首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers a model developed to study the cardiovascular control system response to orthostatic stress as induced by two variations of lower body negative pressure (LBNP) experiments. This modeling approach has been previously applied to study control responses to transition from rest to aerobic exercise, to transition to non-REM sleep and to orthostatic stress as produced by the head up tilt (HUT) experiment. LBNP induces a blood volume shift because negative pressure changes the volume loading characteristics of the compartment which is subject to the negative pressure. This volume shift induces a fall in blood pressure which must be counteracted by a complicated control response involving a variety of mechanisms of the cardiovascular control system. There are a number of medical issues connected to these questions such as orthostatic intolerance in the elderly resulting in dizziness or fainting during the transition from sitting to standing. The model presented here is used to study the interaction of changes in systemic resistance, unstressed venous volume, venous compliance, heart rate, and contractility in the control of orthostatic stress. The overall short term response depends on a combination of these physiological reactions which may vary from individual to individual. There remain open questions about which factors have greater importance. The model simulations are compared to experimental data collected for LBNP exerted from the hips to feet and from ribs to feet.  相似文献   

2.
Early analysis into the role of genetics on cardiovascular regulation has been accomplished by comparing blood pressure and heart rate in homozygous twins during unstressed, resting physiological conditions. However, many variables, including cognitive and environmental factors, contribute to the regulation of cardiovascular hemodynamics. Therefore, the purpose of this study was to determine the hemodynamic response of identical twins to an orthostatic stress, ranging from supine rest to presyncope. Heart rate, arterial blood pressure, middle cerebral artery blood velocity, an index of cerebrovascular resistance, cardiac output, total peripheral resistance, and end-tidal carbon dioxide were measured in 16 healthy monozygotic twin pairs. Five minutes of supine resting baseline data were collected, followed by 5 min of 60 degrees head-up tilt. After 5 min of head-up tilt, lower body negative pressure was applied in increments of 10 mmHg every 3 min until the onset of presyncope, at which time the subject was returned to the supine position for a 5-min recovery period. The data indicate that cardiovascular regulation under orthostatic stress demonstrates a significant degree of variance between identical twins, despite similar orthostatic tolerance. As the level of stress increases, so does the difference in the cardiovascular response within a twin pair. The elevated variance with increasing stress may be due to an increase in the role of environmental factors, as the influential role of genetics nears a functional limit. Therefore, although orthostatic tolerance times were very similar between identical twins, the mechanism involved in sustaining cardiovascular function during increasing stress was different.  相似文献   

3.
Women have decreased orthostatic tolerance compared with men, and anecdotal evidence suggests women are more susceptible to orthostatic intolerance in warm environments. Because estrogen and progesterone affect numerous physiological variables that may alter orthostatic tolerance, the purpose of our study was to compare orthostatic tolerance across the menstrual cycle phases in women during combined orthostatic and heat stress and to compare these data with those of men. Eight normally menstruating women and eight males (22 +/- 4.0 and 23 +/- 3.5 yr, respectively) completed the protocol. Women were studied during their early follicular (EF), ovulatory (OV), and midluteal (ML) phases. Men were studied twice within 2-4 wk. Heart rate, cardiac output, blood pressure, core temperature (T(c)), and cutaneous vascular conductance (CVC) were measured during three head-up tilt tests, consisting of two tilts in the thermoneutral condition and one tilt after a 0.5 degrees C rise in T(c). There was no difference in orthostatic tolerance across the menstrual cycle phases, despite higher CVC in the ML phase after heating (EF, 42.3 +/- 4.8; OV, 40.1 +/- 3.7; ML, 57.5 +/- 4.5; P < 0.05). Orthostatic tolerance in the heat was greater in men than women (P < 0.05). These data suggest that although many physiological variables associated with blood pressure regulation fluctuate during the menstrual cycle, orthostatic tolerance in the heat remains unchanged. Additionally, our data support a clear sex difference in orthostatic tolerance and extend upon previous data to show that the sex difference in the heat is not attributable to fluctuating hormone profiles during the menstrual cycle.  相似文献   

4.
Orthostatic intolerance is the most serious symptom of cardiovascular deconditioning induced by microgravity exposure. In fact the neural control mechanisms of the cardiovascular system are significantly affected by this condition. Non-invasive measurement of Heart Rate Variability (HRV) have been used as a valuable tool to characterize the ability of neuroendocrine regulatory systems to modulate the cardiovascular function by analyzing the spontaneous fluctuations of arterial pressure and heart period on a beat-to-beat basis. Concerning this, conflicting results have been reported on the heart rate and blood pressure variability responses during exposure to microgravity. These differences seem to be due to different experimental designs used. Moreover, the different behavior of normal subjects in response to orthostatic stress after HD, i.e. Symptomatic (S) or Non Symptomatic (NS), could play some roles in producing these discrepancies. Therefore the aim of the present study was to examine BP and HR variability before and after 4 hours of HD in two groups of normal subjects with and without symptoms of orthostatic intolerance to orthostatic stress.  相似文献   

5.
The accumulation of low-density lipoprotein (LDL) is recognized as one of the main contributors in atherogenesis. Mathematical models have been constructed to simulate mass transport in large arteries and the consequent lipid accumulation in the arterial wall. The objective of this study was to investigate the influences of wall shear stress and transmural pressure on LDL accumulation in the arterial wall by a multilayered, coupled lumen-wall model. The model employs the Navier-Stokes equations and Darcy's Law for fluid dynamics, convection-diffusion-reaction equations for mass balance, and Kedem-Katchalsky equations for interfacial coupling. To determine physiologically realistic model parameters, an optimization approach that searches optimal parameters based on experimental data was developed. Two sets of model parameters corresponding to different transmural pressures were found by the optimization approach using experimental data in the literature. Furthermore, a shear-dependent hydraulic conductivity relation reported previously was adopted. The integrated multilayered model was applied to an axisymmetric stenosis simulating an idealized, mildly stenosed coronary artery. The results show that low wall shear stress leads to focal LDL accumulation by weakening the convective clearance effect of transmural flow, whereas high transmural pressure, associated with hypertension, leads to global elevation of LDL concentration in the arterial wall by facilitating the passage of LDL through wall layers.  相似文献   

6.
Noninvasive skin microcirculation measurements based on a new Near Infrared sensor technique (NIR/Fa. Silicon Sensor GmbH; Berlin) were embeded in a tilt table experiment for simulation of acute effects of weightlessness (HDT -6 degrees) and active standing with the Russian Tschibis-LBNP device. The phenomenon of orthostatic intolerance depends on complex interactions among functional characteristics of central and peripheral cardiovascular control. The purpose of this study was to assess the blood volume and flow motion changes as well as pulsatile spectral pattern during orthostatic and antiorthostatic stress.  相似文献   

7.
The cardiovascular function in space seems to be normal. However, abnormalities of cardiovascular responses have been found during lower body negative pressure suction in space. The etiology of the cardiovascular deconditioning in space is still unknown. A previous study showed, that short periods of head down tilt (HDT-6 degrees) induce changes in the spectral pattern of heart rate variabilty (HRV) and an increase in the sympathethic activation caused by orthostatic stress. The aim of this study was to test following hypotheses: 1. The dynamic of heart rate variability is different in the head down tilt and supine positions. 2. The application of lower body negative pressure (LBNP) during head down tilt induces similar heart rate variability patterns like the standing position. 3. After short term head down tilt the cardiovascular response to lower body negative pressure stressor is altered.  相似文献   

8.
目的:观察中期(4周)尾部悬吊大鼠在立位应激下的心血管反应。方法:采用本实验室改进的尾部悬吊方法,利用头高位倾斜和下体负压模拟立位应激,通过股动脉插管和心电图记录检测大鼠血压和心率改变。结果:与对照组相比,4周尾部悬吊(SUS)大鼠体重下降及后肢承重骨骼肌萎缩;其静息血压和心率与对照组(CON)相比无明显差别(P0.05);在两组大鼠中,头高位倾斜和下体负压均可导致血压降低和心率加快,但SUS大鼠平均动脉压下降幅度与CON大鼠相比显著增大(P0.05),而两组的心率增快幅度并无明显差别(P0.05)。结论:4周尾部悬吊大鼠在立位应激下维持血压稳定的能力减弱,可用于中期失重/模拟失重后立位耐力不良机理的研究。  相似文献   

9.
卧床前后压力感受性反射机能变化的研究   总被引:2,自引:0,他引:2  
许多数据表明长期失重以后立位耐力降低可能与压力感受性反射功能的改变有关。本文比较了两组被试者15天低动力卧床前后的立位耐力。以血压调节模型为基础分析了两种不同方式卧床前后单纯立位和下身负压加立位时压力感受性反射功能的改变,并用颈部加压及下身负压对中枢调节功能改变进行了观察。结果表明严格的头低位卧床后,立位耐力下降及压力感受性反射功能改变明显大于半日平卧半日倚坐者。而压力感受性反射功能的改变,特别是中枢神经系统调节功能的紊乱,是卧床后立位耐力降低的主要原因。从这种考虑为基础,作者提出了改变失重或模拟失重状态下的血液分布,调整对压力感受器的刺激,可能是预防心血管失调的有效方法。  相似文献   

10.
Trauma during pregnancy especially occurring during car crashes leads to many foetal losses. Numerical modelling is widely used in car occupant safety issue and injury mechanisms analysis and is particularly adapted to the pregnant woman. Material modelling of the gravid uterus tissues is crucial for injury risk evaluation especially for the abruption placentae which is widely assumed as the leading cause of foetal loss. Experimental studies on placenta behaviour in tension are reported in the literature, but none in compression to the authors' knowledge. This lack of data is addressed in this study. To complement the already available experimental literature data on the placenta mechanical behaviour and characterise it in a compression loading condition, 80 indentation tests on fresh placentae are presented. Hyperelastic like mean experimental stress versus strain and corridors are exposed. The results of the experimental placenta indentations compared with the tensile literature results tend to show a quasi-symmetrical behaviour of the tissue. An inverse analysis using simple finite element models has permitted to propose parameters for an Ogden material model for the placenta which exhibits a realistic behaviour in both tension and compression.  相似文献   

11.
A comprehensive mathematical model, describing the respiration, circulation, oxygen metabolism, and ventilatory control, is assembled for the purpose of predicting acute ventilation changes from exposure to carbon monoxide in both humans and animals. This Dynamic Physiological Model is based on previously published work, reformulated, extended, and combined into a single model. Model parameters are determined from literature values, fitted to experimental data, or allometrically scaled between species. The model predictions are compared with ventilation-time history data collected in goats exposed to carbon monoxide, with quantitatively good agreement. The model reaffirms the role of brain hypoxia on hyperventilation during carbon monoxide exposures. Improvement in the estimation of total ventilation, through a more complete knowledge of ventilation control mechanisms and validated by animal data, will increase the accuracy of inhalation toxicology estimates.  相似文献   

12.
Human off-vertical axis rotation (OVAR) in the dark typically produces perceived motion about a cone, the amplitude of which changes as a function of frequency. This perception is commonly attributed to the fact that both the OVAR and the conical motion have a gravity vector that rotates about the subject. Little-known, however, is that this rotating-gravity explanation for perceived conical motion is inconsistent with basic observations about self-motion perception: (a) that the perceived vertical moves toward alignment with the gravito-inertial acceleration (GIA) and (b) that perceived translation arises from perceived linear acceleration, as derived from the portion of the GIA not associated with gravity. Mathematically proved in this article is the fact that during OVAR these properties imply mismatched phase of perceived tilt and translation, in contrast to the common perception of matched phases which correspond to conical motion with pivot at the bottom. This result demonstrates that an additional perceptual rule is required to explain perception in OVAR. This study investigates, both analytically and computationally, the phase relationship between tilt and translation at different stimulus rates—slow (45°/s) and fast (180°/s), and the three-dimensional shape of predicted perceived motion, under different sets of hypotheses about self-motion perception. We propose that for human motion perception, there is a phase-linking of tilt and translation movements to construct a perception of one’s overall motion path. Alternative hypotheses to achieve the phase match were tested with three-dimensional computational models, comparing the output with published experimental reports. The best fit with experimental data was the hypothesis that the phase of perceived translation was linked to perceived tilt, while the perceived tilt was determined by the GIA. This hypothesis successfully predicted the bottom-pivot cone commonly reported and a reduced sense of tilt during fast OVAR. Similar considerations apply to the hilltop illusion often reported during horizontal linear oscillation. Known response properties of central neurons are consistent with this ability to phase-link translation with tilt. In addition, the competing “standard” model was mathematically proved to be unable to predict the bottom-pivot cone regardless of the values used for parameters in the model.  相似文献   

13.
The redistribution of a certain thoracic blood volume to the lower parts of the body and decrease of the venous return of blood to the heart during lower body negative pressure leads to the central hypovolemia and the deactivation of cardiopulmonary and arterial baroreceptors. Many compensatory mechanisms are involved during central hypovolemia, which is also reflected by the changes in the secretion of different vasoactive hormones. Due to this fact the LBNP stimulus is widely used for the investigation of regulatory (compensatory) mechanisms in cardiovascular system providing deeper understanding of orthostatic reaction. Recently several papers were published on application of this experimental model for +Gz acceleration tolerance assessment. The purpose of this study was evaluate the possible dependence between the changes of ANP secretion, renin-angiotensin-aldosterone system activity, the changes of some hemodynamic parameters during the model of gravitational stress i.e. LBNP exposure and +Gz acceleration tolerance.  相似文献   

14.
Although all astronauts experience symptoms of orthostatic intolerance after short-duration spaceflight, only approximately 20% actually experience presyncope during upright posture on landing day. The presyncopal group is characterized by low vascular resistance before and after flight and low norepinephrine release during orthostatic stress on landing day. Our purpose was to determine the mechanisms of the differences between presyncopal and nonpresyncopal groups. We studied 23 astronauts 10 days before launch, on landing day, and 3 days after landing. We measured pressor responses to phenylephrine injections; norepinephrine release with tyramine injections; plasma volumes; resting plasma levels of chromogranin A (a marker of sympathetic nerve terminal release), endothelin, dihydroxyphenylglycol (DHPG, an intracellular metabolite of norepinephrine); and lymphocyte beta(2)-adrenergic receptors. We then measured hemodynamic and neurohumoral responses to upright tilt. Astronauts were separated into two groups according to their ability to complete 10 min of upright tilt on landing day. Compared with astronauts who were not presyncopal on landing day, presyncopal astronauts had 1). significantly smaller pressor responses to phenylephrine both before and after flight; 2). significantly smaller baseline norepinephrine, but significantly greater DHPG levels, on landing day; 3). significantly greater norepinephrine release with tyramine on landing day; and 4). significantly smaller norepinephrine release, but significantly greater epinephrine and arginine vasopressin release, with upright tilt on landing day. These data suggest that the etiology of orthostatic hypotension and presyncope after spaceflight includes low alpha(1)-adrenergic receptor responsiveness before flight and a remodeling of the central nervous system during spaceflight such that sympathetic responses to baroreceptor input become impaired.  相似文献   

15.
Sympathetic outflow increases during head-up tilt (HUT) to stabilize blood pressure in the presence of decreases in venous return and stroke volume (SV). Otherwise, orthostatic hypotension would develop. Gender differences in orthostatic tolerance have been noted but the mechanisms are still uncertain. More recently, Waters et al. reported in a limited sample, greater susceptibility of women to demonstrate orthostatic intolerance following space flight. Therefore, it is important to understand gender differences in reflex blood pressure regulation. Recently, we reported smaller increments in muscle sympathetic nerve activity (MSNA) in healthy women during graded HUT and a non-baroreflex cold pressor test. The purpose of this report is to examine the hypothesis that gender differences in blood pressure control during HUT are related to important variations in MSNA discharge patterns.  相似文献   

16.
A new application of 1D models of the human arterial network is proposed. We take advantage of the sensitivity of the models predictions for the pressure profiles within the main aorta to key model parameter values. We propose to use the patterns in the predicted differences from a base case as a way to infer to the most probable changes in the parameter values. We demonstrate this application using an impedance model that we have recently developed (Johnson, 2010). The input model parameters are all physiologically related, such as the geometric dimensions of large arteries, various blood properties, vessel elasticity, etc. and can therefore be patient specific. As a base case, nominal values from the literature are used. The necessary information to characterize the smaller arteries, arterioles, and capillaries is taken from a physical scaling model (West, 1999). Model predictions for the effective impedance of the human arterial system closely agree with experimental data available in the literature. The predictions for the pressure wave development along the main arteries are also found in qualitative agreement with previous published results. The model has been further validated against our own measured pressure data in the carotid and radial arteries, obtained from healthy individuals. Upon changes in the value of key model parameters, we show that the differences seen in the pressure profiles correspond to qualitatively different patterns for different parameters. This suggests the possibility of using the model in interpreting multiple pressure data of healthy/diseased individuals.  相似文献   

17.
The purpose of this investigation was to determine mean arterial pressure (MAP) and regional vascular conductance responses in young and aged Fisher-344 rats during orthostatic stress, i.e., 70 degrees head-up tilt (HUT). Both groups demonstrated directionally different changes in MAP during HUT (young, 7% increase; aged, 7% decrease). Vascular conductance during HUT in young rats decreased in most tissues but largely remained unchanged in the aged animals. Based on the higher vascular conductance of white adipose tissue from aged rats during HUT, resistance arteries from white visceral fat were isolated and studied in vitro. There was diminished maximal vasoconstriction to phenylephrine and norepinephrine (NE: young, 42 +/- 5%; old, 18 +/- 6%) in adipose resistance arteries from aged rats. These results demonstrate that aging reduces the ability to maintain MAP during orthostatic stress, and this is associated with a diminished vasoconstriction of adipose resistance arteries.  相似文献   

18.
Fluid loading (FL) before Shuttle reentry is a countermeasure currently in use by NASA to improve the orthostatic tolerance of astronauts during reentry and postflight. The fluid load consists of water and salt tablets equivalent to 32 oz (946 ml) of isotonic saline. However, the effectiveness of this countermeasure has been observed to decrease with the duration of spaceflight. The countermeasure's effectiveness may be improved by enhancing fluid retention using analogs of vasopressin such as lypressin (LVP) and desmopressin (dDAVP). In a computer simulation study reported previously, we attempted to assess the improvement in fluid retention obtained by the use of LVP administered before FL. The present study is concerned with the use of dDAVP. In a recent 24-hour, 6 degree head-down tilt (HDT) study involving seven men, dDAVP was found to improve orthostatic tolerance as assessed by both lower body negative pressure (LBNP) and stand tests. The treatment restored Luft's cumulative stress index (cumulative product of magnitude and duration of LBNP) to nearly pre-bedrest level. The heart rate was lower and stroke volume was marginally higher at the same LBNP levels with administration of dDAVP compared to placebo. Lower heart rates were also observed with dDAVP during stand test, despite the lower level of cardiovascular stress. These improvements were seen with only a small but significant increase in plasma volume of approximately 3 percent. This paper presents a computer simulation analysis of some of the results of this HDT study.  相似文献   

19.
The rate of the maturation process of avian myeloblastosis virus experimentally estimated on the basis of genomic viral RNA conversion and morphological transition of virions was mathematically analysed. Three mathematical models were suggested and fitted to experimental data. It was found that: (a) model of simple kinetics (Model 1) does not agree with experimental data. Therefore, two hypotheses were considered in further mathematical modelling: (b) virions are identical in time of budding: maturation is dependent on the presence of a virion component which is degraded with time (Model 2). This model agrees with experimental data in all stages of the maturation process. (c) Virions are released from cells at different stages of assembly (Model 3). This model differs from experimental data especially in early stages of maturation. The hypothesis used for the construction of Model 2 seems to be the most plausible to explain the maturation process and is in agreement with data of murine leukemia virus maturation which was found to be accomplished by cleavage of p70 precursor protein.  相似文献   

20.
A mathematical model that represents the dynamics of intracellular insulin granules in beta-cells is proposed. Granule translocation and exocytosis are controlled by signals assumed to be essentially related to ATP-to-ADP ratio and cytosolic Ca(2+) concentration. The model provides an interpretation of the roles of the triggering and amplifying pathways of glucose-stimulated insulin secretion. Values of most of the model parameters were inferred from available experimental data. The numerical simulations represent a variety of experimental conditions, such as the stimulation by high K(+) and by different time courses of extracellular glucose, and the predicted responses agree with published experimental data. Model capacity to represent data measured in a hyperglycemic clamp was also tested. Model parameter changes that may reflect alterations of beta-cell function present in type 2 diabetes are investigated, and the action of pharmacological agents that bind to sulfonylurea receptors is simulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号