首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat livers were perfused by the nonrecirculating technique with medium containing [15N]glycine and sodium benzoate. At various times, the isotopic enrichment of hepatic free glycine, hepatic glycyl-tRNA, and perfusate hippurate was measured by GLC-MS. After 60 min, these parameters had reached approximately maximal values. At 90 min, the perfusate hippurate had a 30% greater enrichment of 15N than the intracellular glycine or glycyl-tRNA. Hippurate enrichment was half that of the medium glycine. The rat livers secreted apolipoprotein B (B-100 plus B-48) at a rate of 22 micrograms/g per h. From the 15N enrichment and the secretion rate, an intrahepatic pool size of 86 micrograms/g of apoB was calculated. From the minimal intracellular transit time of 30 min, an apoB fractional synthetic rate (FSR) of 2 pools/h was indicated, whereas the FSR estimated from the 15N-enrichment was 0.26/h. A possible explanation for the discrepancy is that apoB may recycle within the hepatocyte. On the basis of the present experiments, when hippurate enrichment is used as a measure of the enrichment of intrahepatic glycine in in vivo studies with 15N-labeled glycine, a correction should be applied, under normal metabolic circumstances, of approximately 20-30%.  相似文献   

2.
To allow in vivo determination of synthetic rates for individual proteins, physiological incorporation of infused [15N]glycine into urinary hippuric acid has been used as an indicator of intrahepatic tracer dilution. Although the kidneys might contribute to hippurate production, the relationship between hepatic, plasma, and urinary hippurate has not yet been established in humans. To further investigate these issues we developed a fast, sensitive, and reliable method for measuring simultaneously hippurate concentrations and in vivo tracer incorporation into hippurate in plasma and urine using stable isotopes and gas chromatography-mass spectrometry. We then tested this assay under several experimental conditions. Reference compounds [( 15N]- and [ring-2H5]hippurate) were synthesized and gave linear standard curves. Postabsorptive hippurate plasma levels in healthy subjects ranged from 1.2 to 10.5 microM and protein binding was 79 +/- 6% (mean +/- SD). Following a bolus dose of [15N]glycine tracer appeared in plasma hippurate; enrichment in hippurate was indistinguishable from that in glycine after an equilibration period of 20 min, indicating a close relationship between intracellular glycine and plasma hippurate. A 16-h infusion of [15N]glycine resulted in identical enrichment levels in urinary and plasma hippurate; glycine enrichment in a hepatic export protein (VLDL-ApoB) was approaching plasma hippurate but not plasma free glycine enrichment. The ability to monitor plasma hippurate is of practical advantage compared to the sampling of urine. Furthermore it allows the monitoring of rapid events in the intrahepatic dilution of an infused glycine tracer. This assay may, therefore, become an important tool in the study of hepatic protein metabolism.  相似文献   

3.
Stable isotope methodology has been adapted to the study of lipoprotein turnover in human subjects. Using endogenous [15N]glycine labeling and gas-liquid chromatographic-mass spectrometric analysis, synthesis of apolipoprotein B in very low density lipoprotein (VLDL) was measured directly in five normal and two hyperlipidemic subjects. An isotopic precursor steady state was achieved during the studies by utilizing a priming dose and constant infusion containing [15N]glycine. Measurement of the plateau in 15N enrichment in the urinary hippurate produced during each study was used to estimate the 15N enrichment of the hepatic glycine precursor pool. The range of values for the fractional synthetic rate of VLDL apoB in the normal subjects obtained by this method was 5.9 to 11.5 day-1, with a mean of 9.2 +/- 2.4 (SD). This value agrees with the results of previous investigations which have utilized other methods. The method was also tested in two hypertriglyceridemic subjects and gave fractional synthetic rates of VLDL apoB that were significantly lower than in normals (1.5 and 2.8 day-1). This stable isotope method allows calculation of the fractional synthetic rate of VLDL apoB by maintaining an isotopic steady state throughout the study. It makes possible repeated studies in the same individual since no risk of exposure to radioisotopes is involved.  相似文献   

4.
The effect of sodium benzoate on ammonia toxicity in rats   总被引:1,自引:0,他引:1  
At 9.5 mmoles/kg body weight, sodium benzoate sharply increased mortality in rats subsequently challenged with ammonia. Fasted animals were less sensitive to potentiation of ammonia toxicity by benzoate than were fed animals. At 2.5 mmoles/kg body weight, benzoate was observed to protect fasted animals against ammonia toxicity. Measurements of ammonia disappearance, urea formation, and hippurate synthesis in suspensions of isolated hepatocytes indicate that benzoate potentiates ammonia toxicity by inhibiting the urea cycle.  相似文献   

5.
Glucagon stimulates 14CO2 production from [1-14C] glycine by isolated rat hepatocytes. Maximal stimulation (70%) of decarboxylation of glycine by hepatocytes was achieved when the concentration of glucagon in the medium reached 10 nM; half-maximal stimulation occurred at a concentration of about 2 nM. A lag period of 10 min was observed before the stimulation could be measured. Inclusion of beta-hydroxybutyrate (10 mM) or acetoacetate (10 mM) did not affect the magnitude of stimulation suggesting that the effects of glucagon were independent of mitochondrial redox state. Glucagon did not affect either the concentration or specific activity of intracellular glycine, thus excluding the possibilities that altered concentration or specific activity of intracellular glycine contributes to the observed stimulation. The stimulation of decarboxylation of glycine by glucagon was further studied by monitoring 14CO2 production from [1-14C]glycine by mitochondria isolated from rats previously injected with glucagon. Glycine decarboxylation was significantly stimulated in the mitochondria isolated from the glucagon-injected rats. We suggest that glucagon is a major regulator of hepatic glycine metabolism through the glycine cleavage enzyme system and may be responsible for the increased hepatic glycine removal observed in animals fed high-protein diets.  相似文献   

6.
The specific radioactivity of urinary hippurate glycine was determined after injecting guinea pigs with benzoate and either dl-[2-(14)C]glutamate or dl-[5-(14)C]glutamate. The isotope dilution factor for the formation of [(14)C]glycine was significantly greater (30%) with C-2 labelled glutamate. With either form of labelled glutamate the hippurate glycine was largely carboxyl-group labelled. The observations suggest a route for the incorporation of glutamate carbon into glycine that involves C-5 but not C-2. A hypothesis for glycine biosynthesis from l-glutamate is advanced, consistent with these findings, that includes conversion of l-glutamate to 4-hydroxy-2-oxoglutarate, the scission of the latter to glyoxylate and pyruvate, and the formation of glycine by transamination.  相似文献   

7.
R E London  S A Gabel 《Biochemistry》1988,27(20):7864-7869
The hepatic metabolism of deuteriated D-methionine has been studied in the intact, anesthetized rat using 2H NMR spectroscopy. The rate of formation of the principal labeled metabolite, [methyl-2H3]sarcosine, from the D-[methyl-2H3]methionine precursor was found to be as rapid as the rate observed previously in NMR studies of the hepatic metabolism of L-methionine. Similarly, rates of clearance of labeled methionine from the liver, formation of N-trimethyl-labeled metabolites, and labeling of the HDO pool were all found to be similar to the rates observed in the L-methionine studies. In contrast, all of these metabolic transformations are strongly inhibited by pretreatment of the rats with sodium benzoate, an inhibitor of D-amino acid oxidase. In vivo 2H NMR studies of sodium benzoate treated rats given L-[methyl-2H3]-methionine exhibit a much more rapid formation of [methyl-2H3]sarcosine than rats given the D enantiomer, consistent with the expectation that the sodium benzoate does not interfere with either the formation of S-adenosylmethionine or the subsequent transmethylation of glycine. However, the rates of methionine clearance and formation of deuteriated water are markedly reduced in this study relative to rats receiving the labeled D- or L-methionine without sodium benzoate pretreatment. These results indicate that subsequent to the initial oxidative deamination of the labeled D-methionine, the reamination to give L-methionine is rapid compared with the further degradation of the alpha-keto acid. Thus, the results are consistent with a dominant contribution of the glycine/sarcosine shuttle to the metabolism of excess D- or L-methionine.  相似文献   

8.
Administration of arginine or a high-protein diet increases the hepatic content of N-acetylglutamate (NAG) and the synthesis of urea. However, the underlying mechanism is unknown. We have explored the hypothesis that agmatine, a metabolite of arginine, may stimulate NAG synthesis and, thereby, urea synthesis. We tested this hypothesis in a liver perfusion system to determine 1) the metabolism of l-[guanidino-15N2]arginine to either agmatine, nitric oxide (NO), and/or urea; 2) hepatic uptake of perfusate agmatine and its action on hepatic N metabolism; and 3) the role of arginine, agmatine, or NO in regulating NAG synthesis and ureagenesis in livers perfused with 15N-labeled glutamine and unlabeled ammonia or 15NH4Cl and unlabeled glutamine. Our principal findings are 1) [guanidino-15N2]agmatine is formed in the liver from perfusate l-[guanidino-15N2]arginine ( approximately 90% of hepatic agmatine is derived from perfusate arginine); 2) perfusions with agmatine significantly stimulated the synthesis of 15N-labeled NAG and [15N]urea from 15N-labeled ammonia or glutamine; and 3) the increased levels of hepatic agmatine are strongly correlated with increased levels and synthesis of 15N-labeled NAG and [15N]urea. These data suggest a possible therapeutic strategy encompassing the use of agmatine for the treatment of disturbed ureagenesis, whether secondary to inborn errors of metabolism or to liver disease.  相似文献   

9.
To identify optimal study-design conditions to investigate lipid metabolism, male, C57BL/6J mice (age, 59 +/- 3 days) were allotted to eight groups, with six animals per group that were stratified by three factors: diet type (high fat [HF]: 60% of energy from fat versus that of a standard rodent diet, 14% fat, fed for 7 weeks), feeding regimen (ad libitum [ad lib] versus meal fed), and metabolic state (data collected in fasted or fed states). Serum free fatty acids (FFA) and triacylglycerols (TAG) concentrations, and energy expenditure (EE) were assessed. Mice gained 0.30 +/- 0.11 g of body weight/day when allowed ad lib access to HF diet, similar weight when meal-fed the HF or ad lib-fed the standard diet (0.10 +/- 0.03 g/day), and no weight when meal-fed the standard diet (0.01 +/- 0.02 g/day). Fed-state TAG concentration was 88 to 100% higher (P < 0.02) than that of the fasted state, except when animals were ad lib-fed the HF diet. When the standard diet was meal fed, FFA concentration was 30% higher in the fasted compared with the fed state (P = 0.003). Mice had 33% higher postprandial EE when either diet was meal fed (P = 0.01). Mice adapted to meal feeding developed transitions in metabolism consistent with known physiologic changes that occur from fasting to feeding. When fed the standard diet, a 6-h per day meal-feeding regimen was restrictive for normal growth. These data support use of a meal-feeding regimen when HF diets are used and research is focused on metabolic differences between fasted and fed states. This protocol allows study of the metabolic effects of an HF diet without the confounding effects of over-consumption of food and excess body weight gain.  相似文献   

10.
Frog exocrine pancreatic tissue was studied in vitro under conditions which maintain the differences between tissues from fasted and fed animals. Sodium dodecyl sulfate (SDS) gel electrophoresis after labeling with [14C]amino acids showed that feeding stimulated the synthesis of secretory proteins to the same relative degree as the overall protein synthesis. The intracellular transport of secretory proteins was studied by electronmicroscopy autoradiography after pulse-labeling with [3H]leucine. It was found that the transport route is similar under both feeding conditions. After their synthesis in the rough endoplasmic reticulum (RER), the proteins move through the peripheral elements and cisternae of the Golgi system into the condensing vacuoles. The velocity of the transport increases considerably after feeding. When frogs are fasted, the release of labeled proteins from the RER takes greater than 90 min, whereas after feeding, this happens within 30 min. Comparable differences were observed for transport through the Golgi system. The apparent differences between the frog and mammalian pancreas in the regulation of synthesis, intracellular transport, and secretion of proteins are discussed.  相似文献   

11.
To study potential effects of hepatic cholesterol concentration on secretion of very-low-density lipoprotein (VLDL) by the liver, male rats were fed on unsupplemented chow, chow with lovastatin (0.1%), or chow with lovastatin (0.1%) and cholesterol (0.1%) for 1 week. Livers were isolated from these animals and perfused in vitro, with a medium containing [2-14C]acetate, bovine serum albumin and glucose in Krebs-Henseleit buffer, and with an oleate-albumin complex. With lovastatin feeding, the hepatic concentrations of cholesteryl esters and triacylglycerols before perfusion were decreased, although free cholesterol was unchanged. However, hepatic secretion of all the VLDL lipids was decreased dramatically by treatment with lovastatin. Although total secretion of VLDL triacylglycerol, phospholipid, cholesterol and cholesteryl esters was decreased, the decrease in triacylglycerol was greater than that in free cholesterol or cholesteryl esters, resulting in secretion of a VLDL particle enriched in sterols relative to triacylglycerol. In separate studies, the uptake of VLDL by livers from control animals or animals treated with lovastatin was measured. Uptake of VLDL was estimated by disappearance of VLDL labelled with [1-14C]oleate in the triacylglycerol moiety, and was observed to be similar in both groups. During perfusion, triacylglycerol accumulated to a greater extent in livers from lovastatin-fed rats than in control animals. The depressed output of VLDL triacylglycerols and the increase in triacylglycerol in the livers from lovastatin-treated animals was indicative of a limitation in the rate of VLDL secretion. Addition of cholesterol (either free cholesterol or human low-density lipoprotein) to the medium perfusing livers from lovastatin-fed rats, or addition of cholesterol to the diet of lovastatin-fed rats, increased the hepatic concentration of cholesteryl esters and the output of VLDL lipids. The concentration of cholesteryl esters in the liver was correlated with the secretion of VLDL by the liver. These data suggest that cholesterol is an obligate component of the VLDL required for its secretion. It is additionally suggested that cholesteryl esters are in rapid equilibrium with a small pool of free cholesterol which comprises a putative metabolic pool available and necessary for the formation and secretion of the VLDL. Furthermore, the specific radioactivity (d.p.m./mumol) of the secreted VLDL free cholesterol was much greater than that of hepatic free cholesterol, suggesting that the putative hepatic metabolic pool is only a minor fraction of total hepatic free cholesterol.  相似文献   

12.
The incorporation of [15N]glutamic acid into glutathione was studied in primary cultures of astrocytes. Turnover of the intracellular glutathione pool was rapid, attaining a steady state value of 30.0 atom% excess in 180 min. The intracellular glutathione concentration was high (20-40 nmol/mg protein) and the tripeptide was released rapidly into the incubation medium. Although labeling of glutathione (atom% excess) with [15N]glutamate occurred rapidly, little accumulation of 15N in glutathione was noted during the incubation compared with 15N in aspartate, glutamine, and alanine. Glutathione turnover was stimulated by incubating the astrocytes with diethylmaleate, an electrophile that caused a partial depletion of the glutathione pool(s). Diethylmaleate treatment also was associated with significant reductions of intraastrocytic glutamate, glycine, and cysteine, i.e., the constituents of glutathione. Glutathione synthesis could be stimulated by supplementing the steady-state incubation medium with 0.05 mM L-cysteine, such treatment again partially depleting intraastrocytic glutamate and causing significant reductions of 15N labeling of both alanine and glutamine, suggesting that glutamate had been diverted from the synthesis of these amino acids and toward the formation of glutathione. The current study underscores both the intensity of glutathione turnover in astrocytes and the relationship of this turnover to the metabolism of glutamate and other amino acids.  相似文献   

13.
The preparation of leucine and isoleucine labeled with 15N and of site-specific 13C-labeled isoleucines is described. This method is based on the induction of the biosynthetic pathways specific for branched chain amino acids in glutamic acid producing bacteria, and controlled provision of stable isotope labeled precursors. Corynebacterium glutamicum (ATCC 13032), a glutamic acid overproducer, was incubated in leucine production medium which consisted of a basal medium supplemented with [15N]ammonium sulfate, glucose, and sodium alpha-ketoisocaproate. production of L-[15N]leucine reached 138 mumol/ml at an isotopic efficiency of 90%. It was purified and checked by proton NMR and GC-MS. The electron impact (EI) spectrum showed 95 atom% enrichment. The cultivation of C. glutamicum in a similar medium containing alpha-ketobutyrate yielded L-[15N]isoleucine at a concentration of 120 mumol/ml. The GC-MS EI and chemical ionization (CI) spectra confirmed enrichment of 96 atom% 15N as that of the labeled precursors. The biosynthesis of L-[13C]isoleucine was carried out by induced cells which were transferred to a similar medium in which [2-13C]- or [3-13C]pyruvic acid replaced glucose. 13C NMR of the product isoleucine revealed single-site enrichment at C-3 or at C-3' respective to the precursor [13C]pyruvate; i.e., C-3 was labeled from [2-13C]pyruvate and C-3' from [3-13C]pyruvate. Mass spectrometric analysis confirmed that all molecules were labeled only in one carbon. This site-specific incorporation of [13C]pyruvate is contrasted with the labeling pattern obtained when producing cells were supplied with [2-13C]acetate, instead of pyruvate, when most label was incorporated into carbons 3 and 3' of the same isoleucine molecule.  相似文献   

14.
1. Rat liver mitochondria make hippurate at up to 4 nmol/min per mg of protein. The rate of synthesis supported by oxidation of glutamate with exogenous Pi present is identical with that supported by ATP plus oligomycin. Lower rates were obtained with other respiratory substrates, and when glutamate was used without Pi. 2. A matrix localization for hippurate synthesis is indicated by the latency of benzoyl-CoA synthetase and glycine N-acyltransferase to their extramitochondrial substrates, failure of exogenous benzoyl-CoA to inhibit incorporation of [14C]hippurate and inhibition of hippurate synthesis supported by ATP, but not glutamate, by carboxyatractyloside. 3. The relative activities of the individual enzymes and the mitochondrial content of benzoyl-CoA in the presence and absence of glycine suggest that hippurate synthesis is rate-limited by formation of benzoyl-CoA. 4. The increases in rates of ATP hydrolysis and of O2 consumption on the addition of benzoate and glycine were in good agreement with those required to support hippurate synthesis. The increase in respiration indicates that State-4 respiration [Chance & Williams (1957) Adv. Enzymol 17, 65-134] is not used, with these conditions, for ATP synthesis.  相似文献   

15.
The effects of 48 h fasting, administration of ethanol or 2,4-dinitrophenol, on the phosphorus-containing metabolites in liver in vivo have been determined utilizing 31P nuclear magnetic resonance spectroscopy. These measurements were combined with determinations of metabolite concentrations in livers which were freeze-clamped immediately after the NMR measurements were completed. Administration of sub-lethal amounts of dinitrophenol dramatically decreased ATP and increased Pi concentrations in liver in vivo as indicated by a 2.7-fold increase in the NMR-derived [Pi]/[ATP] ratio. Ethanol administration to fed animals increased the NMR-derived [Pi]/[ATP] ratio 27%; in contrast, the same amount of ethanol administered to fasted animals decreased the NMR-derived [Pi]/[ATP] ratio 30%. The NMR visible Pi and ADP represent about 50% and 15% of the total Pi and ADP, respectively. The phosphorylation potentials calculated from the NMR visible Pi and ADP were an order of magnitude higher than those obtained from metabolite concentrations in freeze-clamped tissue. There was no apparent correlation between the phosphorylation potentials derived from either the NMR spectral analyses or from metabolite concentrations and the hepatic [NAD+]/[NADH] ratio. The chemical shift of Pi indicated that ethanol administration elicited a decrease in pH of 0.1 unit in liver in vivo. Hepatic free [Mg2+] was increased 21% in fasted animals, but was unaffected by ethanol administration.  相似文献   

16.
To study amino acid exchange between plasma and erythrocytes in vivo, 4-h primed, continuous intravenous infusions of L-[1-13C]leucine, [15N]glycine, and L-[15N]alanine were administered to five healthy young men in the postabsorptive state. Stable isotope enrichments and amino acid levels were determined by gas chromatography-mass spectrometry in both plasma and whole blood and estimated (using hematocrit) in erythrocytes. A high concentration gradient across the erythrocyte membrane was consistently found for glycine (552 +/- 268 microM in erythrocytes vs. 155 +/- 35 microM in plasma), but not for leucine or alanine. A steady-state isotopic enrichment was observed in whole blood as well as plasma for each amino acid in every subject. Steady-state [13C]leucine enrichment in erythrocytes did not differ from plasma enrichment at steady state, the ratio of erythrocyte to plasma enrichment being 1.03 +/- 0.20 (95% confidence limits = 0.78-1.28); in contrast, this ratio reached only 0.23 +/- 0.04 and 0.59 +/- 0.09 (confidence limits 0.18-0.28 and 0.48-0.70) for [15N]glycine and [15N]alanine at steady state, respectively. These results suggest that most of erythrocyte leucine is exchangeable with plasma, whereas only a fraction of erythrocyte glycine and alanine is involved in exchange with plasma in vivo.  相似文献   

17.
The metabolic states and the uptake and metabolism of [1-13C]glucose, [2-13C]glycine, and [15N]glycine in intact Nicotiana tabacum L. (cv Xanthi) mesophyll protoplasts were measured by 13C and 15N nuclear magnetic resonance spectroscopy. Changes in the concentration of metabolites during the first two days of culture in darkness were followed. Protoplasts isolated in 0.55 molar mannitol medium showed a drop in the concentration of all the intracellular metabolites during the first 28 hours of culture. Uptake of glucose and synthesis of glucose-derived metabolites were observed, indicating activity of glycolysis and the tricarboxylic acid cycle. Addition of glycine caused the accumulation of serine in dark cultured protoplasts, via the photorespiratory pathway. Glutamate dehydrogenase and glutamine synthetase activities in photorespiratory NH4+ assimilation were observed. Glucose uptake and metabolism and cell division were inhibited by 3 millimolar glycine, suggesting that the accumulating serine or the release of ammonia during serine synthesis had toxic effects in this system.  相似文献   

18.
Changes in the time course of the urinary excretion of creatinine, creatine and urea, and the activities of kidney transamidinase and liver urea-cycle enzymes were investigated in rats fasted and fed on a 10% casein diet and 10% casein diets supplemented with 10% glycine and/or 1.4% arginine.

The urinary total-creatinine of the fasted rats increased extremely during fasting for 7 days, while that of the animals given the 10% casein diet supplemented with glycine and arginine rose exceedingly on the 3rd day and thereafter no significant change was observed. Most of the increase of total-creatinine could be accounted for by the increase of creatine. The activity of kidney transamidinase in the fasted rats decreased in the 3rd day and thereafter kept nearly constant. The transamidinase activity of rats fed on the 10% casein diet after giving a protein-free diet for 5 days increased in the 3rd day. An inverse relation was observed between the urinary creatine and the transamidinase activity. The urinary urea increased in the rats fasted or fed on the 10% casein diets with the supplement of glycine and/or arginine. In fasting, the activities of liver urea-cycle enzymes, except arginase, had a tendency of increasing with the lapse of time. The arginase activity remained more or less constant. The reason of the extreme increase of urinary creatine during starvation was discussed.  相似文献   

19.
Gas chromatography--mass spectrometry analysis of plasma amino acid derivatives has been used to determine the 15N enrichment time decay curves of plasma glycine following a single dose administration of [15N]glycine in untreated and insulins-, glucagon-, and cycloheximide-treated rabbits. The present study indicated the following: (a) Increases of 80 and 50% in plasma glycine disappearance rate constants occurred in insulin- and glucagon-treated rabbits as compared with control postabsorptive rabbits; (b) The hormones in the intact rabbits caused a significant depletion in glycine pool size, which led to a moderate reduction in the fluxes of glycine. (c) A significant reduction in glycine turnover rate constants and pool size was noted at 3 and 24 hr following the administration of a sublethal dose of cycloheximide and a restoration towards control postabsorptive values was observed 48 hr after cycloheximide administration. (d) Sublethal doses of cycloheximide inhibited by 60 and 90% the stimulatory action of insulin and glucagon on plasma glycine disappearance, respectively. The present data suggest that both insulin and glucagon may act directly on plasma glycine disappearance rates. The stimulatory action of insulin differs from the action of glucagon in that it is not completely blocked by cycloheximide. Presumably glucagon and insulin modify the glycine transport system at different sites or by a different mechanism.  相似文献   

20.
The purple nonsulfur bacterium Rhodobacter capsulatus strain B10 grew phototrophically on the aromatic compound hippurate (N-benzoyl-L-glycine) and related benzoyl amino acids. Absorption spectra, extraction, and GC/MS analysis of culture supernatants showed that hippurate was stoichiometrically converted to benzoate and glycine, with the latter used as a carbon or nitrogen source for growth. This conclusion was supported by detection of the enzyme hippuricase in permeabilized intact cells. Chemotrophic growth on hippurate by Rba. capsulatus, either at full or reduced oxygen tensions, was not observed. The type strain of Rhodobacter sphaeroides as well as four strains of Rhodopseudomonas palustris also grew phototrophically on hippurate, while several other aromatic-degrading species of purple bacteria did not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号