m2) and lower densities of amphipods (crustaceans; average 8/m3) when compared with the other sites. Fauna differences were reflected in the diets of juvenile chinook with those occupying the 1978 and 1996 marshes based on insects (especially chironomids), whereas those from the 1987 and reference marshes were based on crustaceans (especially amphipods). Tracking the development of recovering emergent marsh ecosystems in the Salmon River estuary reveals significant fish and invertebrate response in the first 2 to 3 years after marsh restoration. This pulse of productivity in newly restored systems is part of the trajectory of development and indicates some level of early functionality and the efficacy of restoring estuarine marshes for juvenile salmon habitat. However, to truly know the benefits consumers experience in recovering systems requires further analysis that we will present in forthcoming publications.  相似文献   

3.
All anadromous fishes, including juvenile salmon, encounter estuarine habitats as they transition from riverine to marine environments. We compare the estuarine use between juvenile Atlantic salmon (Salmo salar) in the Penobscot River estuary and Pacific salmon (Oncorhynchus spp.) in the Columbia River estuary. Both estuaries have been degraded by anthropogenic activities. Atlantic and Pacific salmon populations in both basins rely heavily on hatchery inputs for persistence. Pacific salmon, as a group, represent a continuum of estuarine use, from species that move through rapidly to those that make extensive use of estuarine habitats. While Atlantic salmon estuarine use is predominantly similar to rapidly moving Pacific salmon, they can exhibit nearly the entire range of Pacific salmon estuarine use. Both slow and rapidly migrating Atlantic and Pacific salmon actively feed in estuarine environments, consuming insect and invertebrate prey. Interactions between juvenile salmon and estuarine fish communities are poorly understood in both estuaries, although they experience similar avian and marine mammal predators. Estuaries are clearly important for Atlantic and Pacific salmon, yet our understanding of this use is currently insufficient to make informed judgments about habitat quality or overall estuary health. This review of salmonid migration through and residency within estuaries identifies actions that could hasten restoration of both Atlantic and Pacific salmon populations.  相似文献   

4.
Estuaries provide crucial foraging resources and nursery habitat for threatened populations of anadromous salmon. As such, there has been a global undertaking to restore habitat and tidal processes in modified estuaries. The foraging capacity of these ecosystems to support various species of out‐migrating juvenile salmon can be quantified by monitoring benthic, terrestrial, and pelagic invertebrate prey communities. Here, we present notable trends in the availability of invertebrate prey at several sites within a restoring large river delta in Puget Sound, Washington, U.S.A. Three years after the system was returned to tidal influence, we observed substantial additions to amphipod, copepod, and cumacean abundances in newly accessible marsh channels (from 0 to roughly 5,000–75,000 individuals/m2). In the restoration area, terrestrial invertebrate colonization was dependent upon vegetative cover, with dipteran and hymenopteran biomass increasing 3‐fold between 1 and 3 years post‐restoration. While the overall biodiversity within the restoration area was lower than in the reference marsh, estimated biomass was comparable to or greater than that found within the other study sites. This additional prey biomass likely provided foraging benefits for juvenile Chinook, chum, and coho salmon. Primary physical drivers differed for benthic, terrestrial, and pelagic invertebrates, and these invertebrate communities are expected to respond differentially depending on organic matter exchange and vegetative colonization. Restoring estuaries may take decades to meet certain success criteria, but our study demonstrates rapid enhancements in foraging resources understood to be used for estuary‐dependent wildlife.  相似文献   

5.
Diel variation in habitat use of subyearling Chinook salmon (Oncorhynchus tshawytscha), subyearling coho salmon (O. kisutch), yearling steelhead (O. mykiss), and yearling Atlantic salmon (Salmo salar) was examined during the spring in two tributaries of Lake Ontario. A total of 1318 habitat observations were made on juvenile salmonids including 367 on steelhead, 351 on Chinook salmon, 333 on Atlantic salmon, and 261 on coho salmon. Steelhead exhibited the most diel variation in habitat use and Chinook the least. Juvenile salmonids were generally associated with more cover and larger substrate during the day in both streams. Interspecific differences in habitat use in both streams occurred with Atlantic salmon (fast velocities) and coho salmon (pools) using the least similar habitat. Chinook salmon and Atlantic salmon used similar habitat in both streams. These findings should help guide future management actions specific to habitat protection and restoration of Atlantic salmon in Lake Ontario tributaries.  相似文献   

6.
We evaluated reproductive isolation of Chinook salmon (Oncorhynchus tshawytscha) life history types that have been reintroduced to northern Idaho, USA. Analysis of 1003 samples at six microsatellite loci revealed strong reproductive isolation between ocean- and stream-type Chinook salmon (fall and summer spawn timing, respectively) within the Clearwater River sub-basin (F ST = 0.148, P < 0.00001). Very little evidence for gene flow among the two life history types was observed as assignment tests correctly assigned 99.6% of individuals in reference collections to either ocean- and steam-type Chinook salmon. Assignment of naturally reared juveniles indicated that both life history types were present with 24.1% stream-type and 75.9% ocean-type. Previous studies suggest high levels of divergence among the two life history types in natural populations, and our study verifies the persistence of reproductive isolation among types following colonization of habitat. Successful colonization of new habitat by (re)introduced species is likely influenced by diversity in life history types and this strategy has lead to naturally spawning populations in a variety of available habitats in the Clearwater River. As many populations of O. tshawytscha are listed as threatened or endangered under the U.S. Endangered Species Act, hope for recovery lies not only in effective management and habitat improvement, but adaptability of this species.  相似文献   

7.
We investigated habitat use by juvenile Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (O. kisutch) to identify environmental characteristics that may define their optimal marine habitat. We utilized physical and biological data from four cruises in the northern California Current system from Newport, Oregon, to Crescent City, California, in June and August 2000 and 2002. A non-parametric statistical method was used to analyze and select environmental parameters that best defined ocean habitat for each species. Regression trees were generated for all cruises combined to select the most important habitat variables. Chlorophyll a concentration best defined habitat of yearling Chinook salmon, while decapod larvae, salinity, and neuston biovolume defined habitat of yearling coho salmon. Using criteria from the regression tree analysis, GIS maps were produced to show that the habitat of yearling Chinook salmon was widespread over the continental shelf and the habitat of yearling coho salmon was variable and mainly north of Cape Blanco.  相似文献   

8.
Globally, river degradation has decimated freshwater fish populations. To help reverse this trend in a southeastern Australia river, we used multiple restoration actions, including reintroduction of instream woody habitat, riparian revegetation, removal of a weir hindering fish movement, fencing out livestock, and controlling riparian weeds. We monitored the responses of native fish at the segment scale (20 km) and reach scale (0.3 km) over 7 years to assess the effectiveness of the different restoration strategies. Two closely related species, Murray cod Maccullochella peeli and trout cod Maccullochella macquariensis, increased at the restored segment compared with the control segment. However, inherent differences between river segments and low sample size hampered assessment of the mechanisms responsible for segment‐scale changes in fish abundance. In contrast, at the reach scale, only M. peeli abundance significantly increased in reaches supplemented with wood. These differential responses by 2 closely related fish species likely reflect species‐specific responses to increased habitat availability and enhanced longitudinal connectivity when the weir improved passage around a fishway. Changes in M. peeli abundance in segments supplemented with and without wood suggest an increase in carrying capacity and not simply a redistribution of individuals within the segment, facilitated the observed expansion. Our findings confirm the need to consider individual fish species' habitat preferences carefully when designing restoration interventions. Further, species‐specific responses to restoration actions provide waterway managers with precise strategies to target fish species for recovery and the potential to predict fish outcomes based on ecological preferences.  相似文献   

9.
Using a bioenergetics model, we examined how check dams negatively effect masu salmon (Oncorhynchus masou) populations by causing habitat loss in upstream areas and habitat degradation in downstream areas. The potential recovery of masu salmon populations in the upstream area was estimated based on the expected biomass and potential recovery area. We also determined if and how fish carrying capacity is affected by degradation of substrate conditions (armoring and compaction) in the downstream area. Recovery of upstream areas was considered to be effective in enhancing and conserving masu salmon populations. We demonstrated that the dam-induced altered substrate conditions and habitat degradation in the downstream area resulted in a considerable reduction of drifting prey. Simulation analysis revealed that a 40 % increase in the abundance of masu salmon juveniles in the downstream area could be expected if substrate conditions were restored. We concluded that both improvement of migration barriers and restoring the sediment regime would be important in enhancing and conserving wild masu salmon populations.  相似文献   

10.

Background

Concern about the decline of wild salmon has attracted the attention of the International Union for the Conservation of Nature (IUCN). The IUCN applies quantitative criteria to assess risk of extinction and publishes its results on the Red List of Threatened Species. However, the focus is on the species level and thus may fail to show the risk to populations. The IUCN has adapted their criteria to apply to populations but there exist few examples of this type of assessment. We assessed the status of sockeye salmon Oncorhynchus nerka as a model for application of the IUCN population-level assessments and to provide the first global assessment of the status of an anadromous Pacific salmon.

Methods/Principal Findings

We found from demographic data that the sockeye salmon species is not presently at risk of extinction. We identified 98 independent populations with varying levels of risk within the species'' range. Of these, 5 (5%) are already extinct. We analyzed the risk for 62 out of 93 extant populations (67%) and found that 17 of these (27%) are at risk of extinction. The greatest number and concentration of extinct and threatened populations is in the southern part of the North American range, primarily due to overfishing, freshwater habitat loss, dams, hatcheries, and changing ocean conditions.

Conclusions/Significance

Although sockeye salmon are not at risk at the species-level, about one-third of the populations that we analyzed are at risk or already extinct. Without an understanding of risk to biodiversity at the level of populations, the biodiversity loss in salmon would be greatly underrepresented on the Red List. We urge government, conservation organizations, scientists and the public to recognize this limitation of the Red List. We also urge recognition that about one-third of sockeye salmon global population diversity is at risk of extinction or already extinct.  相似文献   

11.
To combat decades of anthropogenic degradation, restoration programs seek to improve ecological conditions through habitat enhancement. Rapid assessments of condition are needed to support adaptive management programs and improve the understanding of restoration effects at a range of spatial and temporal scales. Previous attempts to evaluate restoration practices on large river systems have been hampered by assessment tools that are irreproducible or metrics without clear connections to population responses. We modified a demonstration flow assessment approach to assess the realized changes in habitat quantity and quality attributable to restoration effects. We evaluated the technique's ability to predict anadromous salmonid habitat and survey reproducibility on the Trinity River in northern California. Fish preference clearly aligned with a priori designations of habitat quality: the odds of observing rearing Chinook or coho salmon within high‐quality habitats ranged between 10 and 16 times greater than low qualities, and in all cases the highest counts were associated with highest quality habitat. In addition, the technique proved to be reproducible with “substantial” to “almost perfect” agreement of results from independent crews, a considerable improvement over a previous demonstration flow assessment. These results support the use of the technique for assessing changes in habitat from restoration efforts and for informing adaptive management decisions.  相似文献   

12.
Inappropriate land use practices, pollutants, exploitation, and overpopulation have simplified stream habitats and degraded water quality worldwide. Management agencies are now being tasked to ameliorate impacts and restore stream “health,” yet there is a dearth of rigorous scientific methods and theory on which to base sound restoration design and monitoring. Despite this, many localized restoration projects are being constructed to stabilize erosion and enhance habitat heterogeneity in streams. Many restoration attempts adopt the paradigm that increasing habitat heterogeneity will lead to restoration of biotic diversity, yet there have been few studies that have manipulated variation of a physical parameter independent of the mean to isolate the effects of heterogeneity per se. We conducted a field experiment to mimic restoration of habitat heterogeneity in a shallow. stony stream. By using an experimental approach rather than a detailed assessment of existing restoration work, we were able to control the starting conditions of replicate riffles so that organism responses could be unambiguously attributed to the heterogeneity treatments. We successfully manipulated the variability of streambed particle sizes and consequently near‐bed flow characteristics of entire riffles. These factors define axes of habitat heterogeneity at scales relevant to the resident macroinvertebrate fauna. Despite this, we were unable to distinguish differences in community structure between high and low habitat heterogeneity treatments. Power analysis indicated that macroinvertebrate populations were more sensitive to individual site conditions at each riffle than to the heterogeneity treatments, suggesting that increasing habitat heterogeneity may be an ineffective technique if the restoration goals are to promote macroinvertebrate recovery in denuded streams. With extremely high variability between replicate riffles, monitoring programs for localized restoration projects or point source impacts are unlikely to detect gradual shifts in community structure until the differences between the reference and treatment sites are extreme. Innovative measurement of other parameters, such as ecosystem function variables (e.g., production, respiration, decomposition), may be more appropriate indicators of change at local scales.  相似文献   

13.
The relationships between habitat variables and population densities of masu salmon (Oncorhynchus masou), rosyface dace (Leuciscus ezoe), Siberian stone loach (Noemacheilus barbatulus) and wrinklehead sculpin (Cottus nozawae) were examined by data collected at 55 reaches in forest and grassland streams in northern Hokkaido, Japan. Regression analysis suggested that salmon and dace densities were affected by water temperature (negative for salmon, positive for dace) and structural habitat factors (woody debris for salmon, pools for dace). Salmon density was higher in forest reaches than in grassland reaches, whereas dace density was higher in grassland reaches, suggesting that the removal of riparian forest had raised water temperature and allowed upstream invasions by dace. In contrast to salmon and dace, neither the density of loach nor sculpin differed between the forest and grassland reaches. For their densities, a negative effect of each on the other was most important, suggesting a strong effect of interspecific competition between loach and sculpin on their distributions. However, regression models also suggested that substrate heterogeneity mediated the outcome of their interspecific competition. On the basis of the results, a scenario is predicted for a fish-assemblage change with a typical land-development process in Hokkaido, and the importance of leaving or restoring riparian buffer for conservation and restoration of stream habitat is emphasized.  相似文献   

14.
Salmonids spawn in highly diverse habitats, exhibit strong genetic population structuring, and can quickly colonize newly created habitats with few founders. Spawning traits often differ among populations, but it is largely unknown if these differences are adaptive or due to genetic drift. To test if sockeye salmon (Oncorhynchus nerka) populations are adapted to glacial, beach, and tributary spawning habitats, we examined variation in heritable phenotypic traits associated with spawning in 13 populations of wild sockeye salmon in Lake Clark, Alaska. These populations were commonly founded between 100 and 400 hundred sockeye salmon generations ago and exhibit low genetic divergence at 11 microsatellite loci (F ST < 0.024) that is uncorrelated with spawning habitat type. We found that mean P ST (phenotypic divergence among populations) exceeded neutral F ST for most phenotypic traits measured, indicating that phenotypic differences among populations could not be explained by genetic drift alone. Phenotypic divergence among populations was associated with spawning habitat differences, but not with neutral genetic divergence. For example, female body color was lighter and egg color was darker in glacial than non-glacial habitats. This may be due to reduced sexual selection for red spawning color in glacial habitats and an apparent trade-off in carotenoid allocation to body and egg color in females. Phenotypic plasticity is an unlikely source of phenotypic differences because Lake Clark sockeye salmon spend nearly all their lives in a common environment. Our data suggest that Lake Clark sockeye salmon populations are adapted to spawning in glacial, beach and tributary habitats and provide the first evidence of a glacial spawning ecotype in salmonids. Glacial spawning habitats are often young (i.e., <200 years old) and ephemeral. Thus, local adaptation of sockeye salmon to glacial habitats appears to have occurred recently.  相似文献   

15.
The hutchinsonian realized niche of a species is the most common tool for selecting the actions needed when restoring habitats and establishing conservation areas of species. However, defining the realized niche of a species is problematic due to variation across spatial and temporal scales. In this study we tested the hypothesis that habitat parameters defining the realized niche of a species can be derived from a regional study and that national changes in land use influence the perception of the realized niche across different landscapes. We described the realized habitat niche of the threatened dragonfly Leucorrhinia pectoralis, in four Estonian landscapes which all have undergone more than 20 years of habitat degradations. We recorded the presence/absence of L. pectoralis and measured 7 habitat variables for 140 lakes and ponds located in one restored and three un-restored landscapes. Lake size and proportion of short riparian vegetation were significantly positive parameters determining the presence of L. pectoralis across landscape types. The species was much more habitat specific in the restored landscape, with larger influence of other habitat parameters. Our data suggest that the realized niche of the species in the un-restored landscapes was constrained by the present-day habitats. The study demonstrate that if a species realized niche is derived from local distribution patterns without incorporating landscape history it can lead to an erroneous niche definition. We show that landscape restoration can provide knowledge on a species’ habitat dependencies before habitat degradation has occurred, provided that restoration mitigation reflects the former landscape characteristics.  相似文献   

16.
We developed a methodology integrating several forms of remotely sensed data into a Geographic Information Systems (GIS) model that identifies suitable sites for riparian conifer restoration at the Cedar River Municipal Watershed in western Washington, U.S.A. The model integrates vegetative and geomorphic variables with information on the habitat preferences of anadromous fishes to identify riparian stands where conifer restoration would have the greatest biological benefit for salmon recovery. The high-resolution raster datasets used in our analysis were capable of characterizing the biophysical attributes of riparian areas at finer spatial scales than was previously possible. This model is intended to serve as a screening tool to identify candidate sites for riparian area restoration. The assessment approach described in this study can be applied not only to model salmonid habitat at the watershed scale but also to assess landscape patterns relevant to a wide range of restoration goals. This methodological framework offers several advantages over other approaches to restoration site selection and planning. First, the fine-scale spatial resolution of the GIS datasets (pixels ≤5 m) used in the model provides a more accurate representation of the habitat conditions than has been possible with coarser-scale data (pixels ≥5 m). Therefore, the accuracy of site identification is greatly improved. Second, the quantitative nature of the model exercises greater objectivity than some other landscape-scale planning approaches. This regional planning tool could be replicated in other watersheds with comparable datasets and could be applied to identify habitat restoration sites for other species or guilds of species by simply altering the model criteria to match the habitat needs of the target organisms.  相似文献   

17.
North American Atlantic salmon (Salmo salar) populations experienced substantial declines in the early 1990s, and many populations have persisted at low abundances in recent years. Abundance and productivity declined in a coherent manner across major regions of North America, and this coherence points toward a potential shift in marine survivorship, rather than local, river‐specific factors. The major declines in Atlantic salmon populations occurred against a backdrop of physical and biological shifts in Northwest Atlantic ecosystems. Analyses of changes in climate, physical, and lower trophic level biological factors provide substantial evidence that climate conditions directly and indirectly influence the abundance and productivity of North American Atlantic salmon populations. A major decline in salmon abundance after 1990 was preceded by a series of changes across multiple levels of the ecosystem, and a subsequent population change in 1997, primarily related to salmon productivity, followed an unusually low NAO event. Pairwise correlations further demonstrate that climate and physical conditions are associated with changes in plankton communities and prey availability, which are ultimately linked to Atlantic salmon populations. Results suggest that poor trophic conditions, likely due to climate‐driven environmental factors, and warmer ocean temperatures throughout their marine habitat area are constraining the productivity and recovery of North American Atlantic salmon populations.  相似文献   

18.
This synthesis focuses on the estuarine and ocean ecology of Atlantic salmon (Salmo salar) and steelhead (Oncorhynchus mykiss) across their southern ranges in North America. General life history and ecology share many common traits including iteroparity, duration of freshwater (0–3 years) and marine (2–5 years) rearing, ocean emigration at relatively large sizes and strong surface orientation compared to other salmonids. Despite parallels in life history and anthropogenic pressures, several differences emerged for these species. First, steelhead have greater life history diversity and a broader geographic distribution. Generally, estuary habitats serve as short-term migration corridors for both species. However, some steelhead populations used lagoon habitat in south-coast watersheds. While both species are epipelagic, Atlantic salmon exhibit more vertical migration. Atlantic salmon tend to follow migratory highways—relatively narrow bands along the coastal shelf, then crossing the Atlantic to feed inshore and in fjords of West Greenland. Conversely, steelhead exit the coastal shelf quickly, dispersing across the Pacific, and rarely use coastal environments. Despite inhabiting rivers in warm dry Mediterranean climates, the extended range and stability of southern steelhead distribution is likely buffered by cool upwelled waters of the California Current. Whereas Atlantic salmon populations are restricted by warmer Northwest Atlantic circulation patterns lacking cool upwelling with greater susceptibility to warming associated with climate change. Determining the rate of marine habitat changes in the Atlantic and Pacific Oceans is important to the conservation of these species, including subtleties of temporal and spatial habitat use, and adaptability to ocean ecosystems under climate change.  相似文献   

19.
Synopsis We examined the physical habitat of nest sites chosen by hatchery Atlantic salmon, Salmo salar, in a recovery program for this extirpated species in Lake Ontario, Canada. We compared the sites used by these captive bred fish to a set of random locations in a wide range of available habitats. Compared to random locations in the stream, the nest sites chosen were lower in the relative abundance of sediment size classes that are detrimental to embryo and juvenile survival. In addition, the process of nest construction by these captive bred fish further reduced the proportions of these detrimental sediments. Although captive breeding may have changed some aspects of the nest site selection and construction behaviour, it has not caused a complete loss or major alteration of the trait and thus does not preclude hatchery fish from restoration or reintroduction programs.  相似文献   

20.
Guaiacum sanctum and Guaiacum coulteri are long‐lived Mesoamerican timber tree species heavily exploited throughout their range and considered to be at risk of extinction. Both species are included on the IUCN Red List and on CITES Appendix II, but there has been no formal assessment of the conservation status of either species. We used ecological niche modeling and rapid assessments of local density and population size structure to provide such evaluations. For the year 2000, we estimated geographic range sizes for G. sanctum and G. coulteri of 95,422 and 130,973 km2, respectively. The main core remaining habitat for G. sanctum occurs in Campeche State (Yucatan Peninsula), where populations exhibit high adult abundance and profuse regeneration. Several areas along the Mexican Pacific coast remain with suitable habitat for G. coulteri. Guaiacum coulteri is at greater risk as only 1.3 percent of its current habitat is protected, which contrasts with the 13.2 percent of current habitat protected for G. sanctum. We projected that available habitat for G. sanctum and G. coulteri will decline by a further 30–50 percent by 2020 if estimated habitat loss rates continue. We suggest that under the IUCN criteria, the conservation status of G. sanctum and G. coulteri should be updated to near threatened and vulnerable, respectively. Additionally, we conclude that the amount of protected habitat needs to be increased to safeguard both species. Our study provides a quantitative basis for updating the conservation status of both species and illustrates an assessment framework that could be applied to other threatened tree species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号