首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Z Adam  R Malkin 《FEBS letters》1987,225(1-2):67-71
The Rieske Fe-S protein can be isolated from the cytochrome b6-f complex by means of chromatography on a hydroxyapatite column in the presence of detergent. Depletion of the cytochrome complex from the Rieske protein results in the loss of oxidoreductase activity, as well as the ability to reduce cytochrome b6. The Rieske Fe-S protein can be reconstituted into the Rieske-depleted complex by removal of the Triton X-100 molecules associated with the protein fractions, and their substitution by lipids. Upon reconstitution the complex is reactivated, and the role of the Rieske Fe-S protein in the reduction of both plastocyanin and cytochrome b6 can be demonstrated.  相似文献   

2.
Zara V  Conte L  Trumpower BL 《The FEBS journal》2007,274(17):4526-4539
We have examined the status of the cytochrome bc(1) complex in mitochondrial membranes from yeast mutants in which genes for one or more of the cytochrome bc(1) complex subunits were deleted. When membranes from wild-type yeast were resolved by native gel electrophoresis and analyzed by immunodecoration, the cytochrome bc(1) complex was detected as a mixed population of enzymes, consisting of cytochrome bc(1) dimers, and ternary complexes of cytochrome bc(1) dimers associated with one and two copies of the cytochrome c oxidase complex. When membranes from the deletion mutants were resolved and analyzed, the cytochrome bc(1) dimer was not associated with the cytochrome c oxidase complex in many of the mutant membranes, and membranes from some of the mutants contained a common set of cytochrome bc(1) subcomplexes. When these subcomplexes were fractionated by SDS/PAGE and analyzed with subunit-specific antibodies, it was possible to recognize a subcomplex consisting of cytochrome b, subunit 7 and subunit 8 that is apparently associated with cytochrome c oxidase early in the assembly process, prior to acquisition of the remaining cytochrome bc(1) subunits. It was also possible to identify a subcomplex consisting of subunit 9 and the Rieske protein, and two subcomplexes containing cytochrome c(1) associated with core protein 1 and core protein 2, respectively. The analysis of all the cytochrome bc(1) subcomplexes with monospecific antibodies directed against Bcs1p revealed that this chaperone protein is involved in a late stage of cytochrome bc(1) complex assembly.  相似文献   

3.
The autoxidizability of beef heart cytochrome c1 was investigated in terms of the integrity of the binding of the hinge protein to the heme subunit. Cytochrome c1 was isolated as a subcomplex consisting of the heme subunit and the hinge protein. Treatment of the cytochrome c1 subcomplex with p-chloromercuribenzoate (pCMB) under mild conditions lessened the binding strength between the two subunits. They were dissociated on polyacrylamide gel electrophoresis (PAGE) under nondenaturing conditions, but were not separated by gel filtration chromatography. The pCMB-treated subcomplex had a slight autoxidizability. This was repressed to the level of the native subcomplex, when the mercurial compound bound to the subcomplex was removed by the addition of 2-mercaptoethanol. Concomitantly, the less stable binding between the subunits was apparently reversed to the native state. After pCMB treatment of the subcomplex, the heme subunit recovered from PAGE showed marked autoxidizability, even if it was treated with 2-mercaptoethanol. Addition of cholate repressed the autoxidizability of the heme subunit after the removal of the mercurial compound. These results confirmed that the stable binding of the hinge protein to the heme subunit was essential for the nonautoxidizability of cytochrome c1 subcomplex. In addition, it was suggested that cysteinyl residues in the subcomplex must be involved to a great extent in the stable binding between the two subunits.  相似文献   

4.
Heliobacteria have a Rieske/cytochrome b complex composed of a Rieske protein, a cytochrome b(6,) a subunit IV and a di-heme cytochrome c. The overall structure of the complex seems close to the b(6)f complex from cyanobacteria and chloroplasts to the exception of the di-heme cytochrome. We show here by biochemical and biophysical studies that a heme c(i) is covalently attached to the Rieske/cytochrome b complex from Heliobacteria. We studied the EPR signature of this heme in two different species, Heliobacterium modesticaldum and Heliobacillus mobilis. In contrast to the case of b(6)f complex, a strong axial ligand to the heme is present, most probably a protonatable amino acid residue.  相似文献   

5.
E Davidson  T Ohnishi  M Tokito  F Daldal 《Biochemistry》1992,31(13):3351-3358
The ubiquinol-cytochrome c oxidoreductase (or bc1 complex) of Rhodobacter capsulatus consists of three subunits: cytochrome b, cytochrome c1, and the Rieske iron-sulfur protein, encoded by the fbcF, fbcB, and fbcC genes, respectively. In the preceding paper [Davidson, E., Ohnishi, T., Atta-Asafo-Adjei, E., & Daldal, F. (1992) Biochemistry (preceding paper in this issue)], we have observed that the apoproteins for cytochromes b and c1 are fully present in the intracytoplasmic membrane of R. capsulatus mutants containing low amounts of, or no, Rieske apoprotein. Here we present evidence that the redox midpoint potentials of cytochromes b and c1, as well as their ability to bind antimycin and stabilize a semiquinone at the Qi site, are unaffected by the absence of the Rieske subunit. This is the first report describing a mutant containing a stable bc1 subcomplex with an intact Qi site in the chromatophore membranes, and provides further evidence that a functional quinone reduction site can be formed in the absence of a quinol oxidation (Qo) site. Additional mutants carrying fbc deletions expressing the remaining subunits of the cytochrome bc1 complex were constructed to investigate the relationship among these subunits for their stability in vivo. Western blot analysis of these mutants indicated that cytochromes b and c1 protect each other against degradation, suggesting that they form a two-protein subcomplex in the absence of the Rieske protein subunit.  相似文献   

6.
7.
Purified bovine heart two-band cytochrome c1 subcomplex was dissociated by treatment with p-chloromercuribenzoic acid (pCMB) into its heme subunit and a colorless subunit called hinge protein, which is essential for the formation of cytochrome c1-c complex. The subcomplex was found by titration to react with 4 mol of pCMB per mol of cytochrome c1. The contents of mercury of the dissociated heme subunit and the hinge protein were 3 and 1 mol per mol of polypeptide, respectively. These results, together with the sequence analysis, indicated that the three cysteine residues in cytochrome c1 heme subunit not involved in heme-binding existed in free thiol form. One of the five cysteine residues in the hinge protein was in free form and four in two disulfide bonds. The dissociated hinge protein was digested with staphylococcal protease and the cysteine-containing peptides were separated by reversed-phase high-performance liquid chromatography (HPLC). The content of mercury and the result of performic acid oxidation of cystine peptides revealed that Cys-30 existed in free thiol form and two disulfide bridges were formed between Cys-24 and Cys-68 and between Cys-40 and Cys-54. The conformation of the hinge protein was predicted to be composed largely of either two-alpha-helical or four-alpha-helical conformation with the amino (N)-terminal 20 residues being in a random structure.  相似文献   

8.
In the green alga Chlamydomonas reinhardtii, the ClpP protease is encoded by an essential chloroplast gene. Mutating its AUG translation initiation codon to AUU reduced ClpP accumulation to 25 to 45% of that of the wild type. Both the mature protein and the putative precursor containing its insertion sequence were present in reduced amounts. Attenuation of ClpP did not affect growth rates under normal conditions but restricted the ability of the cells to adapt to elevated CO(2) levels. It also affected the rate of degradation of the cytochrome b(6)f complex of the thylakoid membrane in two experimental situations: (1) during nitrogen starvation, and (2) in mutants deficient in the Rieske iron-sulfur protein. The ClpP level also controls the steady state accumulation of a mutated version of the Rieske protein. In contrast, attenuation of ClpP did not rescue the fully unassembled subunits in other cytochrome b(6)f mutants. We conclude that proteolytic disposal of fully or partially assembled cytochrome b(6)f is controlled by the Clp protease.  相似文献   

9.
Oxidation factor, a protein required for electron transfer from succinate to cytochrome c in the mitochondrial respiratory chain, has been purified from isolated succinate . cytochrome c reductase complex. Purification of the protein has been followed by a reconstitution assay in which restoration of ubiquinol . cytochrome c reductase activity is proportional to the amount of oxidation factor added back to depleted reductase complex. The purified protein is a homogeneous polypeptide on acrylamide gel electrophoresis in sodium dodecyl sulfate and migrates with an apparent Mr = 24,500. Purified oxidation factor restores succinate . cytochrome c reductase and ubiquinol . cytochrome c reductase activities to depleted reductase complex. It is not required for succinate dehydrogenase nor for succinate . ubiquinone reductase activities of the reconstituted reductase complex. Oxidation factor co-electrophoreses with the iron-sulfur protein polypeptide of ubiquinol . cytochrome c reductase complex. The purified protein contains 56 nmol of nonheme iron and 36 nmol of acid-labile sulfide/mg of protein and possesses an EPR spectrum with the characteristic "g = 1.90" signal identical to that of the iron-sulfur protein of the cytochrome b . c1 complex. In addition, the optimal conditions for extraction of oxidation factor, including reduction with hydrosulfite and treatment of the b . c1 complex with antimycin, are identical to those which facilitate extraction of the iron-sulfur protein from the b . c1 complex. These results indicate that oxidation factor is a reconstitutively active form of the iron-sulfur protein of the cytochrome b . c1 complex first discovered by Rieske and co-workers (Rieske, J.S., Maclennan, D.H., and Coleman, R. (1964) Biochem. Biophys. Res. Commun. 15, 338-344) and thus demonstrate that this iron-sulfur protein is required for electron transfer from ubiquinol to cytochrome c in the mitochondrial respiratory chain.  相似文献   

10.
The availability of the structures of the cytochrome b6f complex (cyt b6f), plastocyanin (PC), and cytochrome c6 (cyt c6) from Chlamydomonas reinhardtii allowed us, for the first time, to model electron transfer interactions between the luminal domains of this complex (including cyt f and the Rieske FeS protein) and its redox partners in the same species. We also generated a model structure in which the FeS center of the Rieske protein was positioned closer to the heme of cyt f than observed in the crystal structure and studied its interactions with both PC and cyt c6. Our data showed that the Rieske protein in both the original crystal structure and in our modeled structure of the cyt b6f complex did not physically interfere with binding position or orientation of PC or cyt c6 on cyt f. PC docked on cyt f with the same orientation in the presence or the absence of the Rieske protein, which matched well with the previously reported NMR structures of complexes between cyt f and PC. When the FeS center of the Rieske protein was moved close to the heme of cyt f, it even enhanced the interaction rates. Studies using a cyt f modified in the 184-191 loop showed that the cyt f structure is a more important factor in determining the rate of complex formations than is the presence or the absence of the Rieske protein or its position with respect to cyt f.  相似文献   

11.
The first crystal structure of an archaeal Rieske iron-sulfur protein, the soluble domain of Rieske iron-sulfur protein II (soxF) from the hyperthermo-acidophile Sulfolobus acidocaldarius, has been solved by multiple wavelength anomalous dispersion (MAD) and has been refined to 1.1 A resolution. SoxF is a subunit of the terminal oxidase supercomplex SoxM in the plasma membrane of S. acidocaldarius that combines features of a cytochrome bc(1) complex and a cytochrome c oxidase. The [2Fe-2S] cluster of soxF is most likely the primary electron acceptor during the oxidation of caldariella quinone by the cytochrome a(587)/Rieske subcomplex. The geometry of the [2Fe-2S] cluster and the structure of the cluster-binding site are almost identical in soxF and the Rieske proteins from eucaryal cytochrome bc(1) and b(6)f complexes, suggesting a strict conservation of the catalytic mechanism. The main domain of soxF and part of the cluster-binding domain, though structurally related, show a significantly divergent structure with respect to topology, non-covalent interactions and surface charges. The divergent structure of soxF reflects a different topology of the soxM complex compared to eucaryal bc complexes and the adaptation of the protein to the extreme ambient conditions on the outer membrane surface of a hyperthermo-acidophilic organism.  相似文献   

12.
13.
Heliobacterium modesticaldum is a Gram-positive, anaerobic, anoxygenic photoheterotrophic bacterium. Its cytochrome bc complex (Rieske/cyt b complex) has some similarities to cytochrome b(6)f complexes from cyanobacteria and chloroplasts, and also shares some characteristics of typical bacterial cytochrome bc(1) complexes. One of the unique factors of the heliobacterial cytochrome bc complex is the presence of a diheme cytochrome c instead of the monoheme cytochrome f in the cytochrome b(6)f complex or the monoheme cytochrome c(1) in the bc(1) complex. To understand the structure and function of this diheme cytochrome c protein, we expressed the N-terminal transmembrane-helix-truncated soluble H. modesticaldum diheme cytochrome c in Escherichia coli. This 25kDa recombinant protein possesses two c-type hemes, confirmed by mass spectrometry and a variety of biochemical techniques. Sequence analysis of the H. modesticaldum diheme cytochrome c indicates that it may have originated from gene duplication and subsequent gene fusion, as in cytochrome c(4) proteins. The recombinant protein exhibits a single redox midpoint potential of +71mV versus NHE, which indicates that the two hemes have very similar protein environments.  相似文献   

14.
Cytochrome b6-f complexes have been isolated from Chlamydomonas reinhardtii, Dunaliella saline and Scenedesmus obliquus. Each complex is essentially free of chlorophyll and carotenoids and contains cytochrome b6 and cytochrome f hemes in a 2:1 molar ratio. C. reinhardtii and S. obliquus complexes contain the Rieske iron-sulfur protein (present in approx 1:1 molar ratio to cytochrome f) and each catalyzes a DBMIB- and DNP-INT-sensitive electron transfer from duroquinol to spinach plastocyanin. Immunological assays using antibodies to the peptides from the spinach cytochrome complex show varying cross-reactivity patterns except for the complete absence of binding to the Rieske proteins in any of the three complexes, suggesting little structural similarity between the Rieske proteins of algae with those from higher plants. One complex (D. salina) has been uniformly labeled by growth in NaH14CO3 to determine stoichiometries of constituent polypeptide subunits. Results from these studies indicate that all functionally active cytochrome b6-f complexes contain four subunits which occur in equimolar amounts.  相似文献   

15.
The pgr1 mutant of Arabidopsis thaliana carries a single point mutation (P194L) in the Rieske subunit of the cytochrome b6/f (cyt b6/f) complex and is characterised by a reduced electron transport activity at saturating light intensities in vivo. We have investigated the electron transport in this mutant under in vitro conditions. Measurements of P700 reduction kinetics and of photosynthetic electron transport rates indicated that electron transfer from cyt b6/f to photosystem I is not generally reduced in the mutant, but that the pH dependence of this reaction is altered. The data imply that the pH-dependent inactivation of electron transport through cyt b6/f is shifted by about 1 pH unit to more alkaline pH values in pgr1 thylakoids in comparison with wild-type thylakoids. This interpretation was confirmed by determination of the transmembrane deltapH at different stromal pH values showing that the lumen pH in pgr1 mutant plants cannot drop below pH 6 reflecting most likely a shift of the pK and/or the redox potential of the oxidised Rieske protein.  相似文献   

16.
Electron crystallography of the chloroplastic b(6)f complex allowed the calculation of projection maps of crystals negatively stained or embedded in glucose. This gives insights into the overall structure of the extra- and transmembrane domains of the complex. A comparison with the structure of the bc(1) complex, the mitochondrial homologue of the b(6)f complex, suggests that the transmembrane domains of the two complexes are very similar, confirming the structural homology deduced from sequence analysis. On the other hand, the extramembrane organisation of the c-type cytochrome and of the Rieske protein seems quite different. Nevertheless, the same type of movement of the Rieske protein is observed in the b(6)f as in the bc(1) complex upon the binding of the quinol analogue stigmatellin. Crystallographic data also suggest movements in the transmembrane domains of the b(6)f complex, which would be specific of the b(6)f complex.  相似文献   

17.
Electron spin echo envelope modulation (ESEEM) experiments performed on the Rieske Fe-S clusters of the cytochrome b6f complex of spinach chloroplasts and of the cytochrome bc1 complexes of Rhodospirillum rubrum, Rhodobacter sphaeroides R-26, and bovine heart mitochondria show modulation components resulting from two distinct classes of 14N ligands. At the g = 1.92 region of the Rieske EPR spectrum of the cytochrome b6f complex, the measured hyperfine couplings for the two classes of coupled nitrogens are A1 = 4.6 MHz and A2 = 3.8 MHz. Similar couplings are observed for the Rieske centers in the three cytochrome bc1 complexes. These ESEEM results indicate a nitrogen coordination environment for these Rieske Fe-S centers that is similar to that of the Fe-S cluster of a bacterial dioxygenase enzyme with two coordinated histidine ligands [Gurbiel, R. J., Batie, C. J., Sivaraja, M., True, A. E., Fee, J. A., Hoffman, B. M., & Ballou, D. P. (1989) Biochemistry 28, 4861-4871]. The Rieske Fe-S cluster lacks modulation components from a weakly coupled peptide nitrogen observed in water-soluble spinach ferredoxin. Treatment with the quinone analogue inhibitor DBMIB causes a shift in the Rieske EPR spectrum to g = 1.95 with no alteration in the magnetic coupling to the two nitrogen atoms. However, the ESEEM pattern of the DBMIB-altered Rieske EPR signal shows evidence of an additional weakly coupled nitrogen similar to that observed in the spinach ferredoxin ESEEM patterns.  相似文献   

18.
Heimann S  Ponamarev MV  Cramer WA 《Biochemistry》2000,39(10):2692-2699
Based on the atomic structures of the mitochondrial cytochrome bc(1) complex, it has been proposed that the soluble domain of the [2Fe-2S] Rieske iron-sulfur protein (ISP) must rotate by ca. 60 degrees and translate through an appreciable distance between two binding sites, proximal to cytochrome c(1) and to the lumen-side quinol binding site. Such motional freedom implies that the electron-transfer rate should be affected by the lumenal viscosity. The flash-induced oxidation of cytochrome f, the chloroplast analogue of cytochrome c(1), was found to be inhibited reversibly by increased lumenal viscosity, as was the subsequent reduction of both cytochrome b(6) and cytochrome f. The rates of these three redox reactions correlated inversely with lumenal viscosity over a viscosity range of 1-10 cP. Reduction of cytochrome b(6) and cytochrome f was not concerted. The rate of cytochrome f reduction was observed to be approximately half that of cytochrome b(6) regardless of the actual viscosity, implying that the path length traversed by the ISP in reduction of cytochrome f is twice that of cytochrome b(6). This suggests that upon initiation of electron transfer by a light flash, cytochrome b(6) reduction requires movement of reduced ISP from an initial position predominantly proximal to cytochrome f, apparently favored by the reduced ISP, to the quinol binding site at which the oxidant-induced reduction of cytochrome b(6) is initiated. Subsequent reduction of cytochrome f requires the additional movement of the ISP back to a site proximal to cytochromef. There is no discernible viscosity dependence for cytochrome b(6) reduction under oxidizing conditions, presumably because the oxidized ISP preferentially binds proximal to the quinone binding niche. The dependence of the cytochrome redox reaction on ambient viscosity implies that the tethered diffusional motion of the ISP is part of the rate limitation for charge transfer through the b(6)f complex.  相似文献   

19.
Two variants of the cytochrome c1 component of the Rhodobacter capsulatus cytochrome bc1 complex, in which Met183 (an axial heme ligand) was replaced by lysine (M183K) or histidine (M183H), have been analyzed. Electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectra of the intact complex indicate that the histidine/methionine heme ligation of the wild-type cytochrome is replaced by histidine/lysine ligation in M183K and histidine/histidine ligation in M183H. Variable amounts of histidine/histidine axial heme ligation were also detected in purified wild-type cytochrome c1 and its M183K variant, suggesting that a histidine outside the CSACH heme-binding domain can be recruited as an alternative ligand. Oxidation-reduction titrations of the heme in purified cytochrome c1 revealed multiple redox forms. Titrations of the purified cytochrome carried out in the oxidative or reductive direction differ. In contrast, titrations of cytochrome c1 in the intact bc1 complex and in a subcomplex missing the Rieske iron-sulfur protein were fully reversible. An Em7 value of -330 mV was measured for the single disulfide bond in cytochrome c1. The origins of heme redox heterogeneity, and of the differences between reductive and oxidative heme titrations, are discussed in terms of conformational changes and the role of the disulfide in maintaining the native structure of cytochrome c1.  相似文献   

20.
The orientation of specific polypeptides of the cytochrome b6-f complex with respect to the chloroplast stromal phase has been studied using trinitrobenzenesulfonate (TNBS) and pronase E as impermeant modifying reagents. Of the four polypeptides of the complex (33,23,20 and 17 kDa), only cytochrome f was labeled by 14C-TNBS in unfractionated membranes. However, to a varying degree, all of the constituent polypeptides were sensitive to pronase digestion and, in the case of cytochrome f, it was possible, by immunoblotting techniques to identify several degradation products. These results are discussed in relation to the organization of the cytochrome complex in thylakoid membranes and argue for an exposure to the stromal phase of all of the polypeptides, while functional considerations indicate that at least cytochrome f and the Rieske iron-sulfur protein have a possible transmembrane organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号