首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly conserved domain of TFIID displays species specificity in vivo   总被引:22,自引:0,他引:22  
G Gill  R Tjian 《Cell》1991,65(2):333-340
  相似文献   

2.
3.
4.
P Reddy  S Hahn 《Cell》1991,65(2):349-357
  相似文献   

5.
《Gene》1996,169(2):263-267
Using the yeast two-hybrid system, we isolated a human cDNA that encodes a protein (hp22) interacting with TATA box-binding factor TFIID subunit p80 containing similarity with histone H4. Sequence analysis showed that the open reading frame (ORF) specifies a 161-amino-acid (aa) polypeptide homologous to Drosophila melanogaster TFIID subunit p22 (dp22). Comparison of the aa sequence of human TFIID subunit p22 (hp22) with that of dp22 revealed that p22 is composed of two distinct regions; the less conserved N-terminal (20% identity) and the highly conserved C-terminal (65% identity) regions. Additionally, the C-terminal region was found to contain similarities with histones H2B and H3. Northern blot analysis showed mRNA corresponding to hp22 to be expressed in all tissues examined  相似文献   

6.
7.
8.
9.
Aurora-A is a centrosome-localized serine/threonine kinase that is overexpressed in multiple human cancers. Here, we report an intramolecular inhibitory regulation in Aurora-A between its N-terminal regulatory domain (aa 1-128, Nt) and the C-terminal catalytic domain (aa 129-403, Cd). Removal of Nt results in a significant increase in kinase activity. Nt inhibited the activity of the single C-terminal kinase domain, but had little effect on the activity of the full-length of Aurora-A. PP1 is not involved in this regulation, instead, Nt interacts Cd directly in vitro and in vivo. The non-Aurora box (aa 64-128) in the N-terminal negatively regulated the kinase activity of the C-terminal kinase domain by intramolecular interaction with aa 240-300 within the C-terminal.  相似文献   

10.
Aurora-A is a centrosome-localized serine/threonine kinase, which plays a critical role in mitotic and meiotic cell division processes. However, the regulation of Aurora-A is still not fully understood. Previously, we have found an intramolecular inhibitory regulation mechanism of Aurora-A: the N-terminal regulatory domain (aa 1–128, Nt) can interact with the C-terminal catalytic domain (aa 129–403, Cd) and inhibit the kinase activity of Aurora-A. In this study, we found that the PreLIM domain of Ajuba, another important activator of Aurora-A, induces the autophosphorylation of the C-terminal kinase domain of Aurora-A, and is phosphorylated by the C-terminal. Moreover, the LIM domain of Ajuba can competitively bind to the N-terminal of Aurora-A, and inhibited the interaction between N-terminal and C-terminal of Aurora A. Taken together, these results suggest a novel mechanism for regulation of Aurora-A by Ajuba.  相似文献   

11.
12.
13.
14.
15.
16.
Transferrin-binding protein B (TbpB) from Neisseria meningitidis binds human transferrin (hTf) at the surface of the bacterial cell as part of the iron uptake process. To identify hTf binding sites within the meningococcal TbpB, defined regions of the molecule were produced in Escherichia coli by a translational fusion expression system and the ability of the recombinant proteins (rTbpB) to bind peroxidase-conjugated hTf was characterized by Western blot and dot blot assays. Both the N-terminal domain (amino acids [aa] 2 to 351) and the C-terminal domain (aa 352 to 691) were able to bind hTf, and by a peptide spot synthesis approach, two and five hTf binding sites were identified in the N- and C-terminal domains, respectively. The hTf binding activity of three rTbpB deletion variants constructed within the central region (aa 346 to 543) highlighted the importance of a specific peptide (aa 377 to 394) in the ligand interaction. Taken together, the results indicated that the N- and C-terminal domains bound hTf approximately 10 and 1000 times less, respectively, than the full-length rTbpB (aa 2 to 691), while the central region (aa 346 to 543) had a binding avidity in the same order of magnitude as the C-terminal domain. In contrast with the hTf binding in the N-terminal domain, which was mediated by conformational epitopes, linear determinants seemed to be involved in the hTf binding in the C-terminal domain. The host specificity for transferrin appeared to be mediated by the N-terminal domain of the meningococcal rTbpB rather than the C-terminal domain, since we report that murine Tf binds to the C-terminal domain. Antisera raised to both N- and C-terminal domains were bactericidal for the parent strain, indicating that both domains are accessible at the bacterial surface. We have thus identified hTf binding sites within each domain of the TbpB from N. meningitidis and propose that the N- and C-terminal domains together contribute to the efficient binding of TbpB to hTf with their respective affinities and specificities for determinants of their ligand.  相似文献   

17.
18.
1-Stearoyl-2-docosahexaenoyl (18:0/22:6)-phosphatidic acid (PA) interacts with and activates Praja-1 E3 ubiquitin-protein ligase (full length: 615 aa) to ubiquitinate and degrade the serotonin transporter (SERT). SERT modulates serotonergic system activity and is a therapeutic target for depression, autism, obsessive-compulsive disorder, schizophrenia and Alzheimer's disease. Moreover, diacylglycerol kinase (DGK) δ2 (full length: 1214 aa) interacts with Praja-1 in addition to SERT and generates 18:0/22:6-PA, which binds and activates Praja-1. In the present study, we investigated the interaction of Praja-1 with 18:0/22:6-PA and DGKδ2 in more detail. We first found that the N-terminal one-third region (aa 1–224) of Praja-1 bound to 18:0/22:6-PA and that Lys141 in the region was critical for binding to 18:0/22:6-PA. In contrast, the C-terminal catalytic domain of Praja-1 (aa 446–615) interacted with DGKδ2. Additionally, the N-terminal half of the catalytic domain (aa 309–466) of DGKδ2 intensely bound to Praja-1. Moreover, the N-terminal region containing the pleckstrin homology and C1 domains (aa 1–308) and the C-terminal half of the catalytic domain (aa 762–939) of DGKδ2 weakly associated with Praja-1. Taken together, these results reveal new functions of the N-terminal (aa 1–224) and C-terminal (aa 446–615) regions of Praja-1 and the N-terminal half of the catalytic region (aa 309–466) of DGKδ2 as regulatory domains. Moreover, it is likely that the DGKδ2–Praja-1–SERT heterotrimer proximally arranges the 18:0/22:6-PA-producing catalytic domain of DGKδ2, the 18:0/22:6-PA-binding regulatory domain of Praja-1, the ubiquitin-protein ligase catalytic domain of Praja-1 and the ubiquitination acceptor site-containing SERT C-terminal region.  相似文献   

19.
Akerström S  Tan YJ  Mirazimi A 《FEBS letters》2006,580(16):3799-3803
A synthetic peptide corresponding to amino acids (aa) 15-28 of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3a protein was used to raise polyclonal antibodies in rabbits. This anti-3a N-terminal antibody could detect 3a protein in infected cells, as did an anti-3a C-terminal antibody previously described. The latter targeted the C-terminal cytoplasmic domain of 3a (aa 134-274). The anti-3a N-terminal antibody could detect intracellular 3a as well as 3a expressed on the cell surface. Interestingly, only the anti-3a N-terminal antibody can inhibit SARS-CoV propagation in Vero E6 culture although the binding affinity of the anti-3a N-terminal antibody was lower than the anti-3a C-terminal antibody.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号