首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Amino acid sequencing of an internal peptide fragment derived from purified Xenopus cytosolic thyroid hormone-binding protein (xCTBP) demonstrates high similarity to the corresponding sequence of mammalian aldehyde dehydrogenase 1 (ALDH1) (Yamauchi, K., and Tata, J. R. (1994) Eur. J. Biochem. 225, 1105-1112). Here we show that xCTBP was co-purified with ALDH and 3,3',5-triiodo-L-thyronine (T3) binding activities. By photoaffinity labeling with [125I]T3, a T3-binding site in the xCTBP was estimated to reside in amino acid residues 93-114, which is distinct from the active site of the enzyme but present in the NAD+ binding domain. The amino acid sequences deduced from the two isolated xALDH1 cDNAs (xALDH1-I and xALDH1-II) were 94.6% identical to each other and very similar to those of mammalian ALDH1 enzymes. The two recombinant xALDH1 proteins exhibit both T3 binding activity and ALDH activity converting retinal to retinoic acid (RA), which are similar to those of xCTBP. The mRNAs were present abundantly in kidney and intestine of adult female Xenopus. Interestingly, their T3 binding activities were inhibited by NAD+ and NADH but not by NADP+ and NADPH, whereas NAD+ was required for their ALDH activities. Our results demonstrate that xCTBP is identical to ALDH1 and suggest that this protein might modulate RA synthesis and intracellular level of free T3.  相似文献   

2.
Abstract Using a high level Escherichia coli expression system for the Penicillium chrysogenum penDE gene, we have produced acyl-coenzyme A: isopenicillin N acyltransferase (AT) enzymes containing amino acid substitutions at three conserved Ser residues. Chosen for study based on amino acid sequence homologies to other proteins, Ser227, Ser230 and Ser309 were changed to Cys or Ala to assess amino acid side chain involvement in proenzyme cleavage and AT enzyme mechanism. Substitutions at Ser230 had no effect on proenzyme cleavage, acyl-coenzyme A: IPN acyltransferase (IAT) or acyl-coenzyme A: 6-aminopenicillanic acid acyltransferase (AAT) activities. While Ser227→Cys had no effect, Ser227→Ala produced uncleaved proenzyme lacking both AAT and IAT activities, suggesting that the presence of a nucleophilic side chain at this residue is required for proenzyme cleavage and AT activity. Substitution of Ser309→Cys did not appreciably prevent proenzyme cleavage, IAT or AAT activity. Recombinant AT (recAT) proenzyme containing Ser309→Ala was cleaved; however, IAT and AAT activities were not observed. This separation of proenzyme cleavage from IAT and AAT activities has not been previously observed, and suggests that Ser309 is involved in substrate acylation.  相似文献   

3.
Site-directed mutagenesis was performed to change the substrate specificity of Escherichia coli aspartate aminotransferase (AAT). A double mutant, R292E/L18H, with a 12.9-fold increase in the specific activity toward L-lysine and 2-oxo-4-phenylbutanoic acid (OPBA) was identified. E. coli cells expressing this mutant enzyme could convert OPBA to L-homophenylalanine (L-HPA) with 97% yield and more than 99.9% ee using L-lysine as amino donor. The transamination product of L-lysine, 2-keto-6-aminocaproate, was cyclized nonenzymatically to form Delta(1)-piperideine 2-carboxylic acid in the reaction mixture. The low solubility of L-HPA and spontaneous cyclization of 2-keto-6-aminocaproate drove the reaction completely toward L-HPA production. This is the first aminotransferase process using L-lysine as inexpensive amino donor for the L-HPA production to be reported.  相似文献   

4.
A full-length cDNA clone encoding aspartate aminotransferase (AAT) has been identified from a carrot root cDNA library. Degenerate oligo primers were synthesized from the known amino acid sequence of AAT form I from carrot (Daucus carota L. cv Danvers). These primers were utilized in a polymerase chain reaction to amplify a portion of a carrot AAT gene from first strand cDNA synthesized from poly(A)+ RNA isolated from 5-d-old cell suspension cultures. The resulting 750-bp fragment was cloned, mapped, and sequenced. The cloned fragment, mpAAT1, was used as a probe to identify a full-length cDNA clone in a library constructed from poly(A)+ RNA isolated from carrot roots. A 1.52-kb full-length clone, AAT7, was isolated and sequenced. AAT7 has 54% nucleotide identity with both the mouse cytoplasmic and mitochondrial AAT genes. The deduced amino acid sequence has 52 and 53% identity with the deduced amino acid sequences of mouse cytoplasmic and mitochondrial AAT genes, respectively. Further analysis of the sequence data suggests that AAT7 encodes a cytoplasmic form of carrot AAT; the evidence includes the (a) absence of a transit or signal sequence, (b) lack of “m-residues,” or invariant mitochondrial residues, in the carrot AAT sequence, and (c) high degree of sequence similarity with the amino acid sequence previously obtained for form I of carrot, a cytoplasmic isoenzyme. High- and low-stringency hybridizations to Southern blots of carrot nuclear DNA with AAT7 show that AAT is part of a small multigene family. Northern blot analysis of AAT7 suggests that AAT is expressed throughout cell culture up to 7 d and is highly expressed in roots but not in leaves.  相似文献   

5.
A simple and sensitive spectrophotometric method for determining meso-α,ε-diaminopime-late with meso-α,ε-diaminopimelate d-dehydrogenase (EC class 1.4.1) is described. meso-α,ε-Diaminopimelate was determined spectrophotometrically with the enzyme by measuring the NADPH formed (Procedure A) or the formazan produced by NADPH (Procedure B). A linear relationship was established between absorbance and the amount of amino acid (0.02-0.20 μmol). This method can be used to assay diaminopimelate epimerase (EC 5.1.1.7) and is applicable for determining meso-α,ε-diaminopimelate specifically in hydrolyzates of bacterial cell wall.  相似文献   

6.
A glyoxylate reductase gene from the thermophilic bacterium Thermus thermophilus HB27 (TthGR) was cloned and expressed in Escherichia coli cells. The recombinant enzyme was highly purified to homogeneity and characterized. The purified TthGR showed thermostability up to 70 degrees C. In contrast, the maximum reaction condition was relatively mild (45 degrees C and pH 6.7). Although the kcat values against co-enzyme NADH and NADPH were similar, the Km value against co-enzyme NADH was approximately 18 times higher than that against NADPH. TthGR prefers NADPH rather than NADH as an electron donor. These results indicate that a phosphate group of a co-enzyme affects the binding affinity rather than the reaction efficiency, and TthGR demands appropriate amount of phosphate for a high activity. Furthermore, it was found that the half-lives of TthGR in the presence of 25% dimethyl sulfoxide and diethylene glycol were significantly longer than that in the absence of an organic solvent.  相似文献   

7.
A soybean cDNA clone, pSAT1, which encodes both the cytosolic and glyoxysomal isozymes of aspartate aminotransferase (AAT; EC 2.6.1.1) was isolated. Genomic Southern blots and analysis of genomic clones indicated pSAT1 was encoded by a single copy gene. pSAT1 contained an open reading frame with ca. 90% amino acid identity to alfalfa and lupin cytosolic AAT and two in-frame start codons, designated ATG1 and ATG2. Alignment of this protein with other plant cytosolic AAT isozymes revealed a 37 amino acid N-terminal extension with characteristics of a peroxisomal targeting signal, designated PTS2, including the modified consensus sequence RL-X5-HF. The second start codon ATG2 aligned with previously reported start codons for plant cytosolic AAT cDNAs. Plasmids constructed to express the open reading frame initiated by each of the putative start codons produced proteins with AAT activity in Escherichia coli. Immune serum raised against the pSAT1-encoded protein reacted with three soybean AAT isozymes, AAT1 (glyoxysomal), AAT2 (cytosolic), and AAT3 (subcellular location unknown). We propose the glyoxysomal isozyme AAT1 is produced by translational initiation from ATG1 and the cytosolic isozyme AAT2 is produced by translational initiation from ATG2. N-terminal sequencing of purified AAT1 revealed complete identity with the pSAT1-encoded protein and was consistent with the processing of the PTS2. Analysis of cytosolic AAT genomic sequences from several other plant species revealed conservation of the two in-frame start codons and the PTS2 sequence, suggesting that these other species may utilize a single gene to generate both cytosolic and glyoxysomal or peroxisomal forms of AAT.  相似文献   

8.
The hydroxylation of CMP-N-acetylneuraminic acid (CMP-NeuAc) in the formation of CMP-N-glycolylneuraminic acid requires several components which comprise an electron transport system. A protein, which replaces one of the components, was purified to homogeneity from a horse erythrocyte lysate. Based on its partial amino acid sequence and immunological cross-reactivity, this protein was identified as soluble cytochrome b5 lacking the membrane domain of microsomal cytochrome b5. The electron transport system involved in CMP-NeuAc hydroxylation was reconstituted, and then characterized using the purified horse soluble cytochrome b5 and a fraction from mouse liver cytosol. The hydroxylation reaction requires a reducing reagent, DTT being the most effective. Either NADH or NADPH was used as an electron donor, but the activity with NADPH amounted to about 74% of that with NADH. The hydroxylation was inhibited by salts and azide due to interruption of the electron transport from NAD(P)H to cytochrome b5 and in the terminal enzyme reaction, respectively.  相似文献   

9.
As inhibitors of chitin synthase, nikkomycins have attracted interest as potential antibiotics. The biosynthetic pathway to these peptide nucleosides in Streptomyces tendae is only partially known. In order to elucidate the last step of the biosynthesis of the aminohexuronic building block, we have heterologously expressed a predicted aminotransferase encoded by the gene nikK from S. tendae in Escherichia coli. The purified protein, which is essential for nikkomycin biosynthesis, has a pyridoxal-5'-phosphate cofactor bound as a Schiff base to lysine 221. The enzyme possesses aminotransferase activity and uses several standard amino acids as amino group donors with a preference for glutamate (Glu > Phe > Trp > Ala > His > Met > Leu). Therefore, we propose that NikK catalyses the introduction of the amino group into the ketohexuronic acid precursor of nikkomycins. At neutral pH, the UV-visible absorbance spectrum of NikK has two absorbance maxima at 357 and 425 nm indicative of the presence of the deprotonated and protonated aldimine with an estimated pK(a) of 8.3. The rate of donor substrate deamination is faster at higher pH, indicating that an alkaline environment favours the deamination reaction.  相似文献   

10.
Aspartate aminotransferase (AAT) plays a key enzymatic role in the assimilation of symbiotically fixed nitrogen in legume root nodules. In alfalfa, two distinct genetic loci encode dimeric AAT enzymes: AAT1, which predominates in roots, and AAT2, which is expressed at high levels in nodules. Three allozymes of AAT2 (AAT2a, –2b and –2c), differing in net charge, result from the expression of two alleles, AAT2A and AAT2C, at this locus. Utilizing antiserum to alfalfa AAT2, we have previously isolated from an expression library one AAT2 cDNA clone. This clone was used as a hybridization probe to screen cDNA libraries for additional AAT2 cDNAs. Four different clones were obtained, two each that encode the AAT2a and AAT2c enyzme subunits. These two sets of cDNAs encode polypeptides that differ in net charge depending upon the amino acid at position 296 (valine or glutamic acid). Within each set of alleles, the two members differ from each other by the presence or absence of a 30 by (ten amino acid) sequence. The presence or absence of this ten amino acid sequence has no effect on the size or charge of the mature AAT2 protein because it is located within the region encoding the protein's transit peptide, which is proteolytically removed upon transport into plastids. The data suggest that a deletion event has occurred independently in two AAT2 progenitor alleles, resulting in the four allelic cDNA variants observed. The deletion of this ten amino acid sequence does not appear to impair the normal maturation of the enzyme.  相似文献   

11.
A novel beta-transaminase gene was cloned from Mesorhizobium sp. strain LUK. By using N-terminal sequence and an internal protein sequence, a digoxigenin-labeled probe was made for nonradioactive hybridization, and a 2.5-kb gene fragment was obtained by colony hybridization of a cosmid library. Through Southern blotting and sequence analysis of the selected cosmid clone, the structural gene of the enzyme (1,335 bp) was identified, which encodes a protein of 47,244 Da with a theoretical pI of 6.2. The deduced amino acid sequence of the beta-transaminase showed the highest sequence similarity with glutamate-1-semialdehyde aminomutase of transaminase subgroup II. The beta-transaminase showed higher activities toward d-beta-aminocarboxylic acids such as 3-aminobutyric acid, 3-amino-5-methylhexanoic acid, and 3-amino-3-phenylpropionic acid. The beta-transaminase has an unusually broad specificity for amino acceptors such as pyruvate and alpha-ketoglutarate/oxaloacetate. The enantioselectivity of the enzyme suggested that the recognition mode of beta-aminocarboxylic acids in the active site is reversed relative to that of alpha-amino acids. After comparison of its primary structure with transaminase subgroup II enzymes, it was proposed that R43 interacts with the carboxylate group of the beta-aminocarboxylic acids and the carboxylate group on the side chain of dicarboxylic alpha-keto acids such as alpha-ketoglutarate and oxaloacetate. R404 is another conserved residue, which interacts with the alpha-carboxylate group of the alpha-amino acids and alpha-keto acids. The beta-transaminase was used for the asymmetric synthesis of enantiomerically pure beta-aminocarboxylic acids. (3S)-Amino-3-phenylpropionic acid was produced from the ketocarboxylic acid ester substrate by coupled reaction with a lipase using 3-aminobutyric acid as amino donor.  相似文献   

12.
Heyes DJ  Hunter CN 《Biochemistry》2004,43(25):8265-8271
The chlorophyll biosynthetic enzyme protochlorophyllide reductase (POR) catalyzes the reduction of protochlorophyllide (Pchlide) into chlorophyllide (Chlide) with reduced nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor. POR is a light-driven enzyme, which has provided a unique opportunity to trap intermediates and identify different steps in the reaction pathway by initiating catalysis with illumination at low temperatures. In the present work we have used a thermophilic form of POR, which has an increased conformational rigidity at comparable temperatures, to dissect and study the final stages of the reaction where protein dynamics are proposed to play an important role in catalysis. Low-temperature fluorescence and absorbance measurements have been used to demonstrate that the reaction pathway for this enzyme consists of two additional "dark" steps, which have not been detected in previous studies. Product binding studies were used to show that spectroscopically distinct Chlide species could be observed and were dependent on whether the NADPH or NADP(+) cofactor was present. As a result we have been able to identify the intermediates that are observed during the latter stages of the POR catalytic cycle and have shown that they are formed via a series of ordered product release and cofactor binding events. These events involve release of NADP(+) from the enzyme and its replacement by NADPH, before release of the Chlide product has taken place. Following release of Chlide, the subsequent binding of Pchlide allows the next catalytic cycle to proceed.  相似文献   

13.
Aromaticl-amino acid transaminase is an enzyme that is able to transfer the amino group froml-glutamate to unnatural aromatic α-keto acids to generate α-ketoglutarate and unnatural aromaticl-amino acids, respectively. Enrichment culture was used to isolate thermophilicBacillus sp. T30 expressing this enzyme for use in the synthesis of unnaturall-amino acids. The asymmetric syntheses ofl-homophenylalanine andl-phenylglycine resulted in conversion yields of >95% and >93% from 150 mM 2-oxo-4-phenylbutyrate and phenylglyoxylate, respectively, usingl-glutamate as an amino donor at 60°C. Synthesizedl-homophenylalanine andl-phenylglycine were optically pure (>99% enantiomeric excess) and continuously pre-cipitated in the reaction solution due to their low solubility at the given reaction pH. While the solubility of the α-keto acid substrates is dependent on temperature, the solubility of the unnaturall-amino acid products is dependent on the reaction pH. As the solubility difference between substrate and product at the given reaction pH is therefore larger at higher temperature, the thermophilic transaminase was successfully used to shift the reaction equilibrium toward rapid product formation.  相似文献   

14.
The activities NADH and NADPH dehydrogenases were measured with ferricyanide as electron-acceptor (NADH-FeCN-ox and NADPH-FeCN-ox, respectively) in mitochondria-free chloroplasts of barley leaf segments after receiving various treatments affecting senescence. NADPH-FeCN-ox declined during senescence in the dark, in a way similar to chlorophyll and Hill reaction, and increased when leaf segments were incubated at light. These results suggest that NADPH-FeCN-ox is related to some photosynthetic electron transporter activity (probably ferredoxin-NADP+ oxidoreductase). In contrast, NADH-FeCN-ox is notably stable during senescence in the dark and at light. This activity increased during incubation with kinetin or methyl-jasmonate (Me-JA) but decreased when leaf segments were treated with abscisic acid (ABA). The effects of the inhibitors of protein synthesis cycloheximide and chloramphenicol suggest that the changes of NAD(P)H dehydrogenase activities may depend on protein synthesis in chloroplasts. In senescent leaf, chloroplast NADH dehydrogenase might be a way to dissipate NADH produced in the degradation of excess carbon which is released from the degradation of amino acids.Abbreviations ABA abscisic acid - DCPIP 2,6-dichlorophenol-indo-phenol - DOC deoxycholate - Me-JA methyl jasmonate - NADH-FeCN-ox NADH ferricyanide oxidoreductase - NADPH-FeCN-ox NADPH ferricyanide oxidoreductase  相似文献   

15.
The role of the δ-ornithine amino transferase (OAT) pathway in proline synthesis is still controversial and was assessed in leaves of cashew plants subjected to salinity. The activities of enzymes and the concentrations of metabolites involved in proline synthesis were examined in parallel with the capacity of exogenous ornithine and glutamate to induce proline accumulation. Proline accumulation was best correlated with OAT activity, which increased 4-fold and was paralleled by NADH oxidation coupled to the activities of OAT and Δ1-pyrroline-5-carboxylate reductase (P5CR), demonstrating the potential of proline synthesis via OAT/P5C. Overall, the activities of GS, GOGAT and aminating GDH remained practically unchanged under salinity. The activity of P5CR did not respond to NaCl whereas Δ1-pyrroline-5-carboxylate dehydrogenase was sharply repressed by salinity. We suggest that if the export of P5C from the mitochondria to the cytosol is possible, its subsequent conversion to proline by P5CR may be important. In a time-course experiment, proline accumulation was associated with disturbances in amino acid metabolism as indicated by large increases in the concentrations of ammonia, free amino acids, glutamine, arginine and ornithine. Conversely, glutamate concentrations increased moderately and only within the first 24 h. Exogenous feeding of ornithine as a precursor was very effective in inducing proline accumulation in intact plants and leaf discs, in which proline concentrations were several times higher than glutamate-fed or salt-treated plants. Our data suggest that proline accumulation might be a consequence of salt-induced increase in N recycling, resulting in increased levels of ornithine and other metabolites involved with proline synthesis and OAT activity. Under these metabolic circumstances the OAT pathway might contribute significantly to proline accumulation in salt-stressed cashew leaves.  相似文献   

16.
The activity of CMP-N-acetylneuraminic acid hydroxylase, that converts CMP-N-acetylneuraminic acid (CMP-NeuAc) to CPM-N-glycolylneuraminic acid (CMP-NeuGc), in mouse liver was determined by a newly developed HPLC method using non-radioactive CMP-NeuAc as a substrate. The activity was detected in the cytosol fraction but not in the microsomal fraction. Either NADH or NADPH was used as an electron donor by the cytosol enzyme, but NADH was much more efficiently used than NADPH. An antibody against cytochrome b5 markedly reduced the CMP-NeuAc hydroxylase activity when added to incubation mixture containing either NADH or NADPH as an electron donor. These data led us to postulate the following electron transport system, which is involved in the CMP-NeuAc hydroxylation in mouse liver cytosol: (formula; see text) where X, Y, and Z are components supposedly involved.  相似文献   

17.
Aldehyde dehydrogenase (ALDH) superfamily is a group of enzymes metabolizing endogenous and exogenous aldehydes. Using differential display RT-PCR and cDNA library screening, a full-length aldehyde dehydrogenase cDNA (ALDH7B7) was isolated from rice leaves infected by incompatible race of blast fungus Magnaporthe grisea. The deduced amino acid sequence consists of 509 amino acid residues and shares 74∼81% identity with those of ALDH7Bs from other plants. ALDH7B7 expression was induced by blast fungus infection, ultraviolet, mechanical wound in rice leaves and was not detected in untreated rice organs. This gene has also been found to be inducible after exogenous phytohormones application, such as salicylic acid, methyl ester of jasmonic acid and abscisic acid. The function of ALDH7B7 in the interaction process between blast fungus and rice is discussed.  相似文献   

18.
Aspartate aminotransferase (AAT) catalyzes amino group transfer from glutamate (Glu) or aspartate (Asp) to a keto acid acceptor-oxaloacetate (OA) or alpha-ketoglutarate (KG), respectively. Data presented here show that AAT catalyzes two partial reactions resulting in isotope exchange between 3H-labeled Glu or 3H-labeled Asp and the cognate keto acid in the absence of the keto acid acceptor required for the net reaction. Tritiated keto acid product was detected by release of 3H2O from C-3 during base-induced enolization. Tritium released directly from C-2 (or C-3) by the enzyme was also evaluated and is a small fraction of that released because of exchange to the keto acid pool. Exchange is dependent on AAT concentration, time-dependent, proportional to the amino-to-keto acid ratio, and blocked by aminooxyacetate (AOA), an AAT inhibitor. Enzymatic conversion of [3H]KG to Glu by glutamic dehydrogenase (GDH) or of [3H]OA to malate by malic dehydrogenase (MDH) "protects" the label from release by base, showing that base-induced isotope release is from keto acid rather than a result of release during the exchange process. AAT isotope exchange is discussed in the context of the glutamate/glutamine shuttle hypothesis for astrocyte/neuron carbon cycling.  相似文献   

19.
Activated protein C (APC) is a multi-modular anticoagulant serine protease, which degrades factor V/Va and factor VIIIa. Human APC (hAPC) is inhibited by human alpha 1-antitrypsin (AAT), while the bovine enzyme (bAPC) is fully resistant to this serpin. Structural features in the catalytic domains between the two species cause this difference, but detailed knowledge about the causal molecular difference is missing. To gain insight into the APC-AAT interaction and to create a human protein C resistant to AAT inhibition, we have used molecular modeling and site-directed mutagenesis. First, a structural model for bAPC based on the Gla-domainless X-ray structure of hAPC was built. Screening the molecular surface of the human and bovine APC enzymes suggested that a hAPC molecule resistant to AAT inhibition could be constructed by substituting only a few amino acids. We thus produced recombinant hAPC molecules with a single mutation (S173E, the numbering follows the chymotrypsinogen nomenclature), two mutations (E60aS/S61R) or a combination of all these substitutions (E60aS/S61R/S173E). Amidolytic and anticoagulant activities of the three mutant APC molecules were similar to those of wild-type hAPC. Inhibition of wild-type hAPC by AAT was characterized by a second-order rate constant (k2) of 2.71 M-1 s-1. The amino acid substitution at position 173 (S173E mutant) led to partial resistance to AAT (k2 = 0.84 M-1 s-1). The E60aS/S61R mutant displayed mild resistance to AAT inhibition (k2 = 1.70 M-1 s-1), whereas the E60aS/S61R/S173E mutant was inefficiently inactivated by AAT (k2 = 0.40 M-1 s-1). Inhibition of recombinant APC molecules by the serpin protein C inhibitor (PCI) in the presence and absence of heparin was also investigated.  相似文献   

20.
The biosynthesis and catabolism of lysine in Penicillium chrysogenum is of great interest because these pathways provide 2-aminoadipic acid, a precursor of the tripeptide δ-L-2-aminoadipyl-L-cysteinyl-D-valine that is an intermediate in penicillin biosynthesis. In vivo conversion of labelled L-lysine into two different intermediates was demonstrated by HPLC analysis of the intracellular amino acid pool. L-lysine is catabolized to 2-aminoadipic acid by an ω-aminotransferase and to saccharopine by a lysine-2-ketoglutarate reductase. In lysine-containing medium both activities were expressed at high levels, but the ω-aminotransferase activity, in particular, decreased sharply when ammonium was used as the nitrogen source. The ω-aminotransferase was partially purified, and found to accept L-lysine, L-ornithine and, to a lesser extent, N-acetyl-L-lysine as amino-group donors. 2-Ketoglutarate, 2-ketoadipate and, to a lesser extent, pyruvate served as amino group acceptors. This pattern suggests that this enzyme, previously designated as a lysine-6-aminotransferase, is actually an ω-aminotransferase. When 2-ketoadipate is used as substrate, the reaction product is 2-aminoadipic acid, which contributes to the pool of this intermediate available for penicillin biosynthesis. The N-terminal end of the purified 45-kDa ω-aminotransferase was sequenced and was found to be similar to the corresponding segment of the OAT1 protein of Emericella (Aspergillus) nidulans. This information was used to clone the gene encoding this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号