首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human cytomegalovirus (HCMV) pathogenesis is dependent on the hematogenous spread of the virus to host tissue. While data suggest that infected monocytes are required for viral dissemination from the blood to the host organs, infected endothelial cells are also thought to contribute to this key step in viral pathogenesis. We show here that HCMV infection of endothelial cells increased the recruitment and transendothelial migration of monocytes. Infection of endothelial cells promoted the increased surface expression of cell adhesion molecules (intercellular cell adhesion molecule 1, vascular cell adhesion molecule 1, E-selectin, and platelet endothelial cell adhesion molecule 1), which were necessary for the recruitment of na?ve monocytes to the apical surface of the endothelium and for the migration of these monocytes through the endothelial cell layer. As a mechanism to account for the increased monocyte migration, we showed that HCMV infection of endothelial cells increased the permeability of the endothelium. The cellular changes contributing to the increased permeability and increased na?ve monocyte transendothelial migration include the disruption of actin stress fiber formation and the decreased expression of lateral junction proteins (occludin and vascular endothelial cadherin). Finally, we showed that the migrating monocytes were productively infected with the virus, documenting that the virus was transferred to the migrating monocyte during passage through the lateral junctions. Together, our results provide evidence for an active role of the infected endothelium in HCMV dissemination and pathogenesis.  相似文献   

2.
3.
Filamin B mediates ICAM-1-driven leukocyte transendothelial migration   总被引:1,自引:0,他引:1  
During inflammation, the endothelium mediates rolling and firm adhesion of activated leukocytes. Integrin-mediated adhesion to endothelial ligands of the Ig-superfamily induces intracellular signaling in endothelial cells, which promotes leukocyte transendothelial migration. We identified the actin cross-linking molecule filamin B as a novel binding partner for intracellular adhesion molecule-1 (ICAM-1). Immune precipitation as well as laser scanning confocal microscopy confirmed the specific interaction and co-localization of endogenous filamin B with ICAM-1. Importantly, clustering of ICAM-1 promotes the ICAM-1-filamin B interaction. To investigate the functional consequences of filamin B binding to ICAM-1, we used small interfering RNA to reduce filamin B expression in ICAM-1-GFP expressing HeLa cells. We found that filamin B is required for the lateral mobility of ICAM-1 and for ICAM-1-induced transmigration of leukocytes. Reducing filamin B expression in primary human endothelial cells resulted in reduced recruitment of ICAM-1 to endothelial docking structures, reduced firm adhesion of the leukocytes to the endothelium, and inhibition of transendothelial migration. In conclusion, this study identifies filamin B as a molecular linker that mediates ICAM-1-driven transendothelial migration.  相似文献   

4.
5.
We present evidence for a novel TLR2 function in transmodulating the adhesive activities of human monocytes in response to the fimbriae of Porphyromonas gingivalis, a pathogen implicated in chronic periodontitis and atherosclerosis. Monocyte recruitment into the subendothelium is a crucial step in atherosclerosis, and we investigated the role of P. gingivalis fimbriae in stimulating monocyte adhesion to endothelial cells and transendothelial migration. Fimbriae induced CD11b/CD18-dependent adhesion of human monocytes or mouse macrophages to endothelial receptor ICAM-1; these activities were inhibited by TLR2 blockade or deficiency or by pharmacological inhibitors of PI3K. Moreover, this inducible adhesive activity was sensitive to the action of Clostridium difficile toxin B, but was not affected by Clostridium botulinum C3 exoenzyme, pertussis toxin, or cholera toxin. Accordingly, we subsequently showed through the use of dominant negative signaling mutants of small GTPases, that Rac1 mediates the ability of fimbria-stimulated monocytes to bind ICAM-1. A dominant negative mutant of Rac1 also inhibited the lipid kinase activity of PI3K suggesting that Rac1 acts upstream of PI3K in this proadhesive pathway. Furthermore, fimbriae stimulated monocyte adhesion to HUVEC and transmigration across HUVEC monolayers; both activities required TLR2 and Rac1 signaling and were dependent upon ICAM-1 and the high-affinity state of CD11b/CD18. P. gingivalis-stimulated monocytes displayed enhanced transendothelial migration compared with monocytes stimulated with nonfimbriated isogenic mutants. Thus, P. gingivalis fimbriae activate a novel proadhesive pathway in human monocytes, involving TLR2, Rac1, PI3K, and CD11b/CD18, which may constitute a mechanistic basis linking P. gingivalis to inflammatory atherosclerotic processes.  相似文献   

6.
Human cytomegalovirus (HCMV) pathogenesis is characterized by multiple organ system involvement due to viral spread to host organs after a cell-associated viremia. The cell type responsible for HCMV dissemination is unknown. Monocytes are the most likely candidate since they are the predominant cell type infected in the blood. However, monocytes are not productive for viral replication and are abortively infected. The results presented here provide a potential answer to this conundrum. We report that primary HCMV infection of monocytes induces transendothelial migration and monocyte-to-macrophage differentiation and that these HCMV-differentiated macrophages are productive for viral replication. Together, our data suggest a novel mechanism for HCMV pathogenesis; HCMV induces cellular changes in monocytes to promote viral replication and spread to host organs.  相似文献   

7.
The β2 integrins and intercellular adhesion molecule-1 (ICAM-1) are important for monocyte migration through inflammatory endothelium. Here we demonstrate that the integrin αvβ3 is also a key player in this process. In an in vitro transendothelial migration assay, monocytes lacking β3 integrins revealed weak migratory ability, whereas monocytes expressing β3 integrins engaged in stronger migration. This migration could be partially blocked by antibodies against the integrin chains αL, β2, αv, or IAP, a protein functionally associated with αvβ3 integrin. Transfection of β3 integrin chain cDNA into monocytes lacking β3 integrins resulted in expression of the αvβ3 integrin and conferred on these cells an enhanced ability to transmigrate through cell monolayers expressing ICAM-1. These monocytes also engaged in αLβ2-dependent locomotion on recombinant ICAM-1 which was enhanced by αvβ3 integrin occupancy. Antibodies against IAP were able to revert this αvβ3 integrin-dependent cell locomotion to control levels. Finally, adhesion assays revealed that occupancy of αvβ3 integrin could decrease monocyte binding to ICAM-1.In conclusion, we show that αvβ3 integrin modulates αLβ2 integrin-dependent monocyte adhesion to and migration on ICAM-1. This could represent a novel mechanism to promote monocyte motility on vascular ICAM-1 and initiate subsequent transendothelial migration.  相似文献   

8.
9.
Chemokines such as the monocyte chemol attractant protein-1 (MCP-1) convert monocyte rolling to firm arrest under physiological flow conditions via integrin activation and simultaneously activate phosphoinositide 3-kinase (PI3K). Here we used adenoviral gene transfer and biochemical inhibitors to manipulate PI3K-dependent pathways in human monocytes. In in vitro lipid kinase assays from purified human monocytes, we showed that MCP-1 activates the "classical" PI3Kalpha pathway and not PI3Kgamma, a PI3K isoform thought to be activated only by the betagamma complex of heterotrimeric G proteins. The activity of PI3Kalpha in purified human monocytes was evident within 30 s. MCP-1-induced monocyte arrest was significantly inhibited both by wortmannin (n = 4; p < 0.01) and LY294002 (n = 4; p < 0.01) with restoration of the rolling phenotype (p < 0.05 for both inhibitors, compared with rolling of control monocytes after MCP-1 treatment). To test the hypothesis that activation of PI3K is sufficient to induce monocyte adhesion, we transduced the monocytic THP-1 cell line with a recombinant adenovirus (Ad) carrying a constitutively active mutant of PI3K (Ad.BD110). We examined the ability of these cells to adhere to human vascular endothelium (HUVEC) transduced with adenoviruses carrying E-selectin, intercellular adhesion molecule-1 (ICAM-1), and VCAM-1. Under flow conditions, ICAM-1- and VCAM-1-dependent firm adhesion of Ad.BD110-transduced THP-1 cells was enhanced compared with THP-1 cells infected with control Ad (n = 4; p < 0.01 for both). Adhesion augmented by constitutive PI3K activation was entirely abrogated by pretreatment with wortmannin (n = 3; p < 0.01). In contrast, a constitutively active Akt construct had no effect on THP-1 adhesion (n = 3; p = NS). We conclude that PI3K activation is necessary and sufficient to enhance monocytic adhesion under physiological flow conditions. BD110-expressing THP-1 cells should provide a useful tool for identifying the signaling pathways downstream of PI3K that are necessary for monocyte recruitment relevant to a variety of human vascular pathologies.  相似文献   

10.
CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β(1) and β(2) integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes.  相似文献   

11.
Vascular endothelial growth factor (VEGF) induces adhesion molecules on endothelial cells during inflammation. Here we examined the mechanisms underlying VEGF-stimulated expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin in human umbilical vein endothelial cells. VEGF (20 ng/ml) increased expression of ICAM-1, VCAM-1, and E-selectin mRNAs in a time-dependent manner. These effects were significantly suppressed by Flk-1/kinase-insert domain containing receptor (KDR) antagonist and by inhibitors of phospholipase C, nuclear factor (NF)-kappaB, sphingosine kinase, and protein kinase C, but they were not affected by inhibitors of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) 1/2 or nitric-oxide synthase. Unexpectedly, the phosphatidylinositol (PI) 3'-kinase inhibitor wortmannin enhanced both basal and VEGF-stimulated adhesion molecule expression, whereas insulin, a PI 3'-kinase activator, suppressed both basal and VEGF-stimulated expression. Gel shift analysis revealed that VEGF stimulated NF-kappaB activity. This effect was inhibited by phospholipase C, NF-kappaB, or protein kinase C inhibitor. VEGF increased VCAM-1 and ICAM-1 protein levels and increased leukocyte adhesiveness in a NF-kappaB-dependent manner. These results suggest that VEGF-stimulated expression of ICAM-1, VCAM-1, and E-selectin mRNAs was mainly through NF-kappaB activation with PI 3'-kinase-mediated suppression, but was independent of nitric oxide and MEK. Thus, VEGF simultaneously activates two signal transduction pathways that have opposite functions in the induction of adhesion molecule expression. The existence of parallel inverse signaling implies that the induction of adhesion molecule expression by VEGF is very finely regulated.  相似文献   

12.
We addressed the role of class 1B phosphatidylinositol 3-kinase (PI3K) isoform PI3Kgamma in mediating NADPH oxidase activation and reactive oxidant species (ROS) generation in endothelial cells (ECs) and of PI3Kgamma-mediated oxidant signaling in the mechanism of NF-kappaB activation and intercellular adhesion molecule (ICAM)-1 expression. We used lung microvascular ECs isolated from mice with targeted deletion of the p110gamma catalytic subunit of PI3Kgamma. Tumor necrosis factor (TNF) alpha challenge of wild type ECs caused p110gamma translocation to the plasma membrane and phosphatidylinositol 1,4,5-trisphosphate production coupled to ROS production; however, this response was blocked in p110gamma-/- ECs. ROS production was the result of TNFalpha activation of Ser phosphorylation of NADPH oxidase subunit p47(phox) and its translocation to EC membranes. NADPH oxidase activation failed to occur in p110gamma-/- ECs. Additionally, the TNFalpha-activated NF-kappaB binding to the ICAM-1 promoter, ICAM-1 protein expression, and PMN adhesion to ECs required functional PI3Kgamma. TNFalpha challenge of p110gamma-/- ECs failed to induce phosphorylation of PDK1 and activation of the atypical PKC isoform, PKCzeta. Thus, PI3Kgamma lies upstream of PKCzeta in the endothelium, and its activation is crucial in signaling NADPH oxidase-dependent oxidant production and subsequent NF-kappaB activation and ICAM-1 expression.  相似文献   

13.
We have established that HCMV acts as a specific ligand engaging and activating cellular integrins on monocytes. As a result, integrin signaling via Src activation leads to the functional activation of paxillin required for efficient viral entry and for the biological changes in monocytes needed for viral dissemination. These biological/molecular changes allow HCMV to use monocytes as “vehicles” for systemic spread and the establishment of lifelong persistence. However, it remains unresolved how HCMV specifically induces this observed monocyte activation. It was previously demonstrated that the HCMV gH/gL/UL128-131 glycoprotein complex facilitates viral entry into biologically relevant cell types. Nevertheless, the mechanism by which the gH/gL/UL128-131 complex promotes this process is unknown. We now show that only HCMV virions possessing the gH/gL/UL128-131 complex are capable of activating integrin/Src/paxillin-signaling in monocytes. In fibroblasts, this signaling is reversed, such that virus lacking the gH/gL/UL128-131 complex is the only virus able to induce the paxillin activation cascade. The presence of the gH/gL/UL128-131 complex also may have an inhibitory effect on integrin-mediated signaling pathway in fibroblasts. Furthermore, we demonstrate that the presence of the gH/gL/UL128-131 complex on the viral envelope, through its activation of the integrin/Src/paxillin pathway, is necessary for efficient HCMV internalization into monocytes and that appropriate actin and dynamin regulation is critical for this entry process. Importantly, productive infection in monocyte-derived macrophages was seen only in cells exposed to HCMV expressing the gH/gL/UL128-131 complex. From our data, the HCMV gH/gL/U128-131 complex emerges as the specific ligand driving the activation of the receptor-mediated signaling required for the regulation of the actin cytoskeleton and, consequently, for efficient and productive internalization of HCMV into monocytes. To our knowledge, our studies demonstrate a possible molecular mechanism for why the gH/gL/UL128-131 complex dictates HCMV tropism and why the complex is lost as clinical isolates are passaged in the laboratory.  相似文献   

14.
The firm arrest of leukocytes to the endothelium during inflammation is known to be mediated by endothelial intercellular adhesion molecules (ICAMs) binding to activated integrins displayed on leukocyte surface. Selectin-ligand interactions, which mediate rolling, are believed to be important for facilitating firm adhesion, either by activating integrins or by facilitating the transition to firm adhesion by making it easier for integrins to bind. Although leukocytes employ two distinct adhesion molecules that mediate different states of adhesion, the fundamental biophysical mechanisms by which two pairs of adhesion molecules facilitate cell adhesion is not well understood. In this work, we attempt to understand the interaction between two molecular systems using a cell-free system in which polystyrene microspheres functionalized with the selectin ligand, sialyl Lewis(X) (sLe(X)), and an antibody against ICAM-1, aICAM-1, are perfused over P-selectin/ICAM-1 coated surfaces in a parallel plate flow chamber. Separately, sLe(X)/P-selectin interactions support rolling and aICAM-1/ICAM-1 interactions mediate firm adhesion. Our results show that sLe(X)/aICAM-1 microspheres will firmly adhere to P-selectin/ICAM-1 coated surfaces, and that the extent of firm adhesion of microspheres is dependent on wall shear stress within the flow chamber, sLe(X)/aICAM-1 microsphere site density, and P-selectin/ICAM-1 surface density ratio. We show that P-selectin's interaction with sLe(X) mechanistically facilitates firm adhesion mediated by antibody binding to ICAM-1: the extent of firm adhesion for the same concentration of aICAM-1/ICAM-1 interaction is greater when sLe(X)/P-selectin interactions are present. aICAM-1/ICAM-1 interactions also stabilize rolling by increasing pause times and decreasing average rolling velocities. Although aICAM-1 is a surrogate for beta(2)-integrin, the kinetics of association between aICAM-1 and ICAM-1 is within a factor of 1.5 of activated integrin binding ICAM-1, suggesting the findings from this model system may be insightful to the mechanism of leukocyte firm adhesion. In particular, these experimental results show how two molecule systems can interact to produce an effect not achievable by either system alone, a fundamental mechanism that may pervade leukocyte adhesion biology.  相似文献   

15.
Escherichia coli K1 meningitis is a serious central nervous system disease with unchanged mortality and morbidity rates for last few decades. Intercellular adhesion molecule 1 (ICAM-1) is a cell adhesion molecule involved in leukocyte trafficking toward inflammatory stimuli at the vascular endothelium; however, the effect of E. coli invasion of endothelial cells on the expression of ICAM-1 is not known. We demonstrate here that E. coli K1 invasion of human brain microvascular endothelial cells (HBMEC) selectively up-regulates the expression of ICAM-1, which occurs only in HBMEC invaded by the bacteria. The interaction of outer membrane protein A (OmpA) of E. coli with its receptor, Ecgp, on HBMEC was critical for the up-regulation of ICAM-1 and was depend on PKC-alpha and PI3-kinase signaling. Of note, the E. coli-induced up-regulation of ICAM-1 was not due to the cytokines secreted by HBMEC upon bacterial infection. Activation of NF-kappaB was required for E. coli mediated expression of ICAM-1, which was significantly inhibited by over-expressing the dominant negative forms of PKC-alpha and p85 subunit of PI3-kinase. The increased expression of ICAM-1 also enhanced the binding of THP-1 cells to HBMEC. Taken together, these data suggest that localized increase in ICAM-1 expression in HBMEC invaded by E. coli requires a novel interaction between OmpA and its receptor, Ecgp.  相似文献   

16.
Human cytomegalovirus (HCMV) is secreted apically from villous trophoblasts, thus congenital infection is not likely to occur by basal release across the basement membrane. As an alternative route, we hypothesize that an HCMV-infected villous syncytiotrophoblast (ST) upregulates intercellular adhesion molecule (ICAM)-1, causing blood monocytes to bind to the ST and induce apoptosis. Purified (>99.99%) populations of human villous trophoblasts were differentiated into an ST-like culture, infected with HCMV strain AD169, and assessed for ICAM-1 expression by immunofluorescence. Infection strongly upregulated ICAM-1 24 h after challenge. ICAM-1 was also stimulated by transfection with viral genes IE2-55, IE1-72, and IE2-86, but not by UV-inactivated virus. Infection with a green fluorescent protein recombinant virus allowed infection and ICAM-1 expression to be topographically located. We found that ICAM-1 was expressed on both infected and noninfected cells. Furthermore, antibody to tumor necrosis factor (TNF)alpha and, to a lesser extent, interleukin (IL)1 beta inhibited ICAM-1 upregulation on noninfected cells but not on infected cells. We conclude that HCMV IE proteins stimulate ICAM-1 expression on villous trophoblasts by paracrine release of TNF alpha and IL1 beta, as well as by a direct effect on infected cells.  相似文献   

17.
Monocyte recruitment from the blood in response to chemoattractant gradients is a key phenomenon in inflammation. Various extracellular matrix proteins, at the site of inflammation, have chemoattractant activity and mediate monocyte adhesion and migration as ligands of integrins. In this report, we demonstrate that transforming growth factor-beta-induced gene product (betaig-h3/TGFBIp), as an extracellular matrix protein, mediates monocytes adhesion under both static and flow conditions mainly through integrin alphaMbeta2. Fasciclin 1 domains of betaig-h3/TGFBIp are responsible for the interaction with integrin alphaMbeta2, not only enhances monocyte migration in both chemotactic and haptotactic manners but also mediates their transendothelial migration and subendothelial matrix invasion. These activities are also mediated through integrin alphaMbeta2. Intraperitoneal injection of betaig-h3/TGFBIp promotes the recruitment of monocytes but not neutrophils. Our results demonstrate that betaig-h3/TGFBIp produced at inflammatory sites is a novel chemoattractant for monocytes and interacts with integrin alphaMbeta2 to serve as a substrate for their migration, suggesting that betaig-h3/TGFBIp plays an important role in inflammation.  相似文献   

18.
Adhesion and transendothelial migration of leukocytes into the vascular wall is a crucial step in atherogenesis. Expression of cell adhesion molecules by endothelial cells plays a leading role in this process. We investigated the effect of simvastatin, an inhibitor of HMG-CoA reductase administered to reduce plasma levels of LDL-cholesterol, on the expression of vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) by human umbilical vein endothelial cells (HUVEC) stimulated with tumor necrosis factor alpha (TNFalpha). We found the expression to be significantly inhibited by the drug in a time and concentration-dependent manner and to a greater extent in the case of VCAM-1 as compared with ICAM-1. In TNFalpha-stimulated HUVEC, simvastatin decreased VCAM-1 and ICAM-1 mRNA levels, inhibited TNFalpha-induced activation of nuclear factor kappaB (NF-kappaB) and enhanced expression of peroxisome proliferator-activated receptor alpha (PPARalpha). These effects were associated with reduction of adherence of monocytes and lymphocytes to HUVEC. The present findings suggest that the benefits of statins in vascular disease may include the inhibition of expression of VCAM-1 and ICAM-1 through effects on NF-kappaB.  相似文献   

19.
A nonpsychoactive cannabinoid cannabidiol (CBD) has been shown to exert potent anti-inflammatory and antioxidant effects and has recently been reported to lower the incidence of diabetes in nonobese diabetic mice and to preserve the blood-retinal barrier in experimental diabetes. In this study we have investigated the effects of CBD on high glucose (HG)-induced, mitochondrial superoxide generation, NF-kappaB activation, nitrotyrosine formation, inducible nitric oxide synthase (iNOS) and adhesion molecules ICAM-1 and VCAM-1 expression, monocyte-endothelial adhesion, transendothelial migration of monocytes, and disruption of endothelial barrier function in human coronary artery endothelial cells (HCAECs). HG markedly increased mitochondrial superoxide generation (measured by flow cytometry using MitoSOX), NF-kappaB activation, nitrotyrosine formation, upregulation of iNOS and adhesion molecules ICAM-1 and VCAM-1, transendothelial migration of monocytes, and monocyte-endothelial adhesion in HCAECs. HG also decreased endothelial barrier function measured by increased permeability and diminished expression of vascular endothelial cadherin in HCAECs. Remarkably, all the above mentioned effects of HG were attenuated by CBD pretreatment. Since a disruption of the endothelial function and integrity by HG is a crucial early event underlying the development of various diabetic complications, our results suggest that CBD, which has recently been approved for the treatment of inflammation, pain, and spasticity associated with multiple sclerosis in humans, may have significant therapeutic benefits against diabetic complications and atherosclerosis.  相似文献   

20.
We have assessed characteristics of primary human osteoblasts, shedding light on signaling mediated by beta1 integrin. beta1 integrins are major receptors for these matrix glycoproteins. 1) Integrins beta1, alpha2, alpha3, alpha4, alpha5, alpha6, and alphav were highly expressed on primary osteoblasts. 2) Engagement of beta1 integrins on osteoblasts by cross-linking with specific antibody or ligand matrices, such as fibronectin or collagen, augmented expression of intercellular adhesion molecule 1 (ICAM-1) and receptor activator of nuclear factor kappaB ligand (RANKL) on the surface. 3) Up-regulation of ICAM-1 and RANKL on osteoblasts by beta1 stimulation was completely abrogated by pretreatment with herbimycin A and genistein, tyrosine kinase inhibitors, or transfection of dominant negative truncations of focal adhesion kinase (FAK). 4) Engagement of beta1 integrins on osteoblasts induced tartrate-resistant acid phosphatase-positive multinuclear cell formation in the coculture system of osteoblasts and peripheral monocytes. 5) Up-regulation of tartrate-resistant acid phosphatase-positive multinuclear cell formation by beta1 stimulation was completely abrogated by transfection of dominant negative truncations of FAK. Our results indicate that beta1 integrin-dependent adhesion of osteoblasts to bone matrices induces ICAM-1 and RANKL expression and osteoclast formation via tyrosine kinase, especially FAK. We here propose that beta1 integrin/FAK-mediated signaling on osteoblasts could be involved in ICAM-1- and RANKL-dependent osteoclast maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号