首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract: Cerebral glutamate was monitored in a superfused cerebral cortical preparation by 1H NMR spectroscopy using a semiselective spin-echo sequence N -acetyl aspartate (NAA) as an internal concentration reference. During controlled metabolic conditions, the cerebral 1H NMR-detected glutamate-to-NAA ratio was ∼ 20–30% lower than expected from the ratio of neutralized perchloric acid extracts of the preparations. Inhibition of respiration in the presence of glucose did not change the 1H NMR glutamate-to-NAA ratio in brain slice preparation. In contrast, either complete depletion of ATP during cyanide poisoning together with 0 m M glucose, anoxia in the absence of glucose, or treatment with nigericin or with a protonophore, carbonyl cyanide- m -fluorophenylhydrazone, increased 1H NMR-detected glutamate/NAA in the cerebral preparations without a change in the relative and absolute concentration ratios determined from the tissue acid extracts. Spin-spin relaxation times of glutamate and NAA peaks in anoxic slices were 749 ± 89 and 729 ± 94 ms, respectively, and thus, the portion of glutamate that could not be detected by 1H NMR was quantified in absolute terms. It was calculated that an increase in the glutamate-to-NAA ratio from 0.55 ± 0.02 to 0.67 ± 0.02 during aglycemic anoxia corresponded to some 6 mmol/kg of tissue dry weight of glutamate from the total concentration of 28 mmol/kg dry weight. It is suggested that this 22% of total glutamate pool is present in a noncytoplasmic compartment during controlled metabolic state.  相似文献   

2.
Abstract: Brain [5-15N]glutamine amide protons were selectively observed in vivo by 1H-15N heteronuclear multiple-quantum coherence-transfer NMR in spontaneously breathing, severely hyperammonemic rats during intravenous [15N]ammonium acetate infusion and the subsequent recovery period. The linewidth of brain [5-15N]-glutamine amide proton Hz increased from 36 ± 2 Hz at 3.4 h to 58 ± 6 Hz after 5.7 h of infusion, a net increase of 22 ± 6 Hz. Concomitantly, brain ammonia concentration increased from 1.7 to 3.5 ± 0.2 µmol/g and the rat progressed from grade III to grade IV encephalopathy. On recovery to grade III and decrease of brain ammonia concentration to 1.3 µmol/g, the linewidth returned to 37 ± 2 Hz. In aqueous solution, [5-15N]glutamine amide proton Hz underwent a 17-Hz linebroadening when pH was raised from 7.1 to 7.5 at 37°C, due to the increased rate of base-catalyzed exchange with water proton. Hence, linebroadening is a sensitive measure of changing intracellular pH. The 22-Hz linebroadening observed in vivo in severely hyperammonemic grade IV rats strongly suggests that the intracellular pH increases from 7.1 to about 7.4–7.5 in astrocytes where glutamine is synthesized and mainly stored. Probable mechanisms for the ammonia-induced alkalinization and decreased intraglial buffering capacity, as well as implications of the result for pathogenesis of hepatic encephalopathy, are discussed.  相似文献   

3.
Abstract: Quantitative proton and quantitative proton-decoupled 31P magnetic resonance spectroscopy (MRS) of the brain was performed in 16 patients with liver disease (10 with and six without chronic hepatic encephalopathy) and four patients with hyponatremia, as well as 20 age-matched normal subjects. Patients with hepatic encephalopathy were distinguished from controls by significant reduction in levels of cerebral nucleoside triphosphate (2.45 ± 0.20 vs. 2.91 ± 0.21 mmol/kg of brain; p < 0.0003), inorganic phosphate ( p < 0.03), and phosphocreatine ( p < 0.04). In addition of increased levels of cerebral glutamate plus glutamine and decreased concentrations of myo -inositol, patients with hepatic encephalopathy showed a reduction of total visible choline and of glycerophosphoryl-choline (0.67 ± 0.13 vs. 0.92 ± 0.20 mmol/kg of brain in controls; p < 0.005) in 1H MRS, and of glycerophosphoryl-ethanolamine (0.40 ± 0.12 vs. 0.68 ± 0.12 mmol/kg of brain in controls; p < 0.0003) in proton-decoupled 31P MRS. Of the reduction of "total choline," 61% was accounted for by glycerophosphorylcholine, a cerebral osmolyte. Similar metabolic abnormalities were seen in hyponatremic patients. The results are consistent with disturbances of cerebral osmoregulation and energy metabolism in patients with chronic hepatic encephalopathy.  相似文献   

4.
Abstract— [3H]Choline uptake has been measured in vivo in the rat hippocampus. Pharmacological agents and lesions which profoundly affect sodium-dependent, high-affinity [3H]choline uptake in vivo similarly affect [3H]choline uptake measured in vitro. Pentobarbital (65 mg/kg) and oxotremorine (0.75 mg kg) cause a decrease in [3H]choline uptake. Scopolamine (5 mg/kg) and iontophoretically applied extracellular potassium cause an increase in [3H]choline uptake. Septal lesions cause a decrease in [3H]choline uptake. Application of the general method may allow direct examination of presynaptic function and neural integration in the undisrupted living mammalian brain.  相似文献   

5.
Abstract: Proton nuclear magnetic resonance (1H NMR) spectroscopy was used to study metabolites of the brain cortex ex vivo. The superfused brain cortex preparation was judged to be metabolically viable on the basis of the 31P NMR spectrum (intracellular pH of 7.23 ± 0.03 and phosphocreatine/ ATP ratio of 1.21 ± 0.09). Using'H NMR a group of previously unidentified signals was detectable at 0.94, 1.22, and 1.40 ppm with a water-suppressed spin-echo sequence. These signals had shorter spin-spin relaxation times (51-54 ms) than TV-acetylaspartate and lactate (84-93 ms) and also smaller saturation factors, an indication of shorter spin-lattice relaxation times than the latter two low-molecular-weight metabolites. The unidentified signals also displayed homo-nuclear coupling to other spins in the methine region of the spectrum. Acid extraction of the brain slices or cortex from animals that were killed yielded a mixture of proteins that exhibited NMR properties matching the 1H NMR signals in the brain cortex. The molecular mass of these thermoresistant, "mobile' proteins, which contained proline plus hydroxy-proline (9-16% of all amino acids), ranged between 8 and 40 kDa. These "new' assigμMents of1H NMR-detectable compounds may influence interpretation of NMR data of some metabolites, as their signals are in the vicinity of the -CH3 1H NMR peaks of lactate and alanine.  相似文献   

6.
Abstract: The goal of this study was to evaluate the potential of using the difference between the 1H NMR frequencies of water and N -acetylaspartic acid (NAA) to measure brain temperature noninvasively. All water-suppressed and non-water-suppressed 1H NMR spectra were obtained at a field strength of 4.7 T using a surface coil. Experiments performed on model solutions revealed a decrease in the difference between NMR frequencies for NAA and water as a linear function of increasing temperature from 14 to 45°C. Changing pH in the range 5.5–7.6 produced no discernible trends for concurrent changes in the slope and intercept of the linear relationship. There were minor changes in slope and intercept for solutions containing 80 or 100 mg of protein/ml versus no protein, but these changes were not considered to be of sufficient magnitude to deter the use of this approach to measure brain temperature. The protein content of swine cerebral cortex was found to remain constant from newborn to 1 month old (78 ± 12 mg/g; n = 41). Therefore, data collected for the model solution containing 80 mg of protein/ml were used as a calibration curve to calculate brain temperature in eight swine during control, hypothermia, ischemia, postischemia, or death, over a temperature range of 23–40°C. A plot of 61 temperatures determined from 1H NMR versus temperatures measured from an optical fiber probe sensor implanted 1 cm into the cerebral cortex showed excellent linear agreement (slope = 1.00 ± 0.03, r 2 = 0.96). We conclude that 1H NMR spectroscopy presents a practical means of making noninvasive measurements of brain temperature with an accuracy of better than ± 1°C.  相似文献   

7.
The 1H nuclear magnetic resonance (1H NMR) fingerprints of fractionated non-polar extracts (control substance for a plant drug (CSPD) A) from Rhizoma chuanxiong, the rhizomes of Ligusticum chuanxiong Hort., of seven specimens from different sources were measured on Fourier Transform (FT)-NMR spectrometer and assigned by comparing them with the 1H NMR spectra of the isolated pure compounds. The 1H NMR fingerprints showed exclusively characteristic resonance signals of the major special constituents of the plant. Although the differences in the relative intensity of the 1H NMR signals due to a discrepancy in the ratio of the major constituents among these samples could be confirmed by high performance liquid chromatography analysis, the general features of the 1H NMR fingerprint established for an authentic sample of the rhizomes of L. chuanxiong exhibited exclusive data from those special compounds and can be used for authenticating L. Chuanxiong species.  相似文献   

8.
Abstract: The effect of platelet-activating factor (PAF) on neurotransmitter release from rat brain slices prelabeled with [3H]acetylcholine ([3H]ACh), [3H]norepinephrine ([3H]NE), or [3H]serotonin ([3H]5-HT) was studied. PAF inhibited K+ depolarization-induced [3H]ACh release in slices of brain cortex and hippocampus by up to 59% at 10 n M but did not inhibit [3H]ACh release in striatal slices. PAF did not affect 5-HT or NE release from cortical brain slices. The inhibition of K+-evoked [3H]ACh release induced by PAF was prevented by pretreating tissues with several structurally different PAF receptor antagonists. The effect of PAF was reversible and was not affected by pretreating brain slices with tetrodotoxin. PAF-induced inhibition of [3H]ACh release was blocked 90 ± 3 and 86 ± 2% by pertussis toxin and by anti-Gαi1/2 antiserum incorporated into cortical synaptosomes, respectively. The results suggest that PAF inhibits depolarization-induced ACh release in brain slices via a Gαi1/2 protein-mediated action and that PAF may serve as a neuromodulator of brain cholinergic system.  相似文献   

9.
Abstract: The human NK1 tachykinin receptor in the astrocytoma cell line U 373 MG was characterized using selective agonists and antagonists described for this receptor in the rat. Specific [3H]substance P binding sites were present on cell homogenates, whereas [3H]neurokinin A or [3H]-senktide binding sites were absent. The binding was saturable and reversible. The binding of [3H]substance P was inhibited by very low concentrations of [L-Pro9]substance P and [Sar9,Met(O2)11]substance P; septide was ∼ 1,000-fold less potent. The most potent peptide antagonist was trans -4-hydroxy-1-(1 H -indol-3-ylcarbonyl)-L-prolyl- N -methyl- N -(phenylmethyl)-L-tyrosineamide. The rank order of potency for the nonpeptide antagonists was ( S , S )-CP 96,345 > (±)-CP 96,345 > (±)-2-chlorobenzylquinuclidinone > ( R , R )-CP 96,345 > RP 67580 > RP 68651. In [3H]-inositol-labeled cells, substance P stimulated phosphatidylinositol turnover. A good correlation was found when the abilities of NK1 receptor agonists for stimulating inositol phosphate production and for inhibiting [3H]substance P binding were compared. Similarly, the binding and functional assays were well correlated for the antagonists. As a result of its high sensitivity and selectivity, the U 373 MG cell line thus appears an excellent tool for investigating the pharmacology of the human NK1 receptor.  相似文献   

10.
Abstract: High-affinity choline transport (HAChT), the rate-limiting and regulatory step in acetylcholine (ACh) synthesis, is selectively localized to cholinergic neurons. Hemicholinium-3 (HC3), a potent and selective inhibitor of HAChT, has been used as a specific radioligand to quantify HAChT sites in membrane binding and autoradiographic studies. Because both HAChT velocity and [3H]HC3 binding change as in vivo activity of cholinergic neurons is altered, these markers are also useful measures of cholinergic neuronal activity. Evidence that [3H]HC3 is a specific ligand for HAChT sites on cholinergic terminals is reviewed. The ion requirements of HAChT and [3H]HC3 binding indicate that sodium and chloride are required for recognition of both choline and [3H]HC3. A common recognition site is also indicated by the close correspondence of the potency of HC3 and choline analogues for inhibiting both HAChT and [3H]HC3 binding. The parallel regional distributions of both markers in adult brain, during development and after specific lesions, all indicate specific cholinergic localization. The close association of HAChT and [3H]HC3 binding sites is also supported by parallel regulatory changes occurring after in vivo drug treatments and in vitro depolarization. Overall, the data indicate a close association between HAChT and [3H]HC3 binding and are consistent with the sites being identical. Methodologic considerations in using [3H]HC3 as a ligand and considerations in interpretation of results are also discussed.  相似文献   

11.
Abstract: The posterior stomach nerve (PSN) is a crustacean sensory nerve containing about 60 cholinergic neurons, which are devoid of synaptic interactions. Kinetic analysis shows that the PSN takes up [3H]choline by both low-affinity ( K m= 163 μM) and high-affinity (Na+-dependent) ( K m= 1 μM) processes. The capacity of the high-affinity system is only about 1% that of the low-affinity system. The high-affinity system is not tightly coupled to acetylcholine (ACh) synthesis, and it appears that both ACh and phosphorylcholine are formed from an intracellular pool of choline, which is fed by both uptake systems. There are differences in the rates of [3H]choline uptake and 3H metabolite accumulation between regions of the PSN that contain neuronal cell bodies and those that do not. These differences may arise from differences in the relative proportion of neuronal to nonneuronal tissue in each nerve region.  相似文献   

12.
Abstract: The recently discovered benzodiazepine antagonist Ro 15-1788 was characterized in binding studies, and its potency and selectivity were determined in vivo by interaction with drug-induced changes in dopamine turnover and cerebellar cGMP level. Ro 15-1788 reduced [3H]flunitrazepam binding in the brain in vivo with a potency similar to that of diazepam and effectively inhibited [3H]diazepam binding in vitro (IC50= 2.3 ± 0.6 nmol/liter). [3H]Ro 15-1788 bound to tissue fractions of rat cerebral cortex with an apparent dissociation constant ( K D) of 1.0 ± 0.1 nmol/liter. The in vitro potency of various benzodiazepines in displacing [3H]Ro 15-1788 from its binding site was of the same rank order as found previously in [3H]diazepam binding. Autoradiograms of [3H]Ro 15-1788 binding in sections of rat cerebellum showed the same distribution of radioactivity as with [3H]flunitrazepam. The attenuating effect of diazepam on the chlorpromazine- or stress-induced elevation of homovanillic acid in rat brain was antagonized by Ro 15-1788. Among a series of compounds which either decreased or increased the rat cerebellar cGMP level, only the effect of benzodiazepine receptor ligands (diazepam, zopiclone, CL 218 872) was antagonized by Ro 15-1788. Thus, Ro 15-1788 is a selective benzodiazepine antagonist acting at the level of the benzodiazepine receptor in the central nervous system. Peripheral benzodiazepine binding sites in kidney and schistosomes were not affected by Ro 15-1788.  相似文献   

13.
Abstract: Metabolism of [1-13C]glucose was monitored in superfused cerebral cortex slice preparations from 1-, 2-, and 5-week-old rats using 1H-observed/13C-edited (1H{13C}) NMR spectroscopy. The rate of label incorporation into glutamate C-4 did not differ among the three age groups: 0.52–0.67% of total 1H NMR-detected glutamate/min. This was rather unexpected, as oxygen uptake proceeded at 1.1 ± 0.1, 1.9 ± 0.1, and 2.0 ± 0.1 µmol/min/g wet weight in brain slices prepared from 1-, 2-, and 5-week-old animals, respectively. Steady-state glutamate C-4 fractional enrichments in the slice preparations were ∼23% in all age groups. In the acid extracts of slices glutamate C-4 enrichments were smaller, however, in 1- and 2-week-old (17.8 ± 1.7 and 16.8 ± 0.8%, respectively) than in 5-week-old rats (22.7 ± 0.7%) after 75 min of incubation with 5 m M [1-13C]glucose. We add a new assignment to the 1H{13C} NMR spectroscopy, as acetate C-2 was detected in slice preparations from 5-week-old animals. In the acid extracts of slice preparations acetate C-2 was labeled by ∼30% in 5-week-old rats but by 15% in both 1- and 2-week-old animals, showing that the turnover rate was increased in 5-week-old animals. In the extracts 3–4% of the C-6 of N -acetyl-aspartate (NAA; CH3 of the acetyl group) contained label as determined by both NMR and mass spectrometry, which indicated that there was no significant labeling to other carbons in NAA. NAA accumulated label from [1-13C]glucose but not from [2-13C]acetate, and the rate of label incorporation increased by threefold on cerebral maturation.  相似文献   

14.
Abstract: The rate of glutamate synthesis from leucine by the branched-chain aminotransferase was measured in rat brain in vivo at steady state. The rats were fed exclusively by intravenous infusion of a nutrient solution containing [15N]leucine. The rate of glutamate synthesis from leucine, determined from the rate of increase of brain [15N]glutamate measured by 15N NMR and the 15N enrichments of brain and blood leucine analyzed by gas chromatography-mass spectrometry, was 0.7–1.8 µmol/g/h at a steady-state brain leucine concentration of 0.25 µmol/g. A comparison of the observed fractional 15N enrichments of brain leucine (0.42 ± 0.03) and glutamate (0.21 ± 0.015) showed that leucine provides ∼50% of glutamate nitrogen under our experimental condition. From the observed rate (0.7–1.8 µmol/g) and the known K m of the branched-chain aminotransferase for leucine (1.2 m M ), the rate of glutamate synthesis from leucine at physiological brain leucine concentration (0.11 µmol/g) was estimated to be 0.35–0.9 µmol/g/h, with leucine providing ∼25% of glutamate nitrogen. The results strongly suggest that plasma leucine from dietary source, transported into the brain, is an important external source of nitrogen for replenishment of brain glutamate in vivo. Implications of the results for treatment of maple-syrup urine disease patients with leucine-restricted diet are discussed.  相似文献   

15.
4-Aminobutyraldehyde as a Substance Convertible In Vivo to GABA   总被引:3,自引:2,他引:1  
Abstract: [2,3-3H]4-Aminobutyraldehyde ([3H]ABAL) was injected subcutaneously into mice, which were sacrificed at various intervals following injection. [3H]γ-Aminobutyric acid ([3H]GABA) synthesized in vivo from [3H]ABAL was extracted from the brains, separated, and quantitated. The results showed that in the brain, injected [3H]ABAL was rapidly transformed into [3H]GABA. [3H]ABAL may penetrate the blood-brain barrier into the central nervous system and then be oxidized to [3H]GABA.  相似文献   

16.
In vivo magnetic resonance spectroscopy (MRS) studies of glial brain tumours reported that higher grade of astrocytoma is associated with increased level of choline-containing compounds (Cho) and decreased levels of N-acetylaspartate (NAA) and creatine and phosphocreatine (Cr). In this work, we studied the metabolism of glioma tumours by in vitro proton magnetic resonance spectroscopy (1H-MRS). 1H-MR spectra were recorded in vitro from perchloric acid extracts of astrocytoma (WHO II) and glioblastoma multiforme (WHO IV) samples. We observed differences between astrocytoma and glioblastoma multiforme in the levels of Cho, alanine, lactate, NAA, and glutamate/glutamine. In astrocytoma samples, we found higher MR signal of NAA and lower signal of Cho and alanine. MR spectra of glioblastoma samples reported significantly higher levels of lactate and glutamate/glutamine. In contrast, levels of Cr were the same in both tumour types. We also determined NAA/Cr and Cho/Cr ratios in the tumour samples. The NAA/Cr ratio was higher in astrocytomas than in glioblastomas multiforme. Conversely, the Cho/Cr ratio was higher in glioblastoma multiforme. The results indicate that MRS is a promising method for distinguishing pathologies in human brain and for pre-surgical grading of brain tumours.  相似文献   

17.
Abstract— When [2-3H]glycerol was injected intracranially into young rats, it was presented as a pulse label, leaving the brain rapidly and giving up much of its labelled hydrogen to water. [2-3H]glycerol was efficiently incorporated into brain lipids, especially into choline and ethanolamine phospholipids. Following injection of a mixture of [3H]- and [14C]-labelled glycerol, the ratio of 3H to 14C in the phospholipids of both whole brain and the microsomal fraction decreased as a function of time after injection. This finding indicated less recycling of the tritium label. This lack of recycling was further indicated by the finding that 94 per cent of the tritium label of phosphatidyl choline was in the glycerol portion of the molecule rather than in the fatty acids. At 2 weeks following injection with [3H]glycerol, 93 per cent of the total radioactivity in brain appeared in the lipid fraction. In contrast, following injection with [14C]glycerol, only 57 per cent of the radioactivity appeared in lipid, with about 20 per cent in protein.  相似文献   

18.
Abstract: Recent in vivo microdialysis studies have demonstrated the presence of extracellular levels of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] that can be increased in a concentration-dependent manner by muscarinic receptor activation. The aim of the present study was to determine whether extracellular levels of Ins(1,4,5)P3 could be measured in vitro. Despite rapid increases in internal Ins(1,4,5)P3 levels after stimulation with 1 m M carbachol, there was no change in external levels in both rat brain cortical slices and human neuroblastoma SH-SY5Y cells. Suprafusion of myo -[3H]inositol-prelabelled hippocampal slices with 1 m M carbachol caused an increase in 3H-inositol phosphates over basal levels in the perfusate after 10 min, reaching a peak (223 ± 56% of basal) 20 min after suprafusion with carbachol was started. This response to carbachol was potentiated in the presence of 30 m M K+. Analysis of the individual 3H-inositol phosphates in the perfusate revealed that levels of [3H]inositol monophosphate, [3H]inositol bisphosphate, [3H]inositol trisphosphate, and [3H]inositol tetrakisphosphate were all significantly increased. A similar increase in extracellular 3H-inositol phosphates was demonstrated in SH-SY5Y cells incubated with 1 m M carbachol for 30 min. This response was again enhanced by 30 m M K+, although the intracellular response was not potentiated. Possible roles for extracellular inositol phosphates are discussed.  相似文献   

19.
Abstract: Binding of [3H]LY278584, which has been previously shown to label 5-hydroxytryptamine3 (5-HT3) receptors in rat cortex, was studied in human brain. Saturation experiments revealed a homogeneous population of saturable binding sites in amygdala ( K D= 3.08 ± 0.67 n M, B max= 11.86 ± 1.87 fmol/mg of protein) as well as in hippocampus, caudate, and putamen. Specific binding was also high in nucleus accumbens and entorhinal cortex. Specific binding was negligible in neocortical areas. Kinetic studies conducted in human hippocampus revealed a K on of 0.025 ± 0.009 n M −1 min−1 and a K off of 0.010 ± 0.002 min−1. The kinetics of [3H]LY278584 binding were similar in the caudate. Pharmacological characterization of [3H]LY278584 specific binding in caudate and amygdala indicated the compound was binding to 5-HT3 receptors. We conclude that 5-HT3 receptors labeled by [3H]LY278584 are present in both limbic and striatal areas in human brain, suggesting that 5-HT3 receptor antagonists may be able to influence the dopamine system in humans, similarly to their effects in rodent studies.  相似文献   

20.
Abstract: The incorporation of tritium label into quinolinic acid (QUIN), kynurenic acid (KYNA), and other kynurenine (KYN) pathway metabolites was studied in normal and QUIN-lesioned rat striata after a focal injection of [5-3H]KYN in vivo. The time course of metabolite accumulation was examined 15 min to 4 h after injection of [5-3H]KYN, and the concentration dependence of KYN metabolism was studied in rats killed 2 h after injection of 1.5–1,500 µ M [5-3H]KYN. Labeled QUIN, KYNA, 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid, and xanthurenic acid (XA) were recovered from the striatum in every experiment. Following injection of 15 µ M [5-3H]KYN, a lesion-induced increase in KYN metabolism was noted. Thus, the proportional recoveries of [3H]KYNA (5.0 vs. 1.8%), [3H]3-HK (20.9 vs. 4.5%), [3H]XA (1.5 vs. 0.4%), and [3H]QUIN (3.6 vs. 0.6%) were markedly elevated in the lesioned striatum. Increases in KYN metabolism in lesioned tissue were evident at all time points and KYN concentrations used. Lesion-induced increases of the activities of kynurenine-3-hydroxylase (3.6-fold), kynureninase (7.6-fold), kynurenine aminotransferase (1.8-fold), and 3-hydroxyanthranilic acid oxygenase (4.2-fold) likely contributed to the enhanced flux through the pathway in the lesioned striatum. These data provide evidence for the existence of a functional KYN pathway in the normal rat brain and for a substantial increase in flux after neuronal ablation. This method should be of value for in vivo studies of cerebral KYN pathway function and dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号