首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four species of radish of the genus Raphanus were examined by electrophoresis of water soluble proteins. This technique was used to provide information about the degree of genetic differentiation of the species over a range of gene loci coding for various enzymes. These results give genetic distance estimates showing all four radish species to be closely related. From this data a simple dendrogram is constructed to show the possible interrelationships and evolutionary divergence of these species. The domestic radish Raphanus sativus shows the greatest genetic similarity when compared with an Italian population of R. landra.  相似文献   

2.
The genetic structure of populations is an important determinant of the evolutionary potential of a species. Colonizing plants tend to be characterized by low within- and high among-population variability. Genetic differentiation of both floral traits and isozymes was studied in six populations of wild radish (Raphanus raphanistrum). Evidence for differentiation in both sets of traits was found, but patterns of differentiation of floral traits did not coincide with isozyme differentiation. Contrary to most colonizing species, wild radish showed high within- and only moderate among-population variability at isozyme loci. In addition, levels of differentiation did not correspond to geographic distance between the populations. These results are likely due at least in part to the self-incompatibility system of this species, long-distance movement of large numbers of wild radish seeds by humans, and introgression from cultivated radish (R. sativus).  相似文献   

3.
The first genetic map of the Raphanus genome was developed based on meiosis in a hybrid between Raphanus sativus (cultivated radish) and Raphanus raphanistrum (wild radish). This hybrid was used to produce a BC1 population of 54 individuals and an F2 population of 85 individuals. A total of 236 marker loci were assayed in these populations using a set of 144 informative Brassica RFLP probes previously used for genetic mapping in other crucifer species. The genetic maps derived from the BC1 and F2 populations were perfectly collinear and were integrated to produce a robust Raphanus map. Cytological observations demonstrated strict bivalent pairing in the R. sativus x R. raphanistrum hybrids. Productive pairing along the length of each chromosome was confirmed by the identification of nine extensive linkage groups and the lack of clustering of marker loci. Indeed, the distributions of both marker loci and crossovers was more random than those reported for other crop species. The genetic markers and the reference map of Raphanus will be of considerable value for future trait mapping and marker-assisted breeding in this crop, as well as in the intergenomic transfer of Raphanus genes into Brassica crops. The future benefits of comparative mapping with Arabidopsis and Brassica species are also discussed.  相似文献   

4.
5.
Radish (Raphanus sativus L., n = 9) is one of the major vegetables in Asia. Since the genomes of Brassica and related species including radish underwent genome rearrangement, it is quite difficult to perform functional analysis based on the reported genomic sequence of Brassica rapa. Therefore, we performed genome sequencing of radish. Short reads of genomic sequences of 191.1 Gb were obtained by next-generation sequencing (NGS) for a radish inbred line, and 76,592 scaffolds of ≥300 bp were constructed along with the bacterial artificial chromosome-end sequences. Finally, the whole draft genomic sequence of 402 Mb spanning 75.9% of the estimated genomic size and containing 61,572 predicted genes was obtained. Subsequently, 221 single nucleotide polymorphism markers and 768 PCR-RFLP markers were used together with the 746 markers produced in our previous study for the construction of a linkage map. The map was combined further with another radish linkage map constructed mainly with expressed sequence tag-simple sequence repeat markers into a high-density integrated map of 1,166 cM with 2,553 DNA markers. A total of 1,345 scaffolds were assigned to the linkage map, spanning 116.0 Mb. Bulked PCR products amplified by 2,880 primer pairs were sequenced by NGS, and SNPs in eight inbred lines were identified.  相似文献   

6.
Sahli HF  Conner JK  Shaw FH  Howe S  Lale A 《Genetics》2008,180(2):945-955
Weedy species with wide geographical distributions may face strong selection to adapt to new environments, which can lead to adaptive genetic differentiation among populations. However, genetic drift, particularly due to founder effects, will also commonly result in differentiation in colonizing species. To test whether selection has contributed to trait divergence, we compared differentiation at eight microsatellite loci (measured as F(ST)) to differentiation of quantitative floral and phenological traits (measured as Q(ST)) of wild radish (Raphanus raphanistrum) across populations from three continents. We sampled eight populations: seven naturalized populations and one from its native range. By comparing estimates of Q(ST) and F(ST), we found that petal size was the only floral trait that may have diverged more than expected due to drift alone, but inflorescence height, flowering time, and rosette formation have greatly diverged between the native and nonnative populations. Our results suggest the loss of a rosette and the evolution of early flowering time may have been the key adaptations enabling wild radish to become a major agricultural weed. Floral adaptation to different pollinators does not seem to have been as necessary for the success of wild radish in new environments.  相似文献   

7.
Knowledge of the pathways of colonization is critical for risk assessment and management of weeds. In this study we adopted a landscape genetics approach to assess the impact of human disturbances and large-scale environmental features on the colonization of a global agricultural weed, Raphanus raphanistrum. We used nuclear microsatellite and chloroplast DNA sequence data to quantify the pattern of genetic diversity in 336 plants collected from 13 sites throughout the Cape Floristic Region, South Africa, one of the world’s recognized global biodiversity hotspots. The lack of strong spatial genetic structure suggests that R. raphanistrum colonized throughout the Cape Floristic Region via both local diffusive spread and long-distance jump dispersal. Furthermore, 47 % of analyzed plants contained Raphanus sativus (cultivated radish) chloroplast genomes, indicating historical and/or contemporary gene flow between wild and cultivated radish populations. The prevalence of high genetic diversity and long-distance gene flow are discussed in the context of ecological risk assessment.  相似文献   

8.
Raphanus satiuus var. hortensis f. raphanistroides (wild radish: Brassicaceae) is an insect-pollinated wild plant that grows mainly on beaches in East Asia. Starch gel electrophoresis was used to investigate the allozyme diversity and genetic structure of 25 Japanese and 9 Korean populations of this plant. Although the Korean populations were small, isolated, and patchily distributed, they maintained a high level of genetic diversity; the average percentage of polymorphic loci was 63.1%, the mean number of alleles per locus was 2.27, and the average heterozygosity was 0.278. The corresponding estimates for these parameters in the Japanese populations were 53.3%, 2.26, and 0.278. These estimates are considerably higher than those from species with similar life history and ecological characteristics, but they are lower than those from R. raphanistrum, the wild radish that grows in Europe and the U.S.A. The combination of an insect-pollinated, outcrossing breeding system, large population sizes, gene flow from cultivated radish population, and a propensity for high fecundity may explain the high level of genetic diversity within wild populations.  相似文献   

9.
A basic 9-kD protein was purified from seeds of radish (Raphanus sativus L.). The 43 amino-terminal amino acids show extensive sequence identity with nonspecific lipid transfer proteins from other plant species. The radish seed nonspecific lipid transfer protein-like protein inhibits the growth of several fungi in vitro.  相似文献   

10.
11.
Evolution is receiving increased attention as a potentially important factor in invasions. For example, hybridization may have stimulated the evolution of invasiveness in several well-known plant pests. However, the mechanism for success of such hybrid-derived lineages remains unknown in the majority of the cases studied. Here we ask whether increased reproductive success (in terms of maternal fitness) has evolved in an invasive lineage with confirmed hybrid ancestry. We compare the relative fitness of the non-native, hybrid-derived California wild radish (Raphanus sativus) to that of its two progenitor species in field experiments at different sites and in different years. We found that California wild radish has high survivorship and produces more fruits per plant and more seeds per plant than either of its progenitors in several environments. Furthermore, populations of California wild radish display a strong genotype-by-environment interaction, indicating that maintenance of genetic and phenotypic diversity between populations may be responsible for the weed’s ability to invade a wide breadth of California habitats. Our results suggest that hybridization may contribute the evolution of enhanced invasiveness and, also, that by limiting the introduction and subsequent hybridization of congeners, we may be able to prevent the evolution of new invasive lineages.  相似文献   

12.
If two previously isolated taxa mutually assimilate through hybridization and subsequent biparental introgression, and if their introgressed descendants have the same or higher fitness than their parents, then gene flow should result in the local extinction of parental taxa via replacement by hybrid derivatives. These dramatic events may occur rapidly, even in a few generations. Given the speed at which such extinction by hybridization may occur, it may be difficult to identify that the process has occurred. Thus, documented instances of extinction by hybridization are rare, and especially so for cases in which both parents are replaced by the hybrid lineage. Here we report morphological and allozyme evidence for the local extinction of two Raphanus species in California via replacement by their hybrid-derived descendants. The results from a greenhouse experiment demonstrate that California wild radishes have a specific combination of traits from their progenitors, and comparison of our results to that of an earlier report indicate that pure parental types are no longer present in the wild. Our results also show the hybrid-derived lineage has transgressive fruit weight compared to its parents. Allozyme analysis demonstrates that California wild radishes are derived from hybridization between the putative parental species. However, that analysis also demonstrates that California wild radish has now become an evolutionary entity separate from both of its parents. We suggest that the aggressive colonizing behavior of the hybrid-derived lineage probably results from a novel combination of parental traits, rather than genetic variability of the population per se.  相似文献   

13.
To investigate the gene function of radish (Raphanus sativus L.), several attempts have been made to generate genetically transformed radish. However, no efficient and relatively simple method for the genetic transformation of radish has been developed to date. In this study, we established an Agrobacterium-mediated genetic transformation method using the hypocotyl-derived explants of radish cultivar “Pirabikku”. Primarily based on the Brassica transformation procedure, we optimized it for radish transformation. Using this system, the transformation efficiency of radish hypocotyl explants by Agrobacterium tumefaciens strain GV3101 harboring pIG121-Hm was 13.3%. The copy number of transfer DNA integrated into the genome was either one or two in the four independent transgenic plants. Two of the four plants exhibited male sterility and did not produce self-pollinated seeds. Examination of the expression of the β-glucuronidase (GUS) gene in T1 plants from fertile T0 plants showed that the GUS genes were inherited. The improvement in the genetic transformation in this study might pave the way for accelerated molecular breeding and genetic analysis of radish.  相似文献   

14.
The role of phytohormones in genetic tumor formation on radish crop-roots was investigated using the collection of inbred Raphanus sativus lines as a model system. The genetic analysis showed that the trait <<tumor formation>> was recessive and monogenic in some crossings. The spectrum of main phytohormones in tumor and non-tumor radish lines has shown that at the initiation of tumor formation (30 days old plants) the amounts of main cytokinins in the lower part of plants from the tumor line were dramatically increased. The transformation of the non-tumor line by the ipt gene of Agrobacterium tumefaciens resulted in tumor formation in plants of the T1 progeny. We propose that increasing the cytokinin/auxin ratio may lead to tumor formation on radish crop roots.  相似文献   

15.
Net ammonium and nitrate influx were independent of transpiration rate for intact seedlings of both a wild species of radish (Raphanus raphanistrum) and a wilty tomato mutant (Lycopersicon esculentum Mill. cv RR flacca).  相似文献   

16.
Crop-wild hybridization may produce offspring with lower fitness than their wild parents due to deleterious crop traits and outbreeding depression. Over time, however, selection for improved fitness could lead to greater invasiveness of hybrid taxa. To examine evolutionary change in crop-wild hybrids, we established four wild ( Raphanus raphanistrum ) and four hybrid radish populations ( R. raphanistrum  ×  Raphanus sativus ) in Michigan (MI), USA. Hybrid and wild populations had similar growth rates over four generations, and pollen fertility of hybrids improved. We then measured hybrid and wild fitness components in two common garden sites within the geographical range of wild radish [MI and California (CA)]. Advanced generation hybrids had slightly lower lifetime fecundity than wild plants in MI but exhibited c. 270% greater lifetime fecundity and c. 22% greater survival than wild plants in CA. Our results support the hypothesis that crop-wild hybridization may create genotypes with the potential to displace parental taxa in new environments.  相似文献   

17.
We constructed complete physical maps of the tripartite mitochondrial genomes of two Crucifers, Brassica nigra (black mustard) and Raphanus sativa (radish). Both genomes contain two copies of a direct repeat engaged in intragenomic recombination. The outcome of this recombination in black mustard is to interconvert a 231 kb master chromosome with two subgenomic circles of 135 kb and 96 kb. In radish, a 242 kb master chromosome interconverts with subgenomic circles of 139 kb and 103 kb. The recombination repeats are 7 kb in size in black mustard and 10 kb in radish, and are nearly identical except for two insertions in the radish repeat relative to the black mustard one. The two repeat configurations present on the master chromosome of black mustard are located on the subgenomes of radish and vice-versa. To explain this, we postulate the existence of an evolutionarily intermediate mitochondrial genome in which the recombination repeats were (are) present in an inverted orientation. The recombination repeats described for these two species are completely different from those previously found in the closely related species B. campestris, implying that such repeats are created and lost frequently in plant mitochondrial DNAs and making it less than likely that recombination occurs in a site-specific manner.  相似文献   

18.
应用形态学、细胞学和分子标记的方法对通过胚挽救获得的青花菜与萝卜属间杂种植株进行了鉴定。结果表明:杂种植株的生长势明显强于父本和母本,大部分形态性状超出了父、母本的范围,部分性状介于父母本之间或偏向于父本或母本一方。表型和细胞学观察显示杂种植株具有类似母本的雄性不育特性。SSR分子标记分析表明,杂种植株包含了双亲的遗传信息。可见,远缘杂种是双亲间的真杂种。远缘杂交种的获得与初步鉴定为促进萝卜属和芸薹属的基因交流提供了桥梁种质,为进一步创制萝卜或芸薹属作物新种质提供了基础材料。  相似文献   

19.
Radish, Raphanus satvius, is a very important commercial crop in the world, especially in East Asian countries. In this study, radish microsatellite markers have been developed for the first time from expressed sequence tags (ESTs). A total of 8 primer pairs were able to produce clear amplifications, respectively, which gave 2–5 polymorphic loci between 43 cultivars of Japanese radish. Observed and expected heterozygosity ranged from 0 to 0.4186, and from 0.1779 to 0.6205, respectively. Polymorphic information content ranged from 0.171 to 0.575. The eight simple sequence repeats were also polymorphic when tested by wild radish (Raphanus raphanistrum). Deviation from Hardy–Weinberg equilibrium was analysed in three populations, and no linkage disequilibrium was observed. It is anticipated that these newly developed microsatellite markers can advance further genomic analyses. This accomplishment may in turn accelerate and simplify radish breeding programs.  相似文献   

20.
The evolutionary processes that take place in invasive plant populations are not well documented or understood. Interspecific hybridization between cultivated radish (Raphanus sativus) and R. raphanistrum is known to be responsible for the origin of the invasive California wild radish, but little is known about the nature of the hybridization events that produced the hybrid-derived lineage. We analyzed the trnL-rpl32 intergenic region of chloroplast DNA (cpDNA) obtained from 37 cultivated radish individuals from four different cultivars, 53 R. raphanistrum individuals from six European populations and 104 California wild radish individuals from 11 populations covering its entire range throughout the state. We found that cultivated radish and R. raphanistrum shared no cpDNA haplotypes but that they both shared haplotypes with California wild radish, evidence for bidirectional hybridization between the progenitor species in the creation of the California lineage. We also found evidence that multiple cultivars and multiple European source populations contributed to the diversity of cpDNA haplotypes within California. Studies like this will continue to be important for our understanding of the origin of invasive populations and the mechanisms by which they succeed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号