首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Human lung neoplasms frequently express mutations that down‐regulate expression of various tumor suppressor molecules, including mitogen‐activated protein kinases such as p38 MAPK. Conversely, activation of p38 MAPK in tumor cells results in cancer cell cycle inhibition or apoptosis initiated by chemotherapeutic agents such as retinoids or cisplatin, and is therefore an attractive approach for experimental anti‐tumor therapies. We now report that 4‐phenyl‐3‐butenoic acid (PBA), an experimental compound that reverses the transformed phenotype at non‐cytotoxic concentrations, activates p38 MAPK in tumorigenic cells at concentrations and treatment times that correlate with decreased cell growth and increased cell‐cell communication. H2009 human lung carcinoma cells and ras‐transformed rat liver epithelial cells treated with PBA showed increased activation of p38 MAPK and its downstream effectors which occurred after 4 h and lasted beyond 48 h. Untransformed plasmid control cells showed low activation of p38 MAPK compared to ras‐transformed and H2009 carcinoma cells, which correlates with the reduced effect of PBA on untransformed cell growth. The p38 MAPK inhibitor, SB203580, negated PBA's activation of p38 MAPK downstream effectors. PBA also increased cell–cell communication and connexin 43 phosphorylation in ras‐transformed cells, which were prevented by SB203580. In addition, PBA decreased activation of JNK, which is upregulated in many cancers. Taken together, these results suggest that PBA exerts its growth regulatory effect in tumorigenic cells by concomitant up‐regulation of p38 MAPK activity, altered connexin 43 expression, and down‐regulation of JNK activity. PBA may therefore be an effective therapeutic agent in human cancers that exhibit down‐regulated p38 MAPK activity and/or activated JNK and altered cell–cell communication. J. Cell. Biochem. 113: 269–281, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
Obesity often leads to obesity‐related cardiac hypertrophy (ORCH), which is suppressed by zinc‐induced inactivation of p38 mitogen‐activated protein kinase (p38 MAPK). In this study, we investigated the mechanisms by which zinc inactivates p38 MAPK to prevent ORCH. Mice (4‐week old) were fed either high fat diet (HFD, 60% kcal fat) or normal diet (ND, 10% kcal fat) containing variable amounts of zinc (deficiency, normal and supplement) for 3 and 6 months. P38 MAPK siRNA and the p38 MAPK inhibitor SB203580 were used to suppress p38 MAPK activity in vitro and in vivo, respectively. HFD activated p38 MAPK and increased expression of B‐cell lymphoma/CLL 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These responses were enhanced by zinc deficiency and attenuated by zinc supplement. Administration of SB203580 to HFD mice or specific siRNA in palmitate‐treated cardiomyocytes eliminated the HFD and zinc deficiency activation of p38 MAPK, but did not significantly impact the expression of BCL10 and CARD9. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate‐induced increased p38 MAPK activation and atrial natriuretic peptide (ANP) expression. In contrast, inhibition of p38 MAPK prevented ANP expression, but did not affect BCL10 expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate‐induced up‐regulation of BCL10 and phospho‐p38 MAPK. HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress‐mediated activation of BCL10/CARD9/p38 MAPK signalling. Zinc supplement ameliorates ORCH through activation of metallothionein to repress oxidative stress‐activated BCL10 expression and p38 MAPK activation.  相似文献   

3.
 The adoptive transfer of tumor-draining lymph node (LN) T cells activated ex vivo with anti-CD3 and interleukin 2 (IL-2) mediates the regression of the poorly immunogenic murine melanoma D5. The efficacy of the activated LN cells is augmented when the sensitizing tumor is a genetically modified variant (designated D5G6) that secretes granulocyte/macrophage-colony-stimulating factor. In contrast to anti-CD3/IL-2-activated LN cells, adoptive transfer of freshly isolated tumor-draining LN T cells has no therapeutic activity. To determine whether the acquisition of antitumor function during ex vivo activation is associated with modifications in signal transduction capacity, the protein tyrosine kinases p56 lck and p59 fyn and proteins of the NF-κB family were analyzed in tumor-draining LN T cells. The levels of p56 lck and p59 fyn were lower in tumor-draining than in normal LN T cells and production of tyrosine-phosphorylated substrates was markedly depressed following anti-CD3 stimulation. After 5-day anti-CD3/IL-2 activation, levels of p56 lck and p59 fyn and protein tyrosine kinase activity increased. Interestingly, the levels of p56 lck , p59 fyn , and tyrosine kinase activity were higher in activated T cells derived from LN that drained D5G6 than they were in those from D5 tumors. In contrast, the cytoplasmic levels of c-Rel and Rel A were normal in freshly isolated tumor-draining LN, as was nuclear κB DNA-binding activity induced by anti-CD3 mAb or phorbol myristate acetate. Stimulation of activated LN cells with D5 tumor cells induced the nuclear translocation of NF-κB. These findings indicate that the recovery of proteins mediating signal transduction through the T cell receptor/CD3 complex in LN T cells activated ex vivo was associated with the acquisition of antitumor function. Received: 28 August 1997 / Accepted: 23 February 1998  相似文献   

4.
It has been recently shown that long-term thyroxine administration increases the tolerance of the heart to ischaemia. The present study investigated whether thyroxine induced cardioprotection involves alterations in the pattern of p38 mitogen activated protein kinase (p38MAPK) and c-Jun NH2-terminal kinases (JNKs) activation during ischaemia-reperfusion. L-thyroxine (T4) was administered in Wistar rats (25 g/100 g/day, subcutaneously) for 2 weeks (THYR), while normal animals served as controls (NORM). NORM and THYR isolated rat hearts were perfused in Langendorff mode and subjected to 10 or 20 min of zero-flow global ischaemia only and also to 20 min of ischaemia followed by 10, 20 or 45 min of reperfusion. Postischaemic recovery of left ventricular developed pressure at 45 min of reperfusion was expressed as % of the initial value. Activation of p38 MAPK and JNKs was assessed at the different times of the experimental setting by standard Western blotting techniques using a dual phospho p38MAPK and phospho JNKs (p46/p54) antibodies. Activation of p38 MAPK was significantly attenuated during ischaemia and reperfusion in thyroxine treated hearts compared to normal hearts. JNKs were found to be activated only during the reperfusion period. The levels of phospho JNKs were found to be lower in thyroxine treated hearts as compared to untreated hearts, though not at a statistically significant level. Postischaemic functional recovery was higher in THYR as compared to NORM, p < 0.05. In summary, in hearts pretreated with thyroxine, p38 MAPK was attenuated during ischaemia and at reperfusion and this was associated with improved postischaemic recovery of function.  相似文献   

5.
6.
Context: The “free fatty acid receptors” (FFARs) GPR40, GPR41, and GPR43 regulate various physiological homeostases, and are all linked to activation of extracellular signal-regulated kinases (ERK)1/2.

Objective: Investigation of coupling of FFARs to two other mitogen-activated protein kinases (MAPKs) sometimes regulated by G protein-coupled receptors (GPCRs), c-Jun N-terminal kinase (JNK) and p38MAPK, and characterization of signaling proteins involved in the regulation of FFAR-mediated ERK1/2 activation.

Methods: FFARs were recombinantly expressed, cells challenged with the respective agonist, and MAPK activation quantitatively determined using an AlphaScreen SureFire assay. Inhibitors for signaling proteins were utilized to characterize ERK1/2 pathways.

Results: Propionate-stimulated GPR41 strongly coupled to ERK1/2 activation, while the coupling of linoleic acid-activated GPR40 and acetate-activated GPR43 was weaker. JNK and p38MAPK were weakly activated by FFARs. All three receptors activated ERK1/2 fully or partially via Gi/o and Rac. PI3K was relevant for GPR40- and GPR41-mediated ERK1/2 activation, and Src was essential for GPR40- and GPR43-induced activation. Raf-1 was not involved in the GPR43-triggered activation.

Conclusion: The results demonstrate a novel role of Rac in GPCR-mediated ERK1/2 signaling, and that GPCRs belonging to the same family can regulate ERK1/2 activation by different receptor-specific mechanisms.  相似文献   

7.
8.
DNA lesions trigger the DNA damage response (DDR) machinery, which protects genomic integrity and sustains cellular survival. Increasing data underline the significance of the integrity of the DDR pathway in chemotherapy response. According to a recent work, persistent exposure of A549 lung carcinoma cells to doxorubicin induces an initial DDR‐dependent checkpoint response, followed by a later DDR‐independent, but p27Kip1‐dependent one. Prompted by the above report and to better understand the involvement of the DDR signaling after chemotherapeutic stress, we examined the potential role of the canonical DDR pathway in A549 cells treated with doxorubicin. Exposure of A549 cells, prior to doxorubicin treatment, to ATM, ATR and DNA‐PKcs inhibitors either alone or in various combinations, revealed that the earlier documented two‐step response was DDR‐dependent in both steps. Notably, inhibition of both ATM and ATR or selective inhibition of ATM or DNA‐PKcs resulted in cell‐cycle re‐entry despite the increased levels of p27Kip1 at all time points analyzed. We further investigated the regulation of p27Kip1 protein levels in the particular setting. Our results showed that the protein status of p27Kip1 is mainly determined by p38‐MAPK, whereas the role of SKP2 is less significant in the doxoroubicin‐treated A549 cells. Cumulatively, we provide evidence that the DNA damage signaling is responsible for the prolonged cell cycle arrest observed after persistent chemotherapy‐induced genotoxic stress. In conclusion, precise identification of the molecular mechanisms that are activated during the chemotherapeutic cycles could potentially increase the sensitization to the therapy applied.  相似文献   

9.
Wild-type p53-induced phosphatase (Wip1) is induced by p53 in response to stress, which results in the dephosphorylation of proteins (i.e. p38 MAPK, p53, and uracil DNA glycosylase) involved in DNA repair and cell cycle checkpoint pathways. p38 MAPK-p53 signaling is a unique way to induce Wip1 in response to stress. Here, we show that c-Jun directly binds to and activates the Wip1 promoter in response to UV irradiation. The binding of p53 to the promoter occurs earlier than that of c-Jun. In experiments, mutation of the p53 response element (p53RE) or c-Jun consensus sites reduced promoter activity in both non-stressed and stressed A549 cells. Overexpression of p53 significantly decreased Wip1 expression in HCT116 p53+/+ cells but increased it in HCT116 p53−/− cells. Adenovirus-mediated p53 overexpression greatly decreased JNK activity. Up-regulation of Wip1 via the p38 MAPK-p53 and JNK-c-Jun pathways is specific, as demonstrated by our findings that p38 MAPK and JNK inhibitors affected the expression of the Wip1 protein, whereas an ERK inhibitor did not. c-Jun activation occurred much more quickly, and to a greater extent, in A549-E6 cells than in A549 cells, with delayed but fully induced Wip1 expression. These data indicate that Wip1 is activated via both the JNK-c-Jun and p38 MAPK-p53 signaling pathways and that temporal induction of Wip1 depends largely on the balance between c-Jun and p53, which compete for JNK binding. Moreover, our results suggest that JNK-c-Jun-mediated Wip1 induction could serve as a major signaling pathway in human tumors in response to frequent p53 mutation.  相似文献   

10.
UV‐induced melanogenesis is a well known physiological response of human skin exposed to solar radiation; however, the signaling molecules involved in the stimulation of melanogenesis in melanocytes following UV exposure remain unclear. In this study we induced melanogenesis in vitro in normal human epidermal melanocytes using a single irradiation with UVA at 1 kJ/m2 and examined the potential involvement of mitogen‐activated protein kinases (MAPK) as UVA‐responsive signaling molecules in those cells. UVA irradiation did not affect the proliferation of melanocytes, but it did increase tyrosinase mRNA expression, which reached a maximum level 4 hr after UVA irradiation. The amount of tyrosinase protein, as quantitated by immunoblotting, was also increased at 24 hr following UVA irradiation. Among the MAPK examined, extracellular signal‐related kinase (ERK) 1/2 was phosphorylated within 15 min of UVA irradiation, but no such phosphorylation was observed for c‐Jun N‐terminal kinases (JNK) or p38. Accordingly, the activity of ERK1/2 was also increased shortly after UVA irradiation. These responses of ERK1/2 to UVA irradiation were markedly inhibited when cells were pre‐treated with N‐acetyl‐l ‐cysteine, an antioxidant, or with suramin, a tyrosine kinase receptor inhibitor. The formation of (6‐4)photoproducts or cyclobutane pyrimidine dimers was not detected in cellular DNA after UVA irradiation. These findings suggest that a single UVA irradiation‐induced melanogenesis is associated with the activation of ERK1/2 by upstream signals that originate from reactive oxygen species or from activated tyrosine kinase receptors, but not from damaged DNA.  相似文献   

11.
In this study, we investigated the effects and molecular mechanisms of 2‐phenylbenzimidazole‐5‐sulphonic acid (PBSA), an ultraviolet B protecting agent used in sunscreen lotions and moisturizers, on ovarian cancer cell responses and tumour angiogenesis. PBSA treatment markedly blocked mitogen‐induced invasion through down‐regulation of matrix metalloproteinase (MMP) expression and activity in ovarian cancer SKOV‐3 cells. In addition, PBSA inhibited mitogen‐induced cell proliferation by suppression of cyclin‐dependent kinases (Cdks), but not cyclins, leading to pRb hypophosphorylation and G1 phase cell cycle arrest. These anti‐cancer activities of PBSA in ovarian cancer cell invasion and proliferation were mediated by the inhibition of mitogen‐activated protein kinase kinase 3/6‐p38 mitogen‐activated protein kinase (MKK3/6‐p38MAPK) activity and subsequent down‐regulation of MMP‐2, MMP‐9, Cdk4, Cdk2 and integrin β1, as evidenced by treatment with p38MAPK inhibitor SB203580. Furthermore, PBSA suppressed the expression and secretion of vascular endothelial growth factor in SKOV‐3 cells, leading to inhibition of capillary‐like tubular structures in vitro and angiogenic sprouting ex vivo. Taken together, our results demonstrate the pharmacological effects and molecular targets of PBSA on modulating ovarian cancer cell responses and tumour angiogenesis, and suggest further evaluation and development of PBSA as a promising chemotherapeutic agent for the treatment of ovarian cancer.  相似文献   

12.
We studied the mechanism of sphingosylphosphorylcholine (SPC)-induced contraction in feline ileal smooth muscle cells. Western blotting revealed that G protein subtypes of Gαi1, Gαi3 and Gαo existed in feline ileum. Gαi3 antibody penetration into permeabilized cells decreased SPC-induced contraction. In addition, incubation of [35S]guanosine 5′-O-(3-thiotriphosphate) ([35S]GTPγS) with membrane fraction increased its binding to Gαi3 subtype after SPC treatment, suggesting that the signalling pathways invoked by SPC were mediated by Gαi3 protein. MAPK kinase (MEK) inhibitor PD98059 blocked the contraction significantly, but p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190 did not. Chelerythrine and neomycin also inhibited the contraction. However, cotreatment of PD98059 and chelerythrine showed no significant difference. Phosphorylation of p44/42 MAPK was increased by SPC treatment, which was reversed by pretreatment of inhibitors of signalling molecules that decreased SPC-induced contraction previously. The same result was obtained in the assay of MAPK activity.  相似文献   

13.
Embryonic stem cells (ESCs) differentiate in vivo and in vitro into all cell lineages, and they have been proposed as cellular therapy for human diseases. However, the molecular mechanisms controlling ESC commitment toward specific lineages need to be specified. We previously found that the p38 mitogen-activated protein kinase (p38MAPK) pathway inhibits neurogenesis and is necessary to mesodermal formation during the critical first 5 days of mouse ESC commitment. This period corresponds to the expression of specific master genes that direct ESC into each of the three embryonic layers. By both chemical and genetic approaches, we found now that, during this phase, the p38MAPK pathway stabilizes the p53 protein level and that interfering directly with p53 mimics the effects of p38MAPK inhibition on ESC differentiation. Anti-p53 siRNA transient transfections stimulate Bcl2 and Pax6 gene expressions, leading to increased ESC neurogenesis compared with control transfections. Conversely, p53 downregulation leads to a strong inhibition of the mesodermal master genes Brachyury and Mesp1 affecting cardiomyogenesis and skeletal myogenesis of ESCs. Similar results were found with p53−/− ESCs compared with their wild-type counterparts. In addition, knockout p53 ESCs show impaired smooth muscle cell and adipocyte formation. Use of anti-Nanog siRNAs demonstrates that certain of these regulations result partially to p53-dependent repression of Nanog gene expression. In addition to its well-known role in DNA-damage response, apoptosis, cell cycle control and tumor suppression, p53 has also been involved in vivo in embryonic development; our results show now that p53 mediates, at least for a large part, the p38MAPK control of the early commitment of ESCs toward mesodermal and neural lineages.  相似文献   

14.
MAPKAPK-2 (MK2) is a protein kinase activated downstream of p38-MAPK which phosphorylates the small heat shock proteins HSP27 and αB crystallin and modulates p38-MAPK cellular distribution. p38-MAPK activation is thought to contribute to myocardial ischemic injury; therefore, we investigated MK2 effects on ischemic injury and p38 cellular localization using MK2-deficient mice (KO). Immunoblotting of extracts from Langendorff-perfused hearts subjected to aerobic perfusion or global ischemia or reperfusion showed that the total and phosphorylated p38 levels were significantly lower in MK2−/− compared to MK2+/+ hearts at baseline, but the ratio of phosphorylated/total p38 was similar. These results were confirmed by cellular fractionation and immunoblotting for both cytosolic and nuclear compartments. Furthermore, HSP27 and αB crsytallin phosphorylation were reduced to baseline in MK2−/− hearts. On semiquantitative immunofluorescence laser confocal microscopy of hearts during aerobic perfusion, the mean total p38 fluorescence was significantly higher in the nuclear compared to extranuclear (cytoplasmic, sarcomeric, and sarcolemmal compartments) in MK2+/+ hearts. However, although the increase in phosphorylated p38 fluorescence intensity in all compartments following ischemia in MK2+/+ hearts was lost in MK2−/− hearts, it was basally elevated in nuclei of MK2−/− hearts and was similar to that seen during ischemia in MK2+/+ hearts. Despite these differences, similar infarct volumes were recorded in wild-type MK2+/+ and MK2−/− hearts, which were decreased by the p38 inhibitor SB203580 (1 μM) in both genotypes. In conclusion, p38 MAPK-induced myocardial ischemic injury is not modulated by MK2. However, the absence of MK2 perturbs the cellular distribution of p38. The preserved nuclear distribution of active p38 MAPK in MK2−/− hearts and the conserved response to SB203580 suggests that activation of p38 MAPK may contribute to injury independently of MK2. Diana A Gorog and Rita I Jabr made equal contributions to this work.  相似文献   

15.
《Autophagy》2013,9(7):1098-1112
Recently we have shown that the mitogen-activated protein kinase (MAPK) MAPK14/p38α is involved in resistance of colon cancer cells to camptothecin-related drugs. Here we further investigated the cellular mechanisms involved in such drug resistance and showed that, in HCT116 human colorectal adenocarcinoma cells in which TP53 was genetically ablated (HCT116-TP53KO), overexpression of constitutively active MAPK14/p38α decreases cell sensitivity to SN-38 (the active metabolite of irinotecan), inhibits cell proliferation and induces survival-autophagy. Since autophagy is known to facilitate cancer cell resistance to chemotherapy and radiation treatment, we then investigated the relationship between MAPK14/p38α, autophagy and resistance to irinotecan. We demonstrated that induction of autophagy by SN38 is dependent on MAPK14/p38α activation. Finally, we showed that inhibition of MAPK14/p38α or autophagy both sensitizes HCT116-TP53KO cells to drug therapy. Our data proved that the two effects are interrelated, since the role of autophagy in drug resistance required the MAPK14/p38α. Our results highlight the existence of a new mechanism of resistance to camptothecin-related drugs: upon SN38 induction, MAPK14/p38α is activated and triggers survival-promoting autophagy to protect tumor cells against the cytotoxic effects of the drug. Colon cancer cells could thus be sensitized to drug therapy by inhibiting either MAPK14/p38 or autophagy.  相似文献   

16.
17.
Purpose Immunotherapy using either dendritic cells (DCs) or expanded cytotoxic T cells (CTLs) has received increased interest in the treatment of specific malignancies including metastatic breast cancer (MBC). DCs can be generated ex vivo from monocytes or CD34+ precursors. The ability to expand and safely administer CD34-derived DCs in patients with MBC that have received prior cytotoxic chemotherapy has not been evaluated.Methods We enrolled ten patients with MBC that had received prior chemotherapy for the treatment of metastatic disease on a phase I/II trial designed to test the safety and feasibility of administering ex vivo expanded DCs from CD34+ progenitor cells.Results Using a cocktail of multiple different cytokines, we could expand DCs 19-fold compared to the initial CD34-selected product, which allowed the administration of as many as six vaccine treatments per patient. Patients received three to six injections i.v. of DCs pulsed with either the wild type GP2 epitope from the HER-2/neu protein or an altered peptide ligand, isoleucine to leucine (I2L). Toxicity was mild, with no patients demonstrating grade III toxicity during the treatment. Two patients with subcutaneous disease had a partial response to therapy, while IFN--producing CD8+ T cells could be found in two other patients during treatment.Conclusions This approach is safe and effective in generating a significant quantity of DCs from CD34-precursors.Supported in part by Grants CA 58223 and 89961 from the National Cancer Institute, the Breast Cancer Research Foundation, and RR0046 from the General Clinical Research Center program of the Division of Research Resources, National Institutes of Health.  相似文献   

18.
Melanoma is one of the most therapy-resistant cancers. Activating mutations in BRAF and NRAS are the source of extracellular signal regulated protein kinase (ERK) pathway activation. We show that melanoma cell lines, originating in different metastatic sites, with BRAF or NRAS mutations, in addition to active mitogen activated protein kinase (MAPK)-ERK, also have highly activated stress activated protein kinase (SAPK)-p38. This is in direct contrast to carcinoma cells in which the activity of the two kinases appears to be mutually exclusive; high level of p38 activity inhibits, through a negative feedback, ERK activity and prevents tumorigenesis. Melanomas are insensitive to ERK inhibition by p38 and utilize p38-signaling pathway for migration and growth in vivo. We found a positive functional loop linking the high ERK activity to surface expression of alphaVbeta3-integrin. This integrin, by interacting with vitronectin, induces p38 activity and increases IL-8 production, enhancing cell migration. Because the negative loop from p38 to ERK is lost, the two kinases can remain simultaneously activated. Inhibition of ERK and p38 activities is more effective in blocking in vivo growth than inhibition of each kinase individually. Future therapies might have to consider targeting of both pathways.  相似文献   

19.
Amlodipine, alone or in combination with other drugs, was successfully used to treat hypertension. Our aim was to evaluate the potential of amlodipine (Am) to restore endothelial dysfunction induced by irreversibly glycated low density lipoproteins (AGE-LDL), an in vitro model mimicking the diabetic condition. Human endothelial cells (HEC) from EA.hy926 line were incubated with AGE-LDL in the presence/absence of Am and the oxidative and inflammatory status of the cells was evaluated along with the p38 MAPK and NF-κB signalling pathways. The cellular NADPH activity, 4-hydroxynonenal (4-HNE) and 3-nitrotyrosine levels in the culture medium and the adhesion of human monocytes to HEC were measured by chemiluminescence, UHPLC, Western Blot and spectrofluorimetric techniques. The gene expression of NADPH subunits (p22phox, NOX4), eNOS and inflammatory molecules (MCP-1, VCAM-1) were determined by Real Time PCR, while the protein expression of p22phox, MCP-1, iNOS, phospho-p38 MAPK and phospho-p65 NF-κB subunit were measured by Western Blot. Results showed that in HEC incubated with AGE-LDL, Am led to: (i) decrease of the oxidative stress: by reducing p22phox, NOX4, iNOS expression, NADPH oxidase activity, 4-HNE and 3-nitrotyrosine levels; (ii) decrease of the inflammatory stress: by the reduction of MCP-1 and VCAM-1 expression, as well as of the number of monocytes adhered to HEC; (iii) inhibition of ROS-sensitive signalling pathways: by decreasing phosphorylation of p38 MAPK and p65 NF-κB subunits. In conclusion, the reported data demonstrate that amlodipine may improve endothelial dysfunction in diabetes through anti-oxidant and anti-inflammatory mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号