首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The colonic epithelium continuously regenerates with transitions through various cellular phases including proliferation, differentiation and cell death via apoptosis. Human colonic adenocarcinoma (Caco-2) cells in culture undergo spontaneous differentiation into mature enterocytes in association with progressive increases in expression of glutathione S-transferase alpha-1 (GSTA1). We hypothesize that GSTA1 plays a functional role in controlling proliferation, differentiation and apoptosis in Caco-2 cells. We demonstrate increased GSTA1 levels associated with decreased proliferation and increased expression of differentiation markers alkaline phosphatase, villin, dipeptidyl peptidase-4 and E-cadherin in postconfluent Caco-2 cells. Results of MTS assays, BrdU incorporation and flow cytometry indicate that forced expression of GSTA1 significantly reduces cellular proliferation and siRNA-mediated down-regulation of GSTA1 significantly increases cells in S-phase and associated cell proliferation. Sodium butyrate (NaB) at a concentration of 1 mM reduces Caco-2 cell proliferation, increases differentiation and increases GSTA1 activity 4-fold by 72 hours. In contrast, 10 mM NaB causes significant toxicity in preconfluent cells via apoptosis through caspase-3 activation with reduced GSTA1 activity. However, GSTA1 down-regulation by siRNA does not alter NaB-induced differentiation or apoptosis in Caco-2 cells. While 10 mM NaB causes GSTA1-JNK complex dissociation, phosphorylation of JNK is not altered. These findings suggest that GSTA1 levels may play a role in modulating enterocyte proliferation but do not influence differentiation or apoptosis.  相似文献   

2.
Hepatocyte growth factor (HGF) can induce proliferation and migration of intestinal epithelial cells and has also been shown to be important in wound healing of inflamed mucosal tissues. HGF is known to be expressed along with interleukin-1 (IL-1) by inflamed mucosal tissues, yet the effect of HGF on IL-1-induced proinflammatory cytokine responses by colonic epithelial cells is unknown. In this report, we have examined the effect of HGF on IL-1-induced secretion of IL-8 by the Caco-2 colonic epithelial cell line. HGF stimulation alone had no effect on the secretion of IL-8 by the Caco-2 cells. However, culture of the cells with HGF and suboptimal levels of IL-1 resulted in a significant enhancement of IL-8 secretion compared to cells cultured with IL-1 alone. A similar effect was seen with HGF and IL-1 simulation of monocyte chemoattractant protein-1 secretion by the rat IEC-6 intestinal epithelial cell line. The enhancing effect of HGF was seen regardless of whether the culture medium contained serum or not. Simultaneous stimulation with HGF and IL-1 was required for the enhancing effect as cells pretreated with HGF for 24 h and then stimulated with IL-1 alone secreted IL-8 levels similar to that of cells stimulated with IL-1 alone. These results suggest that in addition to wound healing, HGF may play a role in the IL-1-induced chemokine response of epithelial cells in inflamed mucosal tissues.  相似文献   

3.
Summary Intestinal epithelial cells (IEC) have previously been shown to produce several cytokines including interleukin-6 (IL-6). However, many factors which may regulate IL-6 secretion by human IEC still remain a mystery due in part to the lack of appropriate model cell lines and the difficulty of culturing human IEC over long periods of time. We have determined that the human colonic carcinoma cell line Caco-2 is capable of secreting IL-6 when stimulated by the inflammatory cytokines IL-1β or tumor necrosis factor-α (TNF-α), and stimulation of these cells with IL-1β plus TNF-α induced a synergistic enhancement of IL-6 secretion. The inflammatory cytokine-induced enhancement in IL-6 secretion was greatest when the cells were cultured in a 10% CO2 atmosphere as compared to cells grown in 5% CO2, suggesting that environmental CO2 levels may affect IEC cytokine secretion. Finally, long-term culture of the Caco-2 cells to induce cellular differentiation had no effect on the capacity of these cells to produce IL-6, indicating that the regulation of IL-6 secretion was not affected by differentiation. Taken together, these studies provide important information on the factors which regulate IL-6 secretion by human IEC as they may contribute to the cytokine network during a mucosal inflammation. The results also suggest that the Caco-2 cell line is an appropriate model for further studies on the regulation of cytokine secretion by human IEC.  相似文献   

4.
A variety of cytokines have been detected in inflamed intestinal mucosal tissues, including the pro-inflammatory cytokine, interleukin-1 (IL-1), along with growth factors involved in wound healing processes such as proliferation and cell migration. However, little is known about how IL-1 and growth factors interact with intestinal epithelial cells to regulate the production of inflammatory cytokines such as interleukin-8 (IL-8). Previously, we have shown that hepatocyte growth factor (HGF) could significantly enhance IL-1-stimulated IL-8 secretion by the Caco-2 colonic epithelial cell line, yet HGF, by itself, did not stimulate IL-8 secretion. In this report, a second growth factor, keratinocyte growth factor (KGF), was also found to significantly enhance IL-1-induced IL-8 secretion by Caco-2 cells, yet KGF, by itself, also had no effect. Simultaneous addition of both IL-1 and KGF was also required for the enhancing effect. Treatment of the Caco-2 cells with wortmannin or triciribine suppressed the enhancing effect of HGF, suggesting that the effect was mediated by signaling through phosphatidylinositol-3-kinase (PI3K) and the kinase AKT. The enhancing effect of KGF was not affected by wortmannin, but was suppressed by triciribine, suggesting that the effect of KGF was through a PI3K-independent activation of AKT. These results suggest that the growth factors HGF and KGF may play a role in enhancing IL-1-stimulated production of IL-8 by epithelial cells during mucosal inflammations. However, the mechanism by which the growth factors enhance the IL-1 response may be through different initial signaling pathways.  相似文献   

5.
This study was designed to analyse the effects of human (h) and bovine lactoferrin (bLF) on the growth and differentiation of intestinal cells using the mice model supplemented with Lactoferrin (LF) and the enterocyte-like model of Caco-2 cells which spontaneously differentiate after confluency. In mice, bLF supplementation increased jejunal villus height and the expression of several intestinal brush border membrane enzymes activities. Addition of bLF or hLF to undifferentiated Caco-2 cells was able to increase cell proliferation with confluency being reached more rapidly. Moreover, when Caco-2 cells were grown in the presence of LF for 3 weeks, brush-border membrane-associated enzyme activities i.e. sucrase, alkaline phosphatase and neutral aminopeptidase, as well as the l-glutamate transporter expression were all increased indicating an increased Caco-2 cell differentiation. Accordingly, cDNA Atlas array and Western blot analysis of cell cycle proteins shown a decreased expression of Cdck2 and an increased TAF1 expression; these proteins being implicated in the regulation of numerous genes related to cellular proliferation and differentiation. These modifications were associated with an inhibition of Caco-2 cell spontaneous apoptosis. Altogether, our results indicate that LF increase in vivo and in vitro enterocyte differentiation. In addition, LF was found to increase in vitro enterocyte proliferation resulting in higher cell density in cell flasks, an effect that was likely partly due to a reduction of the cellular apoptosis. The different stimulation patterns observed for the different parameters associated with cell differentiation in relationship with specific gene regulation is discussed.  相似文献   

6.
7.
NaB (sodium butyrate) inhibits cell proliferation and induces differentiation in a variety of tumour cells. In this study, we aimed to determine whether NaB induced differentiation and regulated the expression of the mucosal factor MUC2 through the PTEN/PI3K (phosphoinositide 3‐kinase) pathway. BGC823 cells treated with NaB for 24–72 h showed marked inhibition of cell proliferation and alteration in cellular morphology. NaB treatment markedly increased the expression of PTEN and MUC2, but it decreased the expression of PI3K. These effects were enhanced by intervention with PI3K inhibitors and were reduced by intervention with PTEN siRNA. Hence, we conclude that NaB increased PTEN expression, promoted the expression of MUC2 and induced the differentiation of gastric cancer cells through the PTEN/PI3K signalling pathway.  相似文献   

8.
We have previously demonstrated that three potent iron chelators, hinokitiol, dithizone and deferoxamine, induce differentiation of F9 embryonal carcinoma cells, as do other well-known morphogens such as retinoic acid (RA) and sodium butyrate (NaB). In this study, we compared the patterns of cell proliferation, cell death and cell cycle arrest during the process of differentiation induced by these five agents. When F9 cells were cultured with the agents at their individual differentiation-inducing concentrations, cell proliferation was rapidly inhibited by treatment with the iron chelators and NaB. In contrast, RA did not influence the rate of increase of cell number at the concentration of 1 microm. The three chelators also caused a marked reduction in cell viability, and the treated cells exhibited internucleosomal DNA fragmentation, whereas cells treated with NaB showed no apoptotic characteristics. RA induced apoptosis weakly at 1 microm and strongly at higher concentrations. In addition, all the iron chelators hindered cell cycle progression, resulting in an arrest at the G1-S interface or S phase. The phenomena observed in chelator-treated cells were considerably different from those in RA- or NaB-treated cells. It is concluded that the three iron chelators cause both severe apoptotic cell death and cell cycle arrest of proliferating F9 cells via cellular iron deprivation, and that this apoptotic change may be independent of the process of differentiation.  相似文献   

9.
10.
目的利用脂多糖(lipopolysaccharide,LPS)刺激模拟体外炎症环境,观察不同浓度下乳杆菌微小膜蛋白(micro integral membrane protein,MIMP)对肠上皮细胞Caco-2的生物学影响,评估其细胞毒性作用。方法首先通过CCK-8实验检测在LPS刺激后不同浓度MIMP(0.01、0.1和1ng/mL)对Caco-2细胞增殖活性的影响,并利用Toll样受体4(Toll-like receptor 4,TLR4)抑制剂作为阳性对照。其次利用流式细胞术检测不同浓度下MIMP对Caco-2细胞凋亡及细胞周期的影响。结果在12h的特定孵育时间内,单独应用不同浓度MIMP及TLR4抑制剂对Caco-2细胞增殖活性无显著影响(P0.05),但是MIMP可以拮抗LPS对Caco-2细胞的促增殖作用(P0.05)。不同浓度的MIMP对Caco-2细胞的周期和凋亡无明显影响(P0.05)。结论不同浓度MIMP对Caco-2细胞的增殖、凋亡及细胞周期无明显影响,并可以拮抗LPS的促细胞增殖作用,因此具有较高的安全性,有望用于炎症性肠病的治疗。  相似文献   

11.
Tumour necrosis factor (TNF) induces apoptosis in a range of cell types via its two receptors, TNFR1 and TNFR2. Here, we demonstrate that proliferation and TNFR2 expression was increased in human leukaemic TF-1 cells by granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-3 (IL-3), with TNFR1 expression unaffected. Consequently, they switch from a proliferative to a TNF-induced apoptotic phenotype. Raised TNFR2 expression and susceptibility to TNF-induced apoptosis was not a general effect of proliferation as IL-1beta and IFN-gamma both proliferated TF-1 cells with no effect on TNFR expression or apoptosis. Although raised TNFR2 expression correlated with the apoptotic phenotype, stimulation of apoptosis in GM-CSF-pretreated cells was mediated by TNFR1, with stimulation of TNFR2 alone insufficient to initiate cell death. However, TNFR2 did play a role in apoptotic and proliferative responses as they were blocked by the presence of an antagonistic TNFR2 antibody. Additionally, coincubation with cycloheximide blocked the mitotic effects of GM-CSF or IL-3, allowing only the apoptotic responses of TNF to persist. TNF life/death was also observed in K562, but not MOLT-4 and HL-60 human leukaemic cell types. These findings show a cooperative role of TNFR2 in the TNF life/death switching phenomenon.  相似文献   

12.
《Cytokine》2015,74(2):225-235
We previously isolated mesenchymal stromal cells from human tonsils (T-MSCs) and showed the potential of these cells to differentiate into the mesodermal lineage and acquire a follicular dendritic cell (FDC) phenotype under cytokine stimulation. Because these T-MSCs were originally isolated from inflamed tonsillar tissues, we were curious about their activation status in response to innate immune stimuli, such as Toll-like receptors (TLRs). Therefore, we analyzed the expression profile of TLRs in T-MSCs and stimulated the T-MSCs with TLR agonists. TLR3 stimuli induced C–C chemokine receptor type 6 expression in T-MSCs after 24 h. Furthermore, results from cytokine arrays showed increases in epithelial neutrophil-activating peptide-78/C-X-C motif chemokine (CXCL) 5, granulocyte chemotactic protein-2/CXCL6, growth-related oncogene-α/CXCL1, interleukin-8/CXCL8, and interferon gamma-induced protein-10/CXCL10. CD54 expression was also increased after TLR3 stimulation. However, co-culturing T-MSCs with human B cells did not induce B-cell proliferation. This suggests that TLR3 stimulates the differentiation of T-MSCs into FDC-like cells and induces chemokine secretion, possibly by recruiting C–X–C chemokine receptor 2-expressing immune cells. In addition, T-MSCs also appeared to exert immunomodulatory effects by inhibiting B-cell proliferation, possibly by down-regulating CD18.  相似文献   

13.
Establishing an effective method to improve stem cell differentiation is crucial in stem cell transplantation. Here we aimed to explore whether and how sodium butyrate (NaB) induces rat bone marrow mesenchymal stem cells (MSCs) to differentiate into bladder smooth muscle cells (SMCs). We found that NaB significantly suppressed MSC proliferation and promoted MSCs differentiation into SMCs, as evidenced by the enhanced expression of SMC specific genes in the MSCs. Co-culturing the MSCs with SMCs in a transwell system promoted the differentiation of MSCs into SMCs. NaB again promoted MSC differentiation in this system. Furthermore, NaB enhanced the acetylation of SMC gene-associated H3K9 and H4, and decreased the expression of HDAC2 and down-regulated the recruitment of HDAC2 to the promoter regions of SMC specific genes. Finally, we found that NaB significantly promoted MSC depolarization and increased the intracellular calcium level of MSCs upon carbachol stimulation. These results demonstrated that NaB effectively promotes MSC differentiation into SMCs, possibly by the marked inhibition of HDAC2 expression and disassociation of HDAC2 recruitment to SMC specific genes in MSCs, which further induces high levels of H3K9ace and H4ace and the enhanced expression of target genes, and this strategy could potentially be applied in clinical tissue engineering and cell transplantation.  相似文献   

14.
BackgroundOxaliplatin (OXA) is a chemotherapy agent commonly used in the treatment of colorectal cancer (CRC). Sodium butyrate (NaB) has an antitumor effect.MethodsIn total, 30 patients in stage III who completed 8 cycles of chemotherapy regimens were recruited for this study. The patients were divided into good and bad groups based on the chemotherapy efficacy. Gas chromatography–mass spectrometry (GC/MS) was used to detect microbial metabolites in stool samples from CRC patients. Cell counting kit-8 (CCK-8), Annexin-V APC/7-AAD double staining, Transwell assays, scratch-wound assays, and EdU assays were used to detect cell proliferation, apoptosis, invasion and migration, respectively. Fluoroelectron microscopy was used to observe the cell structures. To verify the inhibitory effect of NaB and OXA at animal level, a subcutaneous transplanted tumor model was established. Finally, 16S sequencing technology was used to detect intestinal bacteria. GC–MS was used to detect metabolites in mouse stools.ResultsNaB was a differential metabolite that affected the efficacy of OXA. NAB and oxaliplatin can synergically inhibit cell proliferation, migration and invasion, and induce cell apoptosis. Animal experiments confirmed the inhibitory effect of oxaliplatin and sodium butyrate on tumor in mice. In addition, the intestinal microbe detection and microbial metabolite detection in fecal samples from mice showed significant differences between butyrate-producing bacteria and NaB.ConclusionNaB and OXA can synergistically inhibit the proliferation, invasion and metastasis of CRC cells and promote the apoptosis of CRC cells. NaB, as an OXA synergist, has the potential to become a new clinical adjuvant in CRC chemotherapy.  相似文献   

15.
Breaking the balance between proliferation and differentiation in animal cells can lead to cancer, but the mechanisms maintaining this balance remain largely undefined. The calcium activated chloride channel A1 (CLCA1) is a member of the calcium sensitive chloride conductance family of proteins and is expressed mainly in the colon, small intestine and appendix. We show that CLCA1 plays a functional role in differentiation and proliferation of Caco-2 cells and of intestinal tissue. Caco-2 cells spontaneously differentiate either in confluent culture or when treated with butyrate, a molecule present naturally in the diet. Here, we compared CLCA1 expressional levels between patients with and without colorectal cancer (CRC) and determined the functional role of CLCA1 in differentiation and proliferation of Caco-2 cells. We showed that: 1) CLCA1 and CLCA4 expression were down-regulated significantly in CRC patients; 2) CLCA1 expression was up-regulated in Caco-2 cells induced to differentiate by confluent culture or by treatment with sodium butyrate (NaBT); 3) Knockdown of CLCA1 with siRNA significantly inhibited cell differentiation and promoted cell proliferation in Caco-2 confluent cultures, and 4) In Caco-2 3D culture, suppression of CLCA1 significantly increased cell proliferation and compromised NaBT-induced inhibition of proliferation. In conclusion, CLCA1 may contribute to promoting spontaneous differentiation and reducing proliferation of Caco-2 cells and may be a target of NaBT-induced inhibition of proliferation and therefore a potential diagnostic marker for CRC prognosis.  相似文献   

16.
The components of the insulin-like growth factor (IGF) axis and their roles in regulating proliferation and differentiation of the human colon adenocarcinoma cell line, Caco-2, have been investigated. Caco-2 cells proliferated in serum-free medium at 75% the rate observed in medium containing 10% fetal bovine serum. IGF-I (10 nM) increased Caco-2 cell growth in serum-free medium, but not to the rate seen with serum. Multiple IGF-II mRNA species were produced by Caco-2 cells, but IGF-I mRNA was undetectable. Secretion of radioimmunoassayable IGF-II corresponded with steady-state levels of IGF-II mRNA, neither of which was observed to change markedly over the course of 16 days of Caco-2 cell differentiation. Levels of sucrase-isomaltase mRNA, a marker for enterocytic differentiation, increased 12-fold between days 5 and 16 of culture. Northern blotting of total RNA and ligand blot and immunoblot analyses of serum-free conditioned medium revealed that Caco-2 cells produce several IGF binding proteins (IGFBPs), including IGFBP-2, -3, and -4, as well as a 31,000 M, species that was not identified. The pattern of IGFBP secretion changed dramatically during Caco-2 cell differentiation: IGFBP-3 and IGFBP-2 increased 8.5-fold and 5-fold, respectively, whereas IGFBP-4 and the 31,000 M, species decreased 43% and 90%. Caco-2 cell clones stably transfected with a human IGFBP-4 cDNA construct exhibited a 60% increase in steady-state level of IGFBP-4 mRNA, and secreted twice as much IGFBP-4 protein as controls. Moreover, IGFBP-4-overexpressing cells proliferated at only 25% the rate of control cells in serum-free medium, in conjunction with a 70% increase in expression of sucrase-isomaltase. In summary, these studies indicate that a complex IGF axis is involved in autocrine regulation of Caco-2 cell proliferation and differentiation. © 1996 Wiley-Liss, Inc.  相似文献   

17.
18.
A growing body of literature indicates that the Notch pathway can influence the activation and differentiation of peripheral murine T cells, though comparatively little is known about the effects of Notch signaling in human T cells. In the present report we demonstrate that Jagged-1-induced Notch signaling (using immobilized Jagged-1 fusion protein) during stimulation of purified human CD4+ and CD8+ T cells potently inhibits T cell proliferation and effector function, including both Th1- and Th2-associated cytokines. Inhibition of T cell activation is not due to apoptosis or disruption of proximal TCR signaling, but is associated with up-regulation of GRAIL (gene related to anergy in lymphocytes) in CD4+ T cells, with modest effects on other E3 ubiquitin ligases such as c-Cbl and Itch. When evaluated for its effects on CD4+ T cell differentiation, Jagged-1-mediated signaling inhibits T cell cytokine secretion with no significant effect on proliferative responses. Collectively, these data demonstrate that Notch signaling in human T cells induced by Jagged-1 promotes a novel form of T cell hyporesponsiveness that differs from anergy, whereby primary T cell proliferation and cytokine secretion are potently inhibited, and effector function but not proliferative capacity are ameliorated upon secondary stimulation.  相似文献   

19.
Colonic carcinogenesis is accompanied by abnormalities in multiple signal transduction components, including alterations in protein kinase C (PKC). The expression level of PKC-zeta, an atypical PKC isoform, increases from the crypt base to the luminal surface and parallels crypt cell differentiation in normal colon. In prior studies in the azoxymethane model of colon cancer, we showed that PKC-zeta was down-regulated in rat colonic tumors. In this study, we showed that PKC-zeta is expressed predominantly in colonic epithelial and not stromal cells, and loss of PKC-zeta occurs as early as the adenoma stage in human colonic carcinogenesis. To assess the regulation of growth and differentiation by PKC-zeta, we altered this isoform in human Caco-2 colon cancer cells using stable constitutive or inducible expression vectors, specific peptide inhibitors or small interfering RNA. In ecdysone-regulated transfectants grown on collagen I, ponasterone A significantly induced PKC-zeta expression to 135% of empty vector cells, but did not alter nontargeted PKC isoforms. This up-regulation was accompanied by a 2-fold increase in basal and 4-fold increase in insulin-stimulated PKC-zeta biochemical activity. Furthermore, PKC-zeta up-regulation caused >50% inhibition of cell proliferation on collagen I (P < 0.05). Increased PKC-zeta also significantly enhanced Caco-2 cell differentiation, nearly doubling alkaline phosphatase activity, while inducing a 3-fold increase in the rate of apoptosis (P < 0.05). In contrast, knockdown of this isoform by small interfering RNA or kinase inhibition by myristoylated pseudosubstrate significantly and dose-dependently increased Caco-2 cell growth on collagen I. In transformation assays, constitutively up-regulated wild-type PKC-zeta significantly inhibited Caco-2 cell growth in soft agar, whereas a kinase-dead mutant caused a 3-fold increase in soft agar growth (P < 0.05). Taken together, these studies indicate that PKC-zeta inhibits colon cancer cell growth and enhances differentiation and apoptosis, while inhibiting the transformed phenotype of these cells. The observed down-regulation of this growth-suppressing PKC isoform in colonic carcinogenesis would be predicted to contribute to tumorigenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号