首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steroid receptors exist as large oligomeric complexes in hypotonic cell extracts. In the present work, we studied the nuclear transport of the 2 major components of the oligomeric complex, the receptor itself and the heat shock protein 90 (Hsp90), by using different in vitro transport systems: digitonin permeabilized cells and purified nuclei. We demonstrate that the stabilized oligomeric complex of progesterone receptor (PR) cannot be transported into the nucleus and that unliganded PR salt dissociated from Hsp90 is transported into the nucleus. When nonstabilized PR oligomer was introduced into the nuclear transport system, the complex dissociated and the PR but not the Hsp90 was transported into the nucleus. If PR exists as an oligomeric form after synthesis, as suggested by the experiments with reticulocyte lysate, the present results suggest that the complex is short-lived and is dissociated before or during nuclear transport. Thus, the role of Hsp90 in PR action is likely to reside in the Hsp90-assisted chaperoning process of PR preceding nuclear transport of the receptor.  相似文献   

2.
Steroid receptors are found as a hetero-oligomeric complex in cell extracts. Due to the dynamic interaction between receptor-associated proteins and receptors, it is difficult to study the oligomeric complex in living cells. Here this was attempted in cells in which the interaction was stabilized by introducing molybdate into the cells or by incubating the cells at low temperature. The complex was studied with an antibody (aD) recognizing only the dissociated form of the chicken progesterone receptor (PR) and with antibodies (PR22, PR6). Recognizing also oligomeric forms of the receptor. When wild-type chicken PR was transfected, all antibodies showed nuclear staining. Molybdate or cold treatment of cells resulted in cytoplasmic accumulation of the PR as detected with PR22/PR6. aD, however, stained predominantly the nuclear PR in treated cells. These findings suggest that when the oligomeric complex of the PR is stabilized in intact cells in vivo and then crosslinked with paraformaldehyde, a portion of the cytoplasmic receptor is seen as an oligomeric complex, whereas, in the nucleus, most, if not all receptor molecules are in dissociated form.  相似文献   

3.
In hypotonic cell extract (cytosol), unliganded progesterone receptor (PR) is known to form an oligomeric complex with heat shock protein 90 (hsp90), and this complex does not bind to DNA. Since ligand binding has been shown to render the complex less stable in vitro, it has been proposed that ligand binding regulates DNA binding and receptor activity in vivo by altering the stability of the oligomeric complex. However, there is no direct evidence as to whether this oligomeric complex is present in vivo. The present study addressed this problem. First, we used an immunoelectron-microscopic technique and monoclonal antibodies to ascertain the location of PR and hsp90 in chick oviduct cells. Hsp90 was found in the cytoplasm and PR in the nucleus. To study the relative affinities of the PR and hsp90 antibodies, we then constructed a chimeric protein (PR-hsp90), which was expressed in the HeLa cells. Both hsp90 and PR antigens of the chimera were detected in the nuclei with the same intensity, which indicates that the antibodies have equal sensitivities in detecting their antigens. This suggests that if significant amounts of nuclear hsp90 were present in intact cells, it should have been detected by our method. Our results indicate that the PR does not exist in vivo as an oligomeric, nonDNA-binding form in the cell nuclei and that the oligomeric form found in tissue extracts is possibly formed during tissue processing.  相似文献   

4.
With some exceptions, research so far has shown heat shock protein (Hsp) 90 to be a cytoplasmic protein. Here, we studied the sequence determinants which dictate the subcellular localization of Hsp90. By constructing hybrid molecules between a nuclear protein, progesterone receptor (PR), and parts of Hsp90, we demonstrated that the C-terminal but not the N-terminal half of Hsp90 can prevent nuclear translocation of the PR. Studies with an antibody raised against a region which contains the major nuclear localization signal (NLS) of the PR suggest that the inhibition of nuclear localization is not due to steric hindrance of the NLS of the PR by Hsp90 sequences in hybrid molecules. In order to characterize further the cytoplasmic anchoring of Hsp90 we constructed four chimeric molecules between the C-terminal half of Hsp90 and estrogen receptor (ER) with different numbers of nuclear localization protosignals (proto-NLS). When the C-terminal half of Hsp90 was fused with ER containing no or one proto-NLS, the hybrid molecule was located exclusively in the cytoplasm. When the nuclear translocation signal was strengthened by adding two or three protosignals, the hybrid molecule was exclusively nuclear. These results suggest that the C-terminal half of Hsp90 contains a sequence which is responsible for the cytoplasmic localization of the protein. Further deletions of the molecule suggested that the cytoplasmic anchoring signal is located between amino acids 333 and 664.  相似文献   

5.
The ATP-dependent molecular chaperone Hsp90 and partner cochaperone proteins are required for the folding and activity of diverse cellular client proteins, including steroid hormone receptors and multiple oncogenic kinases. Hsp90 undergoes nucleotide-dependent conformational changes, but little is known about how these changes are coupled to client protein activation. In order to clarify how nucleotides affect Hsp90 interactions with cochaperone proteins, we monitored assembly of wild-type and mutant Hsp90 with Sti1, Sba1, and Cpr6 in Saccharomyces cerevisiae cell extracts. Wild-type Hsp90 bound Sti1 in a nucleotide-independent manner, while Sba1 and Cpr6 specifically and independently interacted with Hsp90 in the presence of the nonhydrolyzable analog of ATP, AMP-PNP. Alterations in Hsp90 residues that contribute to ATP binding or hydrolysis prevented or altered Sba1 and Cpr6 interaction; additional alterations affected the specificity of Cpr6 interaction. Some mutant forms of Hsp90 also displayed reduced Sti1 interaction in the presence of a nucleotide. These studies indicate that cycling of Hsp90 between the nucleotide-free, open conformation and the ATP-bound, closed conformation is influenced by residues both within and outside the N-terminal ATPase domain and that these conformational changes have dramatic effects on interaction with cochaperone proteins.  相似文献   

6.
7.
We raised a polyclonal antibody, αD, against a synthetic peptide (amino acids 522–535) of chichen progesterone receptor (PR). The Sequence is located between the DNA-binding domain and the hormone-binding domain in the refion within the sequences required for stability of the oligomeric form of PR. In the immunoblot, αD reacted with both A and B forms of PR. in the sucrose gradient and dot-blot the antibody did bot recognize the so-called 8S form of PR, which is an oligomeric complex of PR and other proteins, When the oligomeric complex was dissociated by salt treatment, the antibody recognized the resulting 4S form of PR. This would suggest that the epitope is masked in the 8S form of PR and exposed in the 45 form. To study whether a similar Complex exists in vivo, we used the antibody for immunohistochemistry. Two different fixation techniques were employed, Freeze-drying-vapor fixation and liquid fixation. In the animals not treated with progesterone, intensive nuclear Staining was Detected independent of the fixation technique. when receptor from similarly treated animals was analyzed by sucrose gradient, all of the receptor molecules were in the oligomeric complex (85). Ligand binding is known to promote a dissociation of this complex. Thus progesterone treatment should lead to an incerased immunodetection of the epitope; however, progesterone treatment decreased the intensity of PR immunostaining. These Results Suggest that the oligomeric complex (85), Present in tissue extracts, does not exist in intact cell nuclei. They also Call into question the propesed role of hsp90 in regulating progesterone receptor function. © Wiley-Liss, Inc.  相似文献   

8.
9.
It has been proposed that the unliganded nontransformed form of steroid hormone receptor is a heterooligomer comprising, in addition to the hormone-binding subunit, two associated proteins: a heat shock protein of MW 90,000 (hsp90) and another protein of MW 59,000 (p59). Using monoclonal antibodies, we demonstrate immunocytochemically the presence of both hsp90 and p59 in cell nuclei of progesterone target cells of the rabbit uterus. While steroid receptors (e.g., progesterone receptors) appear to be exclusively nuclear, we find p59 predominantly in the cell nuclei and hsp90 in both the nucleus and the cytoplasm. In addition, Western blotting of high-salt extracts of nuclear proteins detects the presence of hsp90 and p59 in the nuclei of rabbit uterus. These observations are consistent with the presence of the untransformed heterooligomeric form of steroid hormone receptors in the nuclei of target cells.  相似文献   

10.
The Hsp70-Hsp90 complex is implicated in the folding and regulation of numerous signaling proteins, and Hop, the Hsp70-Hsp90 Organizing Protein, facilitates the association of this multichaperone machinery. Phosphatase treatment of mouse cell extracts reduced the number of Hop isoforms compared to untreated extracts, providing the first direct evidence that Hop was phosphorylated in vivo. Furthermore, surface plasmon resonance (SPR) spectroscopy showed that a cdc2 kinase phosphorylation mimic of Hop had reduced affinity for Hsp90 binding. Hop was predominantly cytoplasmic, but translocated to the nucleus in response to heat shock. A putative bipartite nuclear localization signal (NLS) has been identified within the Hsp90-binding domain of Hop. Although substitution of residues within the major arm of this proposed NLS abolished Hop-Hsp90 interaction as determined by SPR, this was not sufficient to prevent the nuclear accumulation of Hop under leptomycin-B treatment and heat shock conditions. These results showed for the first time that the subcellular localization of Hop was stress regulated and that the major arm of the putative NLS was not directly important for nuclear translocation but was critical for Hop-Hsp90 association in vitro. We propose a model in which the association of Hop with Hsp90 and the phosphorylated status of Hop both play a role in the mechanism of nucleo-cytoplasmic shuttling of Hop.  相似文献   

11.
12.
A system consisting of five purified proteins: Hsp90, Hsp70, Hop, Hsp40, and p23, acts as a machinery for assembly of glucocorticoid receptor (GR).Hsp90 heterocomplexes. Hop binds independently to Hsp90 and to Hsp70 to form a Hsp90.Hop.Hsp70.Hsp40 complex that is sufficient to convert the GR to its steroid binding form, and this four-protein complex will form stable GR.Hsp90 heterocomplexes if p23 is added to the system (Dittmar, K. D., Banach, M., Galigniana, M. D., and Pratt, W. B. (1998) J. Biol. Chem. 273, 7358-7366). Hop has been considered essential for the formation of receptor.Hsp90 heterocomplexes and GR folding. Here we use Hsp90 and Hsp70 purified free of all traces of Hop and Hsp40 to show that Hop is not required for GR.Hsp90 heterocomplex assembly and activation of steroid binding activity. Rather, Hop enhances the rate of the process. We also show that Hsp40 is not essential for GR folding by the five-protein system but enhances a process that occurs less effectively when it is not present. By carrying out assembly in the presence of radiolabeled steroid to bind to the GR as soon as it is converted to the steroid binding state, we show that the folding change is brought about by only two essential components, Hsp90 and Hsp70, and that Hop, Hsp40, and p23 act as nonessential co-chaperones.  相似文献   

13.
Hsp90 (Heat Shock Protein 90) is a component of the inactive and metastable hetero-oligomeric structure of steroid receptors. Recent data on Hsp90 structure and function as a stress protein and dedicated molecular chaperone are here reviewed with a particular focus on Hsp90 chaperone cycle interfering with steroid receptor action. The dual role of Hsp90 as a positive and negative modulator of steroid receptor function is considered along the activation-desactivation process of the receptors. It is proposed that Hsp90 chaperone machinery assists the receptor during its synthesis thus avoiding collapse and facilitating an open structure able to bind ligand efficiently. Moreover, it is suggested that Hsp90 may help the folding of the hydrophobic core of the receptor around the ligand and finally Hsp90 may chaperone the receptor after the dissociation of the ligand.  相似文献   

14.
The activator of Hsp90 ATPase, Aha1, is an Hsp90 co-chaperone that has been suggested to act as a general stimulator of Hsp90 function. In this report, we have characterized the interaction of Aha1 with Hsp90 and its co-chaperones in rabbit reticulocyte lysate (RRL) and in HeLa cell extracts. Complexes formed by Aha1 with Hsp90 in RRL were stabilized by molybdate and contained the co-chaperones FKBP52 and p23/Sba1, but lacked HOP/Sti1 and Cdc37. Aha1 complexes isolated from HeLa cell extracts also contained Hsp70 and DNAJA1. Over-expression of Aha1 has been reported to stimulate the activity of v-Src and steroid hormone receptors ectopically expressed in yeast, however, no interaction between Aha1 and nascent v-Src or the progesterone receptor could be detected in RRL. Contrary to expectations, over-expression of Aha1 also inhibited the rate of Hsp90-dependent refolding of denatured luciferase. A number of potential client proteins that specifically associated with Aha1 were identified by liquid chromatography/ tandem mass spectrometry (LC-MS/MS) and verified by Western blotting. The proteins identified suggest that Aha1 may play roles in modulating RNA splicing and DNA repair, in addition to other cellular processes.  相似文献   

15.
16.
17.
Steroid receptor complexes are assembled through an ordered, multistep pathway involving multiple components of the cytoplasmic chaperone machinery. Two of these components are Hsp70-binding proteins, Hip and Hop, that have some limited homology in their C-terminal regions, outside the sequences mapped for Hsp70 binding. Within this region of Hip is a DPEV sequence that occurs twice; in Hop, one DPEV sequence plus a partial second sequence occurs. In an effort to better understand Hip function as it relates to assembly of progesterone receptor complexes, the DPEV region of Hip was targeted for mutations. Each DPEV sequence was mutated to an APAV sequence, singly or in combination. The combined mutation, APAV2, was further combined with a deletion of Hip’s tetratricopeptide repeat region that is required for Hsp70 binding or with a deletion of Hip’s GGMP repeat. An additional mutant was prepared by truncation of Hip’s DPEV-containing C terminus. By comparing interactions of various Hip forms with Hsp70, it was determined that mutation of the DPEV sequences created a dominant inhibitory form of Hip. The mutant Hip-Hsp70 complex was not prevented from interacting with progesterone receptor, but the mutant caused a dose-dependent inhibition of receptor assembly with Hsp90. The behavior of the Hip mutant is consistent with a model in which Hip and Hop are required to facilitate the transition from an early receptor complex with Hsp70 into later complexes containing Hsp90.  相似文献   

18.
The glucocorticoid receptor is present in the cytosol of cell extracts as a large nonactivated (i.e. non-DNA-binding) approximately 9 S (Mr 300,000) complex. Experimental evidence indicates that the purified nonactivated glucocorticoid receptor contains a single steroid-binding protein and two approximately 90-kDa nonsteroid-binding subunits identified as heat shock protein (hsp) 90. Translation of the glucocorticoid receptor mRNA in vitro in reticulocyte lysates produces a large nonactivated glucocorticoid receptor complex similar to that found in cytosols. The cell-free synthesized glucocorticoid receptor is able to bind steroid and can be activated further to the DNA-binding form. To test the hypothesis of an active role played by hsp90 in the stabilization of a competent steroid-binding conformation of the glucocorticoid receptor, we have synthesized the receptor in a reticulocyte lysate that has been depleted of hsp90 by immunoadsorption with AC88 anti-hsp90. Although the translation capacity of the reticulocyte system was reduced considerably upon hsp90 removal, the glucocorticoid receptor was synthesized, and a significant number of molecules were found to bind [3H]triamcinolone acetonide. Chromatography on DEAE-cellulose showed that most of the receptor molecules synthesized in hsp90-depleted lysate had lost the capacity to form an oligomeric receptor complex. Addition of purified rat liver hsp90 to the hsp90-depleted lysate before translation did not increase steroid binding nor did it restore formation of the heteromeric receptor complex. Analysis of [35S] methionine-labeled glucocorticoid receptor molecules synthesized in the hsp90-depleted lysate showed the production of polypeptides differing from the expected chromatographic pattern on DEAE-cellulose. Upon addition of purified hsp90 to the hsp90-depleted lysate, before translation, the 35S-labeled synthesized receptor fractionated on DEAE-cellulose as an intermediate peak between activated and nonactivated receptor forms. The data suggest that hsp90 alone may not be sufficient for the formation of the nonactivated steroid receptor complex.  相似文献   

19.
20.
During stress, the mammalian small heat shock protein Hsp27 enters cell nuclei. The present study examines the requirements for entry of Hsp27 into nuclei of normal rat kidney (NRK) renal epithelial cells, and for its interactions with specific nuclear structures. We find that phosphorylation of Hsp27 is necessary for the efficient entry into nuclei during heat shock but not sufficient for efficient nuclear entry under control conditions. We further report that Hsp27 is recruited to an RNAse sensitive fraction of SC35 positive nuclear speckles, but not other intranuclear structures, in response to heat shock. Intriguingly, Hsp27 phosphorylation, in the absence of stress, is sufficient for recruitment to speckles found in post-anaphase stage mitotic cells. Additionally, pseudophosphorylated Hsp27 fused to a nuclear localization peptide (NLS) is recruited to nuclear speckles in unstressed interphase cells, but wildtype and nonphosphorylatable Hsp27 NLS fusion proteins are not. The expression of NLS-Hsp27 mutants does not enhance colony forming abilities of cells subjected to severe heat shock, but does regulate nuclear speckle morphology. These data demonstrate that phosphorylation, but not stress, mediates Hsp27 recruitment to an RNAse soluble fraction of nuclear speckles and support a site-specific role for Hsp27 within the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号