首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mammals and birds are endotherms and respond to cold exposure by the means of regulatory thermogenesis, either shivering or non-shivering. In this latter case, waste of cell energy as heat can be achieved by uncoupling of mitochondrial respiration. Uncoupling proteins, which belong to the mitochondrial carrier family, are able to transport protons and thus may assume a thermogenic function. The mammalian UCP1 physiological function is now well understood and gives to the brown adipose tissue the capacity for heat generation. But is it really the case for its more recently discovered isoforms UCP2 and UCP3? Additionally, whereas more and more evidence suggests that non-shivering also exists in birds, is the avian UCP also involved in response to cold exposure? In this review, we consider the latest advances in the field of UCP biology and present putative functions for UCP1 homologues.  相似文献   

2.
Piglets are characteristically cold intolerant and thus susceptible to high mortality. However, browning of white adipose tissue (WAT) can induce non-shivering thermogenesis as a potential strategy to facilitate the animal’s response to cold. Whether cold exposure can induce browning of subcutaneous WAT (sWAT) in piglets in a similar manner as it can in humans remains largely unknown. In this study, piglets were exposed to acute cold (4°C, 10 h) or chronic cold exposure (8°C, 15 days), and the genes and proteins of uncoupling protein 1 (UCP1)-dependent and independent thermogenesis, mitochondrial biogenesis, lipogenic and lipolytic processes were analysed. Interestingly, acute cold exposure induced browning of porcine sWAT, smaller adipocytes and the upregulated expression of UCP1, PGC1α, PGC1β, C/EBPβ, Cidea, UCP3, CKMT1 and PM20D1. Conversely, chronic cold exposure impaired the browning process, reduced mitochondrial numbers and the expression of browning markers, including UCP1, PGC1α and PRDM16. The present study demonstrated that acute cold exposure (but not chronic cold exposure) induces porcine sWAT browning. Thus, browning of porcine sWAT could be a novel strategy to balance the body temperature of piglets, and thus could be protective against cold exposure.  相似文献   

3.
Toyomizu M  Ueda M  Sato S  Seki Y  Sato K  Akiba Y 《FEBS letters》2002,529(2-3):313-318
Although bird species studied thus far have no distinct brown adipose tissue (BAT) or a related thermogenic tissue, there is now strong evidence that non-shivering mechanisms in birds may play an important role during cold exposure. Recently, increased expression of the duckling homolog of the avian uncoupling protein (avUCP) was demonstrated in cold-acclimated ducklings [Raimbault et al., Biochem. J. 353 (2001) 441-444]. Among the mitochondrial anion carriers, roles for the ATP/ADP antiporter (ANT) as well as UCP variants in thermogenesis are proposed. The present experiments were conducted (i) to examine the effects of cold acclimation on the fatty acid-induced uncoupling of oxidative phosphorylation in skeletal muscle mitochondria and (ii) to clone the cDNA of UCP and ANT homologs from chicken skeletal muscle and study differences compared to controls in expression levels of their mRNAs in the skeletal muscle of cold-acclimated chickens. The results obtained here show that suppression of palmitate-induced uncoupling by carboxyatractylate was greater in the subsarcolemmal skeletal muscle mitochondria from cold-acclimated chickens than that for control birds. An increase in mRNA levels of avANT and, to lesser degree, of avUCP in the skeletal muscle of cold-acclimated chickens was also found. Taken together, the present studies on cold-acclimated chickens suggest that the simultaneous increments in levels of avANT and avUCP mRNA expression may be involved in the regulation of thermogenesis in skeletal muscle.  相似文献   

4.
White (WAT) and brown (BAT) adipose tissue, the two main types of adipose organ, are responsible for lipid storage and non-shivering thermogenesis, respectively. Thermogenesis is a process mediated by mitochondrial uncoupling protein 1 (UCP1) which uncouples oxidative phosphorylation from ATP production, leading to the conversion of free fatty acids to heat. This process can be triggered by exposure to low ambient temperatures, caloric excess, and the immune system. Recently mitochondrial thermogenesis has also been associated with plasma lipoprotein transport system. Specifically, apolipoprotein (APO) E3 is shown to have a bimodal effect on WAT thermogenesis that is highly dependent on its site of expression. Similarly, APOE2 and APOE4 differentially affect BAT and WAT mitochondrial metabolic activity in processes highly modulated by APOA1. Furthermore, the absence of classical APOA1 containing HDL (APOA1-HDL), is associated with no measurable non-shivering thermogenesis in WAT of mice fed high fat diet. Based on these previous observations which indicate important regulatory roles for both APOA1 and APOE in adipose tissue mitochondrial metabolic activity, here we sought to investigate the potential roles of these apolipoproteins in BAT and WAT metabolic activation in mice, following stimulation by cold exposure (7 °C). Our data indicate that APOA1-HDL promotes metabolic activation of BAT only in the presence of very low levels (virtually undetectable) of APOE3-containing HDL (APOE3-HDL), which acts as an inhibitor in this process. In contrast, induction of WAT thermogenesis is subjected to a more complicated regulation which requires the combined presence of both APOA1-HDL and APOE3-HDL.  相似文献   

5.
The house musk shrew (Suncus murinus), or so-called suncus, is a cold-intolerant mammal, but it is unclear why it is susceptible to low temperatures. Cold-intolerance may be the result of lower thermogenic activity in brown adipose tissue (BAT). The early phase of severe cold exposure is a critical period for suncus. Therefore, we exposed suncus to mildly cold temperatures (10-12 degrees C) for 1 to 48 h to increase non-shivering thermogenesis without causing stress and measured changes in the expression of uncoupling protein 1 (Ucp1), type II iodothyronine 5'-deiodinase (Dio2=D2), and glucose transporter 4 (Slc2a4=Glut4) in BAT. These mRNAs play a major role in non-shivering thermogenesis and are mainly regulated by the sympathetic nervous system via direct beta-noradrenergic innervation of BAT. During cold exposure, Ucp1 expression in BAT increased steadily over time, albeit only slightly. Neither D2 nor Glut4 expression in BAT increased immediately; however, they had increased significantly after 24 h and 48 h of cold exposure. These findings suggest that the responsiveness of mRNA regulation is weak and thus may be involved in cold-intolerance in suncus.  相似文献   

6.

Background

Mild cold exposure and overfeeding are known to elevate energy expenditure in mammals, including humans. This process is called adaptive thermogenesis. In small animals, adaptive thermogenesis is mainly caused by mitochondrial uncoupling in brown adipose tissue and regulated via the sympathetic nervous system. In humans, skeletal muscle is a candidate tissue, known to account for a large part of the epinephrine-induced increase in energy expenditure. However, mitochondrial uncoupling in skeletal muscle has not extensively been studied in relation to adaptive thermogenesis in humans. Therefore we hypothesized that cold-induced adaptive thermogenesis in humans is accompanied by an increase in mitochondrial uncoupling in skeletal muscle.

Methodology/Principal Findings

The metabolic response to mild cold exposure in 11 lean, male subjects was measured in a respiration chamber at baseline and mild cold exposure. Skeletal muscle mitochondrial uncoupling (state 4) was measured in muscle biopsies taken at the end of the respiration chamber stays. Mild cold exposure caused a significant increase in 24h energy expenditure of 2.8% (0.32 MJ/day, range of −0.21 to 1.66 MJ/day, p<0.05). The individual increases in energy expenditure correlated to state 4 respiration (p<0.02, R2 = 0.50).

Conclusions/Significance

This study for the first time shows that in humans, skeletal muscle has the intrinsic capacity for cold induced adaptive thermogenesis via mitochondrial uncoupling under physiological conditions. This opens possibilities for mitochondrial uncoupling as an alternative therapeutic target in the treatment of obesity.  相似文献   

7.
8.
《Tissue & cell》2016,48(5):452-460
Brown adipose tissue (BAT) is mainly composed of adipocytes, it is highly vascularized and innervated, and can be activated in adult humans. Brown adipocytes are responsible for performing non-shivering thermogenesis, which is exclusively mediated by uncoupling protein (UCP) -1 (a protein found in the inner mitochondrial membrane), the hallmark of BAT, responsible for the uncoupling of the proton leakage from the ATP production, therefore, generating heat (i.e. thermogenesis). Besides UCP1, other compounds are essential not only to thermogenesis, but also to the proliferation and differentiation of BAT, including peroxisome proliferator-activated receptor (PPAR) family, PPARgamma coactivator 1 (PGC1)-alpha, and PRD1-BF-1-RIZ1 homologous domain protein containing protein (PRDM) -16. The sympathetic nervous system centrally regulates thermogenesis through norepinephrine, which acts on the adrenergic receptors of BAT. This bound leads to the initialization of the many pathways that may activate thermogenesis in acute and/or chronic ways. In summary, this mini-review aims to demonstrate the latest advances in the knowledge of BAT.  相似文献   

9.
In their natural environment, burrowing rodents experience rather fluctuating ambient temperatures and are acutely cold exposed only for short periods outside their burrows. The effect of short daily cold exposure on basal metabolic rate, nonshivering thermogenesis, brown fat thermogenesis, and uncoupling protein mRNA was studied in the Djungarian hamster, Phodopus sungorus. They were kept at 23 degrees C and exposed to 5 degrees C daily either for one 4-h period or twice for 2 h (in 12-h intervals). At the same time control hamsters were kept continuously either at thermoneutrality (23 degrees C) or at 5 degrees C. Two 2-h cold exposures daily were sufficient to increase basal metabolic rate and nonshivering thermogenesis to the same level as continuous cold exposure, whereas one 4-h cold period per day did not result in a significant increase of both parameters. Brown fat thermogenesis (as measured by cytochrome-c oxidase activity and GDP binding to the mitochondrial uncoupling protein) increased to the same extent by both treatments with short daily cold exposure. However, this increase was less than in the chronically cold-exposed hamsters. A similar result was found for uncoupling protein mRNA: both short-term cold-exposed hamsters increased uncoupling protein mRNA levels to a similar extent, but less than after chronic cold treatment. It is concluded that short daily cold exposures are sufficient to cause adaptive increases of the capacity of metabolic heat production as well as brown fat thermogenic properties.  相似文献   

10.
1. The effects of prolonged cold exposure on cytochrome oxidase activity were investigated in skeletal muscles, liver and adipose tissues from cold-acclimated (CA) and control (TN) ducklings and rats. 2. Cold acclimation increased the oxidative capacity of skeletal muscles (+33% in gastrocnemius and +195% in pectoral) and liver (+47%) from CA ducklings, but decreased the oxidative capacity of gastrocnemius muscle (-22%) from CA rats. On the other hand, in these CA rats it increased the oxidative capacity of liver by 88% and, above all, brown adipose tissue by 544%. 3. The significance of these changes due to acclimation to cold in ducklings and rats is discussed. Such an increase in oxidative capacity of CA duckling muscles may explain the non-shivering thermogenesis observed in these birds.  相似文献   

11.
We found opposite regulation of uncoupling protein 3 (UCP3) in slow-twitch soleus and fast-twitch gastrocnemius muscles of rats during cold exposure. Namely, the UCP3 mRNA level was downregulated in the soleus muscles, but upregulated in the gastrocnemius muscles after a 24-h cold exposure. In the analysis of UCP3 protein, we first succeeded in detecting UCP3 short-form as well as the long-form in vivo, which levels were decreased markedly in the cold-exposed soleus muscles. However, the levels of UCP3 and cytochrome oxidase subunit IV were well maintained in the cold-exposed gastrocnemius muscles with a rise in the total mitochondrial protein level, suggesting an increase of total oxidative ability. The fast-twitch muscle rather than the slow-twitch one may play an important role in adaptive responses, including thermogenesis under acute cold exposure.  相似文献   

12.
In both the growth plate and in marrow stromal cell cultures cell-mediated mineralization is preceded by characteristics of anaerobic and low efficiency energy metabolism. Reagents that increase mineralization like malonate and dexamethasone (DEX) also increase the mitochondrial membrane potential (MtMP) especially 1 week after DEX stimulation. Contrarily, levamisole, which decreases mineralization, also decreases MtMP. Modulation of MtMP and energy metabolism could be linked to regulation of mineralization by the uncoupling of oxidative phosphorylation. This uncoupling should be associated with thermogenesis in cells that induce mineralization. We examined whether cold temperature affects mineralization, and whether cellular thermogenesis takes place at cold temperature in parallel to changes in MtMP. Osteoprogenitor cells (OPC) induced, in DEX stimulated rat marrow stroma, higher mineralization at 33°C than at 37°C. Increased mineralization by cold temperature required long incubation since incubation in the cold during short intervals, 3–4 days, did not increase mineralization relative to (37°C) controls. Marrow stromal cells in the presence of valinomycin responded to incubation at 33°C by retaining all the vital dye after 4 h, unlike the cells at 37°C; however, after 24 h the level of dye retention at 33°C was the same as at 37°C. The delayed response of the temperature-dependent (> 37°C) K+ ionophor to incubation in the cold indicated that certain cells may respond to low temperature by local intracellular heating, and by heat conduction to the plasma membrane. DEX-stimulated stromal cells, unlike unstimulated cells, showed increased mitochondrial rhodamine 123 retention in the presence of valinomycin after 24 h in the cold, which corresponds to day 4 of OPC induction. This is consistent with the concept that valinomycin-induced cell damage is mediated by (cold-induced) local heating. The mechanism of this cell damage should selectively prefer non-thermogenic (rhodamine retaining) over thermogenic (rhodamine leaking) cells such as OPC. At cold temperature DEX-stimulated stromal cells showed the best anti-OPC selection under exposure to valinomycine between days 3–7, concurrent with the period of rhodamine leakage from the mitochondria. These results indicate that thermogenesis is enhanced during the period of low MtMP in mineralizing cells, and prolonged exposure to cold increases mineralization also due to induction of subtle thermogenesis. © 1996 Wiley-Liss, Inc.  相似文献   

13.
The mitochondrial uncoupling protein-2: current status   总被引:6,自引:0,他引:6  
In eukaryotic cells ATP is generated by oxidative phosphorylation, an energetic coupling at the mitochondrial level. The oxidative reactions occurring in the respiratory chain generate an electrochemical proton gradient on both sides of the inner membrane. This gradient is used by the ATPsynthase to phosphorylate ADP into ATP. The coupling between respiration and ADP phosphorylation is only partial in brown adipose tissue (BAT) mitochondria, where the uncoupling protein UCP1 causes a reentry of protons into the matrix and abolishes the electrochemical proton gradient. The liberated energy is then dissipated as heat and ATP synthesis is reduced. This property was for a long time considered as an exception and specific to the non-shivering thermogenesis found in BAT. The recent cloning of new UCPs expressed in other tissues revealed the importance of this kind of regulation of respiratory control in metabolism and energy expenditure. The newly characterised UCPs are potential targets for obesity treatment drugs which could favour energy expenditure and diminish the metabolic efficiency. In 1997, we cloned UCP2 and proposed a role for this new uncoupling protein in diet-induced thermogenesis, obesity, hyperinsulinemia, fever and resting metabolic rate. Currently, an abundant literature deals with UCP2, but its biochemical and physiological functions and regulation remain unclear. The present review reports the status of our knowledge of this mitochondrial carrier in terms of sequence, activity, tissue distribution and regulation of expression. The putative physiological roles of UCP2 will be introduced and discussed.  相似文献   

14.
Mitochondrial uncoupling mediated by uncoupling protein 1 (UCP1) is classically associated with non-shivering thermogenesis by brown fat. Recent evidence indicates that UCP family proteins are also present in selected neurons. Unlike UCP1, these proteins (UCP2, UCP4 and BMCP1/UCP5) are not constitutive uncouplers and are not crucial for non-shivering thermogenesis. However, they can be activated by free radicals and free fatty acids, and their activity has a profound influence on neuronal function. By regulating mitochondrial biogenesis, calcium flux, free radical production and local temperature, neuronal UCPs can directly influence neurotransmission, synaptic plasticity and neurodegenerative processes. Insights into the regulation and function of these proteins offer unsuspected avenues for a better understanding of synaptic transmission and neurodegeneration.  相似文献   

15.
Mitochondrial uncoupling reduces reactive oxygen species (ROS) production and appears to be important for cellular signaling/protection, making it a focus for the treatment of metabolic and age-related diseases. Whereas the physiological role of uncoupling protein 1 (UCP1) of brown adipose tissue is established for thermogenesis, the function of UCP1 in the reduction of ROS in cold-exposed animals is currently under debate. Here, we investigated the role of UCP1 in mitochondrial ROS handling in the Lesser hedgehog tenrec (Echinops telfairi), a unique protoendothermic Malagasy mammal with recently identified brown adipose tissue (BAT). We show that the reduction of ROS by UCP1 activity also occurs in BAT mitochondria of the tenrec, suggesting that the antioxidative role of UCP1 is an ancient mammalian trait. Our analysis shows that the quantity of UCP1 displays strong control over mitochondrial hydrogen peroxide release, whereas other factors, such as mild cold, nonshivering thermogenesis, oxidative capacity, and mitochondrial respiration, do not correlate. Furthermore, hydrogen peroxide release from recoupled BAT mitochondria was positively associated with mitochondrial membrane potential. These findings led to a model of UCP1 controlling mitochondrial ROS release and, presumably, being controlled by high membrane potential, as proposed in the canonical model of “mild uncoupling”. Our study further promotes a conserved role for UCP1 in the prevention of oxidative stress, which was presumably established during evolution before UCP1 was physiologically integrated into nonshivering thermogenesis.  相似文献   

16.

Background  

Thermogenic brown adipose tissue has never been described in birds or other non-mammalian vertebrates. Brown adipocytes in mammals are distinguished from the more common white fat adipocytes by having numerous small lipid droplets rather than a single large one, elevated numbers of mitochondria, and mitochondrial expression of the nuclear gene UCP1, the uncoupler of oxidative phosphorylation responsible for non-shivering thermogenesis.  相似文献   

17.
18.
We examined the differential change in body composition in response to a gradual reduction in both environmental temperature and photoperiod to mimic seasonal fluctuations in the wild (summer–winter transition), from ambient to 5°C and 1:23 light:dark for 8 weeks. In contrast to acute cold exposure used in previous studies, cold-acclimated rats showed an initial increase in growth rate relative to normothermic controls, possibly due to cold-stimulated hyperphagia. In hamsters, maintenance of growth rate during initial cold exposure reflects the intrinsic high oxidative capacity, while subsequent cessation of growth is consistent with the preparation for hibernation. Cold-induced atrophy of skeletal muscles coincided with increased capacity for non-shivering thermogenesis (NST) associated with a greater mass of brown adipose tissue (BAT). Cardiac hypertrophy may compensate for an increase in total peripheral resistance and/or work load of heart in both species (40% and 20%, respectively), while hypertrophy of lung (20% and 40%) and diaphragm muscle (7% and 40%) was consistent with increased ventilation associated with a cold-induced increase in basal metabolic rate. Gonadal atrophy in hamsters (160%) may be an energy saving strategy during the non-reproductive season, while maintenance of other endocrine (thyroid, adrenal, pineal) gland masses reflects the continued importance of hormonal regulation of homeostasis. The interspecific differences appear to accommodate the increased demands of shivering thermogenesis (skeletal muscle hypertrophy) or NST (BAT, diaphragm) in rats and hamsters, respectively. Those systems representing cardiovascular and metabolic control completed their adaptation quickly (within 4-week cold acclimation), while the respiratory and reproductive systems continued to respond to a further 4-week exposure. This differential time course may reflect the relative strength of selection pressure on these systems for the process of cold acclimation.  相似文献   

19.
The presence of nonshivering thermogenesis in marsupials is controversially debated. Survival of small eutherian species in cold environments is crucially dependent on uncoupling protein 1 (UCP1)-mediated, adaptive nonshivering thermogenesis that is executed in brown adipose tissue. In a small dasyurid marsupial species, the fat-tailed dunnart (Sminthopsis crassicaudata), an orthologue of UCP1 has been recently identified which is upregulated during cold exposure resembling adaptive molecular adjustments of eutherian brown adipose tissue. Here, we tested for a thermogenic function of marsupial brown adipose tissue and UCP1 by evaluating the capacity of nonshivering thermogenesis in cold-acclimated dunnarts. In response to an optimal dosage of noradrenaline, cold-acclimated dunnarts (12°C) showed no additional recruitment of noradrenaline-induced maximal thermogenic capacity in comparison to warm-acclimated dunnarts (24°C). While no differences in body temperature were observed between the acclimation groups, basal metabolic rate was significantly elevated after cold acclimation. Therefore, we suggest that adaptive nonshivering thermogenesis does not occur in this marsupial species despite the cold recruitment of oxidative capacity and UCP1 in the interscapular fat deposit. In conclusion, the ancient UCP orthologue in marsupials does not contribute to the classical nonshivering thermogenesis, and may exhibit a different physiological role.  相似文献   

20.
Adaptive thermogenesis is the cellular process transforming chemical energy into heat in response to cold. A decrease in adaptive thermogenesis is a contributing factor to obesity. However, the molecular mechanisms responsible for the compromised adaptive thermogenesis in obese subjects have not yet been elucidated. In this study we hypothesized that Toll-like receptor 4 (TLR4) activation and subsequent inflammatory responses are key regulators to suppress adaptive thermogenesis. To test this hypothesis, C57BL/6 mice were either fed a palmitate-enriched high fat diet or administered with chronic low-dose LPS before cold acclimation. TLR4 stimulation by a high fat diet or LPS were both associated with reduced core body temperature and heat release. Impairment of thermogenic activation was correlated with diminished expression of brown-specific markers and mitochondrial dysfunction in subcutaneous white adipose tissue (sWAT). Defective sWAT browning was concomitant with elevated levels of endoplasmic reticulum (ER) stress and autophagy. Consistently, TLR4 activation by LPS abolished cAMP-induced up-regulation of uncoupling protein 1 (UCP1) in primary human adipocytes, which was reversed by silencing of C/EBP homologous protein (CHOP). Moreover, the inactivation of ER stress by genetic deletion of CHOP or chemical chaperone conferred a resistance to the LPS-induced suppression of adaptive thermogenesis. Collectively, our data indicate the existence of a novel signaling network that links TLR4 activation, ER stress, and mitochondrial dysfunction, thereby antagonizing thermogenic activation of sWAT. Our results also suggest that TLR4/ER stress axis activation may be a responsible mechanism for obesity-mediated defective brown adipose tissue activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号