首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Calcein is a fluorescent probe that is widely used in studies of cell viability and mitochondrial function by microscopy fluorescence imaging. It was found to have a strong photosensitizing action that prevalently involves the generation of reactive oxygen species (ROS). The photooxidation properties of calcein in solution were studied in the presence of histidine and tryptophan as oxidizable substrates. The photodegradation of histidine was mainly mediated by singlet oxygen (1O2), as shown by the inhibitory effect of sodium azide, a specific 1O2 scavenger. On the other hand, mixed photosensitization mechanisms were present when tryptophan was used as the target of the calcein-stimulated photoprocess. In addition to 1O2, hydroxyl radicals and hydrogen peroxide were involved as reactive species, as shown by using mannitol and catalase as scavengers. The calcein-photosensitized alterations of mitochondria as a potential source of artifacts in confocal microscopy studies of cells were considered. Irradiation of isolated mitochondria with visible light (500-600 nm) in the presence of calcein induced opening of the permeability transition (PT) pore. The extent of the mitochondrial membrane photodamage, however, was modulated by the nature of the calcein environment. Thus, pore opening was triggered at short irradiation times and low dye concentrations when calcein was dissolved in the bulk medium. On the contrary, calcein concentrated in the matrix space was rather inefficient as photosensitizer even at concentrations 10 times higher than those present in the external medium.  相似文献   

2.
A. B. Uzdensky 《Biophysics》2016,61(3):461-469
The photodynamic effect, viz., photodamage of stained cells in the presence of oxygen, is used for destruction of tumors and other abnormal cells. The present review considers the biophysical mechanisms of the photodynamic action on cells. The importance of two major mechanisms of photodynamic damage of cells is discussed. The first one is mediated by electron or proton transfer, whereas the second one involves singlet oxygen. Another question that is considered is the importance of oxidation of membrane lipids or proteins for the photodynamic damage of cells. The phototransformation of photosensitizers and their intracellular localization and delivery to cells and tissues that have undergone abnormal changes are discussed. The current data on photosensitizer nanotransporters are presented. The potential sensors for reactive oxygen species in cells are discussed.  相似文献   

3.
Skulachev VP 《IUBMB life》2000,49(3):177-180
Recently knockout of the gene encoding an adaptor protein (p66shc) was shown both to prolong the life span of an animal and to prevent apoptosis of cells in response to added H2O2 (Migliaccio et al. [1999] Nature 402, 309-313). A hypothesis is put forward in which p66shc is assumed to be involved in phenoptosis, i.e., programmed death of an organism, mediated by the reactive oxygen species-dependent massive apoptosis in an organ of vital importance. The reactive oxygen species are suggested to oxidize phosphatidyl serine in the inner leaflet of the cell plasma membrane, resulting in appearance of this phospholipid in the outer membrane leaflet, an effect recognized by a special receptor and causing the p66shc phosphorylation at a serine residue. Serine-phosphorylated p66shc there is proposed to block mitosis and initiate apoptosis. The large-scale apoptosis leads to phenoptosis and, hence, shortens the life span of the organism.  相似文献   

4.
The malaria parasite Plasmodium falciparum proliferates within human erythrocytes and is thereby exposed to a variety of reactive oxygen species (ROS) such as hydrogen peroxide, hydroxyl radical, superoxide anion, and highly reactive singlet oxygen ((1)O(2)). While most ROS are already well studied in the malaria parasite, singlet oxygen has been neglected to date. In this study we visualized the generation of (1)O(2) by live cell fluorescence microscopy using 3-(p-aminophenyl) fluorescein as an indicator dye. While (1) O(2) is found restrictively in the parasite, its amount varies during erythrocytic schizogony. Since the photosensitizer cercosporin generates defined amounts of (1)O(2) we have established a new cytometric method that allows the stage specific quantification of (1)O(2). Therefore, the parasites were first classified into three main stages according to their respective pixel-area of 200-600 pixels for rings, 700-1,200 pixels for trophozoites and 1,400-2,500 pixels for schizonts. Interestingly the highest mean concentration of endogenous (1)O(2) of 0.34 nM is found in the trophozoites stage, followed by 0.20 nM (ring stage) and 0.10 nM (schizont stage) suggesting that (1)O(2) derives predominantly from the digestion of hemoglobin.  相似文献   

5.
In isolated single cardiomyocytes with moderately elevated mitochondrial respiration, direct evidence for intracellular radial gradients of oxygen concentration was obtained by subcellular spectrophotometry of myoglobin (Mb). When oxygen consumption was increased by carbonyl cyanide m-chlorophenylhydrazone (CCCP) during superfusion of cells with 4% oxygen, PO(2) at the cell core dropped to 2.3 mmHg, whereas Mb near the plasma membrane was almost fully saturated with oxygen. Subcellular NADH fluorometry demonstrated corresponding intracellular heterogeneities of NADH, indicating suppression of mitochondrial oxidative metabolism due to relatively slow intracellular oxygen diffusion. When oxygen consumption was increased by electrical pacing in 2% oxygen, radial oxygen gradients of similar magnitude were demonstrated (cell core PO(2) = 2.6 mmHg). However, an increase in NADH fluorescence at the cell core was not detected. Because CCCP abolished mitochondrial respiratory control while it was intact in electrically paced cardiomyocytes, we conclude that mitochondria with intact respiratory control can sustain electron transfer with reduced oxygen supply. Thus mitochondrial intrinsic regulation can compensate for relatively slow oxygen diffusion within cardiomyocytes.  相似文献   

6.
《Autophagy》2013,9(9):1333-1341
Photodynamic therapy (PDT) involves photosensitizing agents that, in the presence of oxygen and light, initiate formation of cytotoxic reactive oxygen species (ROS). PDT commonly induces both apoptosis and autophagy. Previous studies with murine hepatoma 1c1c7 cells indicated that loss of autophagy-related protein 7 (ATG7) inhibited autophagy and enhanced the cytotoxicity of photosensitizers that mediate photodamage to mitochondria or the endoplasmic reticulum. In this study, we examined two photosensitizing agents that target lysosomes: the chlorin NPe6 and the palladium bacteriopheophorbide WST11. Irradiation of wild-type 1c1c7 cultures loaded with either photosensitizer induced apoptosis and autophagy, with a blockage of autophagic flux. An ATG7- or ATG5-deficiency suppressed the induction of autophagy in PDT protocols using either photosensitizer. Whereas ATG5-deficient cells were quantitatively similar to wild-type cultures in their response to NPe6 and WST11 PDT, an ATG7-deficiency suppressed the apoptotic response (as monitored by analyses of chromatin condensation and procaspase-3/7 activation) and increased the LD50 light dose by > 5-fold (as monitored by colony-forming assays). An ATG7-deficiency did not prevent immediate lysosomal photodamage, as indicated by loss of the lysosomal pH gradient. However, unlike wild-type and ATG5-deficient cells, the lysosomes of ATG7-deficient cells recovered this gradient within 4 h of irradiation, and never underwent permeabilization (monitored as release of endocytosed 10-kDa dextran polymers). We propose that the efficacy of lysosomal photosensitizers is in part due to both promotion of autophagic stress and suppression of autophagic prosurvival functions. In addition, an effect of ATG7 unrelated to autophagy appears to modulate lysosomal photodamage.  相似文献   

7.
Although reactive oxygen species (ROS) have been reported to evoke different autophagic pathways, how ROS or their secondary products modulate the selective clearance of oxidatively damaged organelles is less explored. To investigate the signaling role of ROS and the impact of their compartmentalization in autophagy pathways, we used murine fibrosarcoma L929 cells overexpressing different antioxidant enzymes targeted to the cytosol or mitochondria and subjected them to photodynamic (PD) stress with the endoplasmic reticulum (ER)-associated photosensitizer hypericin. We show that following apical ROS-mediated damage to the ER, predominantly cells overexpressing mitochondria-associated glutathione peroxidase 4 (GPX4) and manganese superoxide dismutase (SOD2) displayed attenuated kinetics of autophagosome formation and overall cell death, as detected by computerized time-lapse microscopy. Consistent with a primary ER photodamage, kinetics and colocalization studies revealed that photogenerated ROS induced an initial reticulophagy, followed by morphological changes in the mitochondrial network that preceded clearance of mitochondria by mitophagy. Overexpression of cytosolic and mitochondria-associated GPX4 retained the tubular mitochondrial network in response to PD stress and concomitantly blocked the progression toward mitophagy. Preventing the formation of phospholipid hydroperoxides and H 2O 2 in the cytosol as well as in the mitochondria significantly reduced cardiolipin peroxidation and apoptosis. All together, these results show that in response to apical ER photodamage ROS propagate to mitochondria, which in turn amplify ROS production, thereby contributing to two antagonizing processes, mitophagy and apoptosis.  相似文献   

8.
We examined whether superoxide (O(2)(-)) is produced as a precursor of hydrogen peroxide (H(2)O(2)) in cultured thyroid cells using the cytochrome c method and the electron paramagnetic resonance (EPR) method. No O(2)(-) or its related radicals was detected in thyroid cells under the physiological condition. The presence of quinone, 2,3-dimethoxy-l-naphthoquinone (DMNQ), or 2-methyl-1, 4-naphthoquinone (menadione), in the medium produced O(2)(-) and hydroxyl radicals (OH*); the amount of H(2)O(2) generation was also increased. Incubation of follicles with DMNQ or menadione inhibited iodine organification (a step of thyroid hormone formation) and its catalytic enzyme, thyroid peroxidase (TPO). This inhibition should be caused by reactive oxygen species because the two quinones, particularly DMNQ, exert their effect through the generation of reactive oxygen species. It is speculated that the site-specific inactivation of TPO might have occurred at the heme-linked histidine residue of the TPO molecule, a critical amino acid for enzyme activity because OH* (vicious free radicals) can be formed at the iron-linked amino acid. TPO mRNA level and electrophoretic mobility of TPO were not inhibited by quinones. Our study suggests that thyroid H(2)O(2) is produced by divalent reduction of oxygen without O(2)(-) generation. If thyroid cells happen to be exposed to significant amount of reactive oxygen species, TPO and subsequent thyroid hormone formation are inhibited.  相似文献   

9.
DH Kessel  M Price  JJ Reiners 《Autophagy》2012,8(9):1333-1341
Photodynamic therapy (PDT) involves photosensitizing agents that, in the presence of oxygen and light, initiate formation of cytotoxic reactive oxygen species (ROS). PDT commonly induces both apoptosis and autophagy. Previous studies with murine hepatoma 1c1c7 cells indicated that loss of autophagy-related protein 7 (ATG7) inhibited autophagy and enhanced the cytotoxicity of photosensitizers that mediate photodamage to mitochondria or the endoplasmic reticulum. In this study, we examined two photosensitizing agents that target lysosomes: the chlorin NPe6 and the palladium bacteriopheophorbide WST11. Irradiation of wild-type 1c1c7 cultures loaded with either photosensitizer induced apoptosis and autophagy, with a blockage of autophagic flux. An ATG7- or ATG5-deficiency suppressed the induction of autophagy in PDT protocols using either photosensitizer. Whereas ATG5-deficient cells were quantitatively similar to wild-type cultures in their response to NPe6 and WST11 PDT, an ATG7-deficiency suppressed the apoptotic response (as monitored by analyses of chromatin condensation and procaspase-3/7 activation) and increased the LD 50 light dose by > 5-fold (as monitored by colony-forming assays). An ATG7-deficiency did not prevent immediate lysosomal photodamage, as indicated by loss of the lysosomal pH gradient. However, unlike wild-type and ATG5-deficient cells, the lysosomes of ATG7-deficient cells recovered this gradient within 4 h of irradiation, and never underwent permeabilization (monitored as release of endocytosed 10-kDa dextran polymers). We propose that the efficacy of lysosomal photosensitizers is in part due to both promotion of autophagic stress and suppression of autophagic prosurvival functions. In addition, an effect of ATG7 unrelated to autophagy appears to modulate lysosomal photodamage.  相似文献   

10.
A type of novel hypocrellin B gelatin nanoparticles (HB-G-NP), with size of 20-200 nm, was prepared and characterized. The nanoparticles are readily soluble in water or phosphate-buffered saline (PBS). The interaction between HB-G-NP and a fluorescence protein, C-phycocyanin (C-PC) from Spirulina platensis, was studied. It was found that the energy transfer from HB to C-PC was quite efficient, suggesting adsorption of C-PC on surface of the nanoparticles; secondly, the photosensitization of HB resulted in not only the photo-damage of C-PC but also the photobleaching of HB in the presence of oxygen while it did not in the absence of oxygen, suggesting that the movable reactive oxygen species, instead of the immovable anionic radicals of the photosensitizer, should be responsible for the photo-induced processes. Considering the short free diffusion path length of the reactive oxygen species, it can be deduced that smaller or ring-like particles should be more effective for photo-damage of biomolecules or target tissues.  相似文献   

11.
Light induced damage of the photosynthetic apparatus is an important and highly complex phenomenon, which affects primarily the Photosystem II complex. Here the author summarizes the current state of understanding of the molecular mechanisms, which are involved in the light induced inactivation of Photosystem II electron transport together with the relevant mechanisms of photoprotection. Short wavelength ultraviolet radiation impairs primarily the Mn?Ca catalytic site of the water oxidizing complex with additional effects on the quinone electron acceptors and tyrosine donors of PSII. The main mechanism of photodamage by visible light appears to be mediated by acceptor side modifications, which develop under conditions of excess excitation in which the capacity of light-independent photosynthetic processes limits the utilization of electrons produced in the initial photoreactions. This situation of excess excitation facilitates the reduction of intersystem electron carriers and Photosystem II acceptors, and thereby induces the formation of reactive oxygen species, especially singlet oxygen whose production is sensitized by triplet chlorophyll formation in the reaction center of Photosystem II. The highly reactive singlet oxygen and other reactive oxygen species, such as H?O? and O??, which can also be formed in Photosystem II initiate damage of electron transport components and protein structure. In parallel with the excess excitation dependent mechanism of photodamage inactivation of the Mn?Ca cluster by visible light may also occur, which impairs electron transfer through the Photosystem II complex and initiates further functional and structural damage of the reaction center via formation of highly oxidizing radicals, such as P 680(+) and Tyr-Z(+). However, the available data do not support the hypothesis that the Mn-dependent mechanism would be the exclusive or dominating pathway of photodamage in the visible spectral range. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

12.
The photodynamic activity of sulfonated aluminum phthalocyanines (AlPcS(n), 1 相似文献   

13.
Leishmania donovani, the causative agent of visceral leishmaniasis, infects macrophages (M phi ) of susceptible vertebrates. Immunologically activated M phi are leishmanicidal, but the mechanisms involved in the killing process are not well defined. We sought to investigate the role of reactive oxygen intermediates in the killing of L. donovani. Both the free-swimming promastigote and the intracellular amastigote forms were found to be susceptible to killing in vitro by hydrogen peroxide and other oxygen intermediates. Upon phagocytosis by mouse peritoneal M phi, promastigotes elicited a significantly stronger respiratory burst compared with amastigotes as measured by release of superoxide anion. Although amastigotes do not elicit a strong burst of M phi oxidative metabolism during the initial phagocytic event, immunologically activated M phi that acquired leishmanicidal capacity could be triggered to release substantial amounts of H2O2. Hence, the development of leishmanicidal capacity was correlated temporally with enhanced H2O2 generation by the M phi. In contrast, M phi that lost their ability to release significant amounts of H2O2 after several days in culture were unable to eliminate their parasite burden. Catalase markedly inhibited the elimination of amastigotes by lymphokine-stimulated M phi. In toto, the results implicate reactive oxygen intermediates in killing of the tissue form of L. donovani by its host cell, the mononuclear phagocyte.  相似文献   

14.

Background  

KillerRed (KR) is a novel photosensitizer that efficiently generates reactive oxygen species (ROS) in KR-expressing cells upon intense green or white light illumination in vitro, resulting in damage to their plasma membrane and cell death.  相似文献   

15.
Lysosomal photosensitizers have been used in photodynamic therapy. The combination of such photosensitizers and light causes lysosomal photodamage, inducing cell death. Lysosomal disruption can lead to apoptosis but its signaling pathways remain to be elucidated. In this study, N-aspartyl chlorin e6 (NPe6), an effective photosensitizer that preferentially accumulates in lysosomes, was used to study the mechanism of apoptosis caused by lysosomal photodamage. Apoptosis in living human lung adenocarcinoma cells (ASTC-a-1) after NPe6-photodynamic treatment (NPe6-PDT) was studied using real-time single-cell analysis. Our results demonstrated that NPe6-PDT induced rapid generation of reactive oxygen species (ROS). The photodynamically produced ROS caused a rapid destruction of lysosomes, leading to release of cathepsins, and the ROS scavengers vitamin C and NAC prevent the effects. Then the following spatiotemporal sequence of cellular events was observed during cell apoptosis: Bcl-2-associated X protein (Bax) activation, cytochrome c release, and caspase-9/-3 activation. Importantly, the activation of Bax proved to be a crucial event in this apoptotic machinery, because suppressing the endogenous Bax using siRNA could significantly inhibit cytochrome c release and caspase-9/-3 activation and protect the cell from death. In conclusion, this study demonstrates that PDT with lysosomal photosensitizer induces Bax activation and subsequently initiates the mitochondrial apoptotic pathway.  相似文献   

16.
Ran C  Yu X  Jin M  Zhang W 《Biotechnology progress》2006,22(2):438-443
We demonstrated that a significant volume of H(2) gas could be photobiologically produced by a marine green alga Platymonas subcordiformis when an uncoupler of photophosphorylation, carbonyl cyanide m-chlorophenylhydrazone (CCCP), was added after 32 h of anaerobic dark incubation, whereas a negligible volume of H(2) gas was produced without CCCP. The role of CCCP in enhancing photobiological H(2) production was delineated. CCCP as an ADRY agent (agent accelerating the deactivation reactions of water-splitting enzyme system Y) rapidly inhibited the photosystem II (PSII) activity of P. subcordiformis cells, resulting in a markedly decline in the coupled oxygen evolution. The mitochondrial oxidative respiration was only slightly inactivated by CCCP, which depleted O(2) in the light. As a result, anaerobiosis during the stage of photobiological H(2) evolution was established, preventing severe O(2) inactivation of the reversible hydrogenase in P. subcordiformis. The uncoupling effect of CCCP accelerates electron transfer from water due to a disruption of the proton motive force and release of DeltapH across the thylakoid membrane and thus enhances the accessibility of electron and H(+) to hydrogenase. The electrons for hydrogen photoevolution are mainly from the photolysis of water (90%). Upon the addition of CCCP, Chl a/b ratio increased, which implies a decrease in the light-harvesting PSII antennae or an increase in PSII/PSI ratio, possibly resulting in higher efficiency of utilization of light energy. The enhancement of H(2) evolution by the addition of CCCP is mostly due to the combination of the above three mechanisms. However, the disruption of the proton gradient across the thylakoid membrane may prevent a sustained photobiological H(2) evolution due to a shortfall of ATP generation essential for the maintenance and repair functions of the cells.  相似文献   

17.
Transbilayer distribution of phospholipids in bacteriophage membranes   总被引:1,自引:0,他引:1  
We have previously demonstrated that the membranes of several bacteriophages contain more phosphatidylglycerol (PG) and less phosphatidylethanolamine (PE) than the host membrane from where they are derived. Here, we determined the transbilayer distribution of PG and PE in the membranes of bacteriophages PM2, PRD1, Bam35 and phi6 using selective modification of PG and PE in the outer membrane leaflet with sodium periodate or trinitrobenzene sulfonic acid, respectively. In phi6, the transbilayer distributions of PG, PE and cardiolipin could also be analyzed by selective hydrolysis of the lipids in the outer leaflet by phospholipase A(2). We used electrospray ionization mass-spectrometry to determine the transbilayer distribution of phospholipid classes and individual molecular species. In each bacteriophage, PG was enriched in the outer membrane leaflet and PE in the inner one (except for Bam35). Only modest differences in the transbilayer distribution between different molecular species were observed. The effective shape and charge of the phospholipid molecules and lipid-protein interactions are likely to be most important factors driving the asymmetric distribution of phospholipids in the phage membranes. The results of this first systematic study on the phospholipid distribution in bacteriophage membranes will be very helpful when interpreting the accumulating high-resolution data on these organisms.  相似文献   

18.
Cardiolipin (CL) is essential for the functionality of several mitochondrial proteins. Its distribution between the inner and outer leaflet of the mitochondrial internal membrane is crucial for ATP synthesis. We have investigated alterations in CL distribution during the early phases of apoptosis. Using two classical models (staurosporine-treated HL-60 cells and tumor necrosis factor alpha-treated U937 cells), we found that in apoptotic cells CL moves to the outer leaflet of mitochondrial inner membrane in a time-dependent manner. This occurs before the appearance of apoptosis markers such as plasma-membrane exposure of phosphatidylserine, changes in mitochondrial membrane potential, DNA fragmentation, but after the production of reactive oxygen species. The exposure of a phospholipid on the outer surface during apoptosis thus occurs not only at the plasma membrane level but also in mitochondria, reinforcing the hypothesis of mitoptosis as a crucial regulating system for programmed cell death, also occurring in cancer cells after treatment with antineoplastic agents.  相似文献   

19.
We have previously demonstrated that the membranes of several bacteriophages contain more phosphatidylglycerol (PG) and less phosphatidylethanolamine (PE) than the host membrane from where they are derived. Here, we determined the transbilayer distribution of PG and PE in the membranes of bacteriophages PM2, PRD1, Bam35 and phi6 using selective modification of PG and PE in the outer membrane leaflet with sodium periodate or trinitrobenzene sulfonic acid, respectively. In phi6, the transbilayer distributions of PG, PE and cardiolipin could also be analyzed by selective hydrolysis of the lipids in the outer leaflet by phospholipase A2. We used electrospray ionization mass-spectrometry to determine the transbilayer distribution of phospholipid classes and individual molecular species. In each bacteriophage, PG was enriched in the outer membrane leaflet and PE in the inner one (except for Bam35). Only modest differences in the transbilayer distribution between different molecular species were observed. The effective shape and charge of the phospholipid molecules and lipid-protein interactions are likely to be most important factors driving the asymmetric distribution of phospholipids in the phage membranes. The results of this first systematic study on the phospholipid distribution in bacteriophage membranes will be very helpful when interpreting the accumulating high-resolution data on these organisms.  相似文献   

20.
Photodynamic therapy (PDT) is a process in which a photosensitizer (PS) is exposed to specific wavelengths and generates reactive oxygen species (ROS) which act within nanometers. The low invasive nature and directed cytotoxicity of this approach render it attractive to the treatment of different conditions, including the ones that affect the central nervous system (CNS). The effect of PDT on healthy neurons is one main concern over its use in the CNS, since neuronal-like cells were shown to be particularly sensitive to certain PSs. Among available PSs, 1,9-dimethyl-methylene blue (DMMB) stands out as being resistant to reduction to its inactive leuco form and by being able to produce high levels of singlet?oxygen. In this study, we aimed to investigate DMMB photodamage mechanisms in the hippocampal cell line HT22. Our results demonstrate that DMMB-PDT decrease in cell viability was linked with an increase in cell death and overall ROS production. Besides, it resulted in a significant increase in mitochondrial ROS production and decreased mitochondria membrane potential. Furthermore, DMMB-PDT significantly increased the presence of acidic autolysosomes, which was accompanied by an increase in ATG1 and ATG8 homologue GaBarap1 expression, and decreased DRAM1 expression. Taken together our results indicated that mitochondrial and autophagic dysfunction underlie DMMB-PDT cytotoxicity in neuronal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号