首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bilirubin glucuronoside glucuronosyltransferase (EC 2.4.1.95) converts bilirubin monoglucuronide to bilirubin diglucuronide and is concentrated in plasma membrane-enriched fractions of rat liver homogenates. The enzyme was purified 2,000-fold to homogeneity from rat liver. The pI of the enzyme is 7.9 +/- 0.2. The enzyme has a molecular weight of 160,000 and is an oligomer of 28,000 dalton subunits. Km for purified enzyme was 35 microM and Vmax was 2.2 mumol of bilirubin diglucuronide formed/min/mg of protein. Freshly biosynthesized bilirubin monoglucuronide was injected intravenously into homozygous Gunn rats which had bile duct cannulation. Gunn rats lack UDP-glucuronate glucuronyltransferase activity (EC 2.4.1.17), have normal bilirubin glucuronoside glucuronosyltransferase activity, cannot form bilirubin monoglucuronide in vitro or in vivo, and do not excrete bilirubin glucuronides after intravenous injection of unconjugated bilirubin. Within 1 h, approximately 75% of the injected conjugated bilirubin was recovered in bile, of which 20% consisted of bilirubin diglucuronide. These results indicate that bilirubin glucuronide glucuronosyltransferase catalyzes conversion of bilirubin monoglucuronide to diglucuronide in vivo.  相似文献   

2.
1. A novel method for determination of the relative amounts of unconjugated bilirubin and sugar mono- and di-conjugates of bilirubin in biological samples, including serum, is described and illustrated by its application to the analysis of bilinoids in rat bile. 2. The method is based on specific conversion of the carbohydrate conjugates of bilirubin into the corresponding mono- or di-methyl esters by base-catalysed transesterification in methanol. Under the selected reaction conditions, unconjugated biliru-in remains intact and no dipyrrole exchange in the bilinoids is detectable; transesterification of bilirubin mono- or di-glucuronide is virtually complete (approx. 99%), and sponification is negligible (less than 1%); recovery of the pigments is approx. 95%. 3. The reaction products bilirubin and its methyl esters are separated by t.l.c. and determined spectrophotometrically; the two isomeric bilirubin-IX alpha monomethyl esters are separated and therefore can be determined individually. 4. Reference bilirubin mono- and di-methyl esters have been synthesized and characterized, and the two isomers of bilirubin-IX alpha monomethyl ester and bilirubin dimethyl ester were obtained individually, in crystalline form. 5. With this new method, virtually all bilinoids (over 99%) in normal rat bile have been found to be conjugated, with diconjugates (71%) predominating. A significantly increased proportion of monoconjugates is present in bile collected from heterozygous Gunn rats or from normal rats that were refused with large amounts of bilirubin.  相似文献   

3.
The conjugates formed in vitro by bilirubin UDP-glucuronyl transferase were studied by examining reaction products as intact tetrapyrroles, rather than as dipyrrolic azoderivatives. Bile pigments were extracted from conventional microsomal enzyme reaction mixtures by affinity chromatography over albumin-agarose, eluted with 50% ethanol, and separated by a silica gel thin layer chromatographic system. In the presence of UDPGA, native and activated microsomal preparations all formed both bilirubin mono- and diglucuronides from unconjugated bilirubin, and bilirubin diglucuronide from bilirubin monoglucuronide. No significant non-enzymatic conversion of mono- to diglucuronide occurred without UDPGA, or in the presence of denatured enzyme. Hence, bilirubin diglucuronide is a major product of bilirubin-UDP-glucuronyl transferase.  相似文献   

4.
Formation of bilirubin monoglucuronide from unconjugated bilirubin requires a microsomal enzyme, UDP-glucuronate glucuronyltransferase (EC 2.4.1.17). Conversion of bilirubin monoglucuronide to bilirubin diglucuronide, the major bilirubin conjugate in bile, was studied in subcellular fractions of rat liver. The highest specific activity for bilirubin diglucuronide formation occurred in a fraction highly enriched in plasma membranes. Studies of reaction stoichiometry and utilization of UDP-D-[14C]glucuronic acid revealed that conversion of bilirubin monoglucuronide to bilirubin diglucuronide is not catalyzed by UDP-glucuronyltransferase, and results from transglucuronidation of bilirubin monoglucuronide, with formation of bilirubin diglucuronide and unconjugated bilirubin. When unconjugated bilirubin was infused intravenously into rats at rates exceeding the maximal hepatic excretory capacity, bilirubin monoglucuronide accumulated in serum and bilirubin diglucuronide was found exclusively in bile as the predominant bilirubin metabolite. These results suggest that formation of bilirubin diglucuronide occurs at the surface membrane of the liver cell. Conversion of bilirubin monoglucuronide to bilirubin diglucuronide may play a role in the transport of bilirubin glucuronides from liver to bile.  相似文献   

5.
Summary Bile pigment composition (biliverdin, bilirubin and their conjugates) was analyzed in stored gallbladder bile and newly synthesized hepatic bile from the small skate (Raja erinacea). During a five day period of captivity, gallbladder volume remained relatively constant while bilirubin and biliverdin content increased two to three fold. Biliverdin which accounted for 50% of the pigments did not increase as a percentage of tetrapyrroles during this period. The relative proportion of bilirubin and its conjugates also remained constant, averaging 65% for bilirubin monoglucuronide, 30% for bilirubin diglucuronide and 5% for unconjugated bilirubin as measured by HPLC methods. Intravenous administration of biliverdin resulted in significant increases in the biliary excretion of both biliverdin and all bilirubin tetrapyrroles. Insignificant quantities of3H-biliverdin were detected in hepatic bile following the intravenous administration of3H-bilirubin. These studies indicate that the small skate excreted both biliverdin and bilirubin conjugates in bile and that the biliverdin was not produced by in vitro oxidation of bilirubin or its metabolites.  相似文献   

6.
A fast sensitive method for the isolation and quantitation of biliary bile pigments by reverse-phase high-performance liquid chromatography has been developed. Nine conjugates of bilirubin as well as unconjugated bilirubin and an internal standard, unconjugated mesobilirubin IX alpha, were all separated to baseline by gradient elution. The following sequence of eluted compounds was chemically identified by separating their ethyl anthranilate derivatives by thin-layer chromatography and by their enzymatic formation with UDP-bilirubin transferase and cosubstrate: bilirubin diglucuronide, bilirubin monoglucuronide monoglucoside, bilirubin monoglucuronide monoxyloside, bilirubin monoglucuronide (C-8, C-12), bilirubin diglucoside, bilirubin monoglucoside monoxyloside, bilirubin dixyloside, bilirubin monoglucoside (C-8, C-12), and bilirubin monoxyloside. The use of the commercially available mesobilirubin IX alpha as an internal standard was found to facilitate quantitation of the bilirubin conjugates.  相似文献   

7.
We describe a facile and sensitive reverse-phase h.p.l.c. method for analytical separation of biliary bile pigments and direct quantification of unconjugated bilirubin (UCB) and its monoglucuronide (BMG) and diglucuronide (BDG) conjugates in bile. The method can be 'scaled up' for preparative isolation of pure BDG and BMG from pigment-enriched biles. We employed an Altex ultrasphere ODS column in the preparative steps and a Waters mu-Bondapak C18 column in the separatory and analytical procedures. Bile pigments were eluted with ammonium acetate buffer, pH 4.5, and a 20 min linear gradient of 60-100% (v/v) methanol at a flow rate of 2.0 ml/min for the preparative separations and 1.0 ml/min for the analytical separations. Bile pigments were eluted in order of decreasing polarity (glucuronide greater than glucose greater than xylose conjugates greater than UCB) and were chemically identified by t.l.c. of their respective ethyl anthranilate azo derivatives. Quantification of UCB was carried out by using a standard curve relating a range of h.p.l.c. integrated peak areas to concentrations of pure crystalline UCB. A pure crystalline ethyl anthranilate azo derivative of UCB (AZO . UCB) was employed as a single h.p.l.c. reference standard for quantification of BMG and BDG. We demonstrate that: separation and quantification of biliary bile pigments are rapid (approximately 25 min); bile pigment concentrations ranging from 1-500 microM can be determined 'on line' by using 5 microliters of bile without sample pretreatment; bilirubin conjugates can be obtained preparatively in milligram quantities without degradation or contamination by other components of bile. H.p.l.c. analyses of a series of mammalian biles show that biliary UCB concentrations generally range from 1 to 17 microM. These values are considerably lower than those estimated previously by t.l.c. BMG is the predominant, if not exclusive, bilirubin conjugate in the biles of a number of rodents (guinea pig, hamster, mouse, prairie dog) that are experimental models of both pigment and cholesterol gallstone formation. Conjugated bilirubins in the biles of other animals (human, monkey, pony, cat, rat and dog) are chemically more diverse and include mono-, di- and mixed disconjugates of glucuronic acid, xylose and glucose in proportions that give distinct patterns for each species.  相似文献   

8.
1. Conjugated bile pigments, separated in two fractions by semi-quantitative t.l.c. performed on silicic acid with phenol/water as the developing solvent, were treated with diazotized ethyl anthranilate. Resulting dipyrrylazo derivatives were analysed by quantitative t.l.c. 2. The tentative structure elucidation of tetrapyrrolic bilirubin conjugates and semi-quantitative evaluation of rat bile, post-obstructive human bile and dog bile composition is presented. 3. Homogeneous and mixed hexuronic acid diesters of bilirubin containing glucuronic acid constitute 51% of the total conjugates in normal rat bile, 45% of those in human post-obstructive bile and 38% of those in obstructed rat biles. 4. Monoconjugated bilirubin amounts to 33% of total conjugated bile pigments in normal rat bile, and 17 and 14% in post-obstructive hepatic human bile and gall-bladder bile of dog respectively. After loading with unconjugated bilirubin a greater amount of monoconjugates (56%) occur in the rat bile, whereas bilirubin diglucuronide excretion is decreased (34%). 5. In gall-bladder bile of normal dog, 40% of glucose-containing diconjugates, 32% of homogeneous and/or mixed hexuronic acid (mainly glucuronic acid) diesters of bilirubin and 14% of xylose-containing diconjugates are estimated. 6. Increased amounts of bilirubin conjugates, including some with unidentified uronic acid groups, were observed in cholestatic rat biles and quantities of conjugates with glucuronic acid were decreased.  相似文献   

9.
When bilirubin monoglucoronide is incubated with a preparation from the 105 000 × g-supernatant of deoxycholate-treated cat liver microsomes, bilirubin diglucuronide is formed. This is an UDPglucuronate-dependent reaction whereby bilirubin IXα monoglucuronide is stoichiometrically converted into bilirubin IXα diglucuronide.The pH optimum for the conversion of bilirubin into bilirubin monoglucuronide lies between pH 8.0 and pH 8.8. For the conversion of mono- into diglucuronide two optima were found, one at about pH 6.5 and another at pH 8.1.When incubation was performed at pH 6.5 and the enzyme protein concentration was lowered, bilirubin monoglucuronide started to isomerise. As a result of this isomerisation bilirubin diglucuronide is also formed. Diglucuronide formation according to this mechanism however, can be clearly differentiated from the enzyme-catalyzed diglucuronide formation.By the formation of bilirubin monoglucuronide, one monoglucuronide isomer is preferentially synthesized.The alkaline-labile bilirubin conjugates in the bile of cats and rats have mainly the IXα isomeric structure. This suggests that in these animals bilirubin diglucuronide is formed enzymically as the bilirubin moiety of diglucuronide, formed by means of the isomerisation reaction, has predominantly the XIIα structure.  相似文献   

10.
We have developed an extremely rapid and efficient reverse-phase h.p.l.c. method for the measurement of bilirubin and its conjugates in human bile and in model bile systems. Our method involves the use of a Perkin-Elmer 3 mu C18 column and a methanol/sodium acetate/aq. ammonium acetate buffer system. Three isomers of bilirubin diglucuronide (BDG), two isomers of bilirubin monoglucuronide (BMG), three isomers of unconjugated bilirubin (UCB) and minor conjugates containing glucose and xylose were separated in 12 min. Initial quantification of BDG and BMG was based on the use of the ethyl anthranilate azo derivative of bilirubin (AZO UCB); however, the standard curves for BDG, BMG and UCB were similar enough to permit quantification to be later based on the UCB standard curve only, thereby simplifying the quantification process. Routine direct injection of 6 or 10 microliter of crude undiluted or diluted (1:1) bile sample was sufficient for analysis. The method was helpful in diagnosing biliary-tract obstruction in a newborn and a partial deficiency state of bilirubin conjugation (Crigler-Najjar syndrome) in a 10-year-old male. When the method was applied to biles of patients both with and without gallstones, levels of UCB were less than 2% of total pigment, consistent with previous reports. Because of its speed and efficiency, this method has the potential for a broad range of applications including enzymic, kinetic and bile sample analyses.  相似文献   

11.
Urobilinoids belong to the heterogenous group of degradation products of bilirubin formed in the gastrointestinal tract by intestinal microflora. Among them urobilinogen and stercobilinogen with their respective oxidation products, urobilin and stercobilin, are the most important compounds. The aim of present study was to analyze the products of bacterial reduction of bilirubin in more detail. The strain of Clostridium perfringens isolated from neonatal stools, capable of reducing bilirubin, was used in the study. Bacteria were incubated under anaerobic conditions with various native as well as synthetic bile pigments, including radiolabeled unconjugated bilirubin (UCB). Their reduction products were extracted from media and separated following thin layer chromatography. Pigments isolated were analyzed by spectrophotometry, spectrofluorometry and mass spectrometry. In a special set of experiments, bilirubin diglucuronide was incubated with either bacterial lysate or partially purified bilirubin reductase and beta-glucuronidase to reveal whether bilirubin glucuronides may be directly reduced onto conjugated urobilinoids. A broad substrate activity was detected in the investigated strain of C. perfringens and a series of bilirubin reduction products was identified. These products were separated in the form of their respective chromogens and further oxidized. Based on their physical-chemical properties, as well as mass spectra, end-catabolic bilirubin products were identified to belong to urobilinogen species. The reduction process, catalyzed enzymatically by the studied bacterial strain, does not proceed to stercobilinogen. Bilirubin diglucuronide is not reduced onto urobilinoid conjugates, glucuronide hydrolysis must precede double bond reduction and thus UCB is reduced much faster.  相似文献   

12.
A criticial evaluation was made of the ethyl anthranilate diazo and two solvent-partition methods for the determination of conjugated and unconjugated bilirubin in human and rat bile. The ethyl anthranilate diazo reagent, which reacts only with conjugated bilirubin in serum, also diazotized a variable proportion of unconjugated bilirubin in bile and thus overestimated the concentration of monoconjugates. With the Weber-Schalm and modified Folsch solvent-partition methods applied to human or rat bile, 4--9% of added 14C-labelled unconjugated bilirubin partitioned with the conjugated bilirubin in the upper phase, and 4--9% of added 14C-labelled conjugated bilirubin partitioned into the lower phase. With dog bile, the spill-over of 14C-labelled bilirubin into the lower phase was 9--11%. Analysis of azopigments from the Weber-Schalm partition confirmed that over two-thirds of the bilirubin in the lower phase represents monoconjugates, principally the less-polar monoxylosides and monoglucosides. These solvent-partition methods thus overestimate the concentration of unconjugated bilirubin in bile.  相似文献   

13.
Bile acids in the rat bile were fractionated into unconjugated, glycine- and taurine-conjugated fractions by employing piperidino-hydroxypropyl Sephadex LH-20 ion-exchange chromatography. Subsequently, these fractions were analyzed by gas-liquid chromatography (GLC) and GLC-mass spectrometry using a Silicone AN-600 column. Not only lithocholic acid, deoxycholic acid, chenodeoxycholic acid, hyodeoxycholic acid, ursodeoxycholic acid and cholic acid, but also αand β-muricholic acids were quantitatively and simultaneously detectable in conjugated and unconjugated fractions, respectively. In the unconjugated and conjugated fractions, varying amounts of the unidentified bile acid were detected upon GLC. The electron impact and ammonia chemical ionization mass spectrometric results and catalytic hydrogenation on the compound indicate that this bile acid seems to be a derivative of β-muricholic acid having a double bond in the side chain. The present method is suitable to the simultaneous and quantitative determination of unconjugated and glycine- and taurine-conjugated bile acids in the rat bile.  相似文献   

14.
Azopigments were obtained from the delta fraction of bilirubin (mammalian biliprotein) in cholestatic sera of men, rats and guinea pigs by diazo reaction with diazotized p-iodoaniline and analysed by t.l.c. Delta bilirubin of men and rats generated both unconjugated and glucuronide-conjugated azodipyrroles, whereas that of guinea pigs, in which the predominant form of conjugated bilirubin in serum was bilirubin monoglucuronide, generated only unconjugated azodipyrrole. We further analysed the azopigments by reversed-phase h.p.l.c. to distinguish their endovinyl and exovinyl isomers. The results indicated (a) that covalent binding of bilirubin to protein occurs exclusively on the conjugated dipyrrolic (either endovinyl or exovinyl) half of the parent conjugated bilirubin, (b) that both bilirubin monoglucuronide and bilirubin diglucuronide generate delta bilirubin, the latter yielding a 'conjugated' form of delta bilirubin that preserves the glucuronic acid moiety on the dipyrrolic half not bound covalently to protein, and (c) that therefore at least four forms of delta bilirubin exist in jaundiced sera of men and rats.  相似文献   

15.
Pigment gallstones contain considerable amounts of unconjugated bilirubin (UCB) in the form of calcium bilirubinate and/or bilirubin polymers. Since more than 98% of bile pigments are excreted as conjugates of bilirubin, the source of this UCB needs to be identified. By using a rapid h.p.l.c. method, we compared the non-enzymic hydrolysis of bilirubin monoglucuronide (BMG) and bilirubin diglucuronide (BDG) to UCB in model bile and in native guinea-pig bile. Model biles containing 50 microM solutions of pure BMG and BDG were individually incubated in 25 mM-sodium taurocholate (NaTC) and 0.4 M-imidazole/5 mM-ascorbate buffer (TC-BUF) at 37 degrees C. Over an 8 h period, BMG hydrolysis produced 4-6 times more UCB than BDG hydrolysis. At pH 7.4, 25% of the BMG was converted into UCB, whereas only 4.5% of BDG was converted into UCB. Hydrolysis rates for both BMG and BDG followed the pH order 7.8 greater than 7.6 approximately equal to 7.4 greater than 7.1 Incubation with Ca2+ (6.2 mM) at pH 7.4 in TC-BUF resulted in precipitated bile pigment which, at 100 X magnification, appeared similar to precipitates seen in the bile of patients with pigment gallstones. At pH 7.4, lecithin (crude phosphatidylcholine) (4.2 mM) was a potent inhibitor of hydrolysis of BMG and BDG. The addition of a concentration of cholesterol equimolar with that of lecithin eliminated this inhibitory effect. Guinea-pig gallbladder bile incubated with glucaro-1,4-lactone (an inhibitor of beta-glucuronidase) underwent hydrolysis similar to the model bile systems. The non-enzymic hydrolysis of bile pigments, especially BMG, may be an important mechanism of bile-pigment precipitation and, ultimately, of gallstone formation.  相似文献   

16.
The excretion of ethynyl steroids in milk from a lactating woman taking a daily dose of an oral contraceptive (Conlumin) containing 1 mg of norethindrone and 50 micrograms of mestranol has been studied. Milk was diluted with aq. triethylamine sulphate and steroids were extracted on a Sep-Pak C18 cartridge at 60-64 degrees C. Groups of unconjugated steroids, glucuronides, mono- and disulphates were separated on triethylaminohydroxypropyl Sephadex LH-20. Following hydrolysis and further purification, steroids possessing an ethynyl-substituent were isolated by chromatography on sulphohydroxypropyl Sephadex LH-20 in silver form. Gas chromatographic-mass spectrometric analysis of the O-methyloxime-trimethylsilyl ether derivatives of these steroids, showed the presence of norethindrone and mestranol in the free fraction and of tetrahydro metabolites of norethindrone with 3 alpha,5 alpha, 3 alpha,5 beta and 3 beta,5 alpha configurations in the mono- and disulphate fractions. The disulphate of the 3 alpha,5 alpha isomer was the most abundant ethynyl steroid in milk after 13 days of administration. The site of conjugation of the monosulphates was established by acetylation prior to solvolysis and analysis by gas chromatography-mass spectrometry. This showed that the 3 alpha,5 alpha isomer was conjugated mainly in the 17 beta-position while the 3 alpha,5 beta isomer was conjugated at C-3.  相似文献   

17.
Group separations of unconjugated and conjugated bile acids and salts were performed using mixtures of conventional solvents by chromatography on columns of silicic acid. The results suggest that this method is useful for group separations of mono-, di-, and trihydroxycholan-24-oic acids and their conjugates with good recoveries. This method is advantageous for synthesis work, especially for the purification of conjugated and sulfated bile acids and salts, and is applicable for the group separation of glycine and taurine conjugates. The application of this method to human gallbladder bile salts is demonstrated.  相似文献   

18.
Hemin IX was perfused through rat liver of a normal, untreated animal. Its degradation products, collected in the bile fluid over a period of 90 min, were found to consist of the bilirubin IX-α diglucuronide (56%), the mixture of bilirubin IX-α monoglucuronides (42%), and free bilirubin IX-α (2%). When the synthetic hemin XIII 2 was perfused with the same technique, it was found to be degraded in the same way. The bile fluid contained the diglucuronide of bilirubin XIII-α 10 (55%), the monoglucuronide of bilirubin XIII-α 9 (43%) and the free bilirubin XIII-α 8 (2%). Similar results were obtained when the iron 1,4-di(β-hydroxyethyl)-2,3,5,8-tetramethyl-6,7-di(β-carboxyethyl) porphyrin 3 was perfused; the diglucuronide of the α-bilirubin 11 comprised 65% of the excreted bile bilirubins, the monoglucuronide was 25% of the total and the free α-bilirubin 11 10% of the total. Perfusion of hematohemin gave 58% of the diglucuronide of α-hematobilirubin, as well as 40% of the monoglucuronides, and 2% of the free α-hematobilirubin. The simultaneous perfusion of hematohemin and of hemin IX produced an inhibition of the degradation of the hemin IX, while hematohemin was degraded as described above. It was concluded that the normal rat liver is prepared to dispose of exogenously added hemins by their oxidation to α-biliverdins, reduction of the latter to the corresponding α-bilirubin and excretion of their conjugated derivatives through the bile duct.  相似文献   

19.
The liver is responsible for the clearance and metabolism of unconjugated bilirubin, the hydrophobic end-product of heme catabolism. Although several putative bilirubin transporters have been described, it has been alternatively proposed that bilirubin enters the hepatocyte by passive diffusion through the plasma membrane. In order to elucidate the mechanism of bilirubin uptake, we measured the rate of bilirubin transmembrane diffusion (flip-flop) using stopped-flow fluorescence techniques. Unconjugated bilirubin rapidly diffuses through model phosphatidylcholine vesicles, with a first-order rate constant of 5.3 s-1 (t(1)/(2) = 130 ms). The flip-flop rate is independent of membrane cholesterol content, phospholipid acyl saturation, and lipid packing, consistent with thermodynamic analyses demonstrating minimal steric constraint to bilirubin transmembrane diffusion. The coincident decrease in pH of the entrapped vesicle volume supports a mechanism whereby the bilirubin molecule crosses the lipid bilayer as the uncharged diacid. Transport of bilirubin by native rat hepatocyte membranes exhibits kinetics comparable with that in model vesicles, suggesting that unconjugated bilirubin crosses cellular membranes by passive diffusion through the hydrophobic lipid core. In contrast, there is no demonstrable flip-flop of bilirubin diglucuronide or bilirubin ditaurate in phospholipid vesicles, yet these compounds rapidly traverse isolated rat hepatocyte membranes, confirming the presence of a facilitated uptake system(s) for hydrophilic bilirubin conjugates.  相似文献   

20.
A method for analysis of profiles of conjugated progesterone metabolites and bile acids in 10 ml of urine and 1–4 ml of serum from pregnant women is described. Total bile acids and neutral steroids from serum and urine were extracted with octadecylsilane-bonded silica. Groups of conjugates were separated on the lipophilic ion-exchanger triethylaminohydroxypropyl Sephadex LH-20 (TEAP-LH-20). Fractions were divided for steroid or bile acid analyses. Sequences of hydrolysis/ solvolysis and separations on TEAP-LH-20 permitted separate analyses of steroid glucuronides, monosulfates and disulfates and bile acid aminoacyl amidates, sulfates, glucuronides and sulfate-glucuronides. Radiolabelled compounds were added at different steps to monitor recoveries and completeness of separation, and hydrolysis/solvolysis of conjugates was monitored by fast-atom bombardment mass spectrometry. The extraction and solvolysis of steroid disulfates in urine were studied in detail, and extraction recoveries were found to be pH-dependent. Following methylation of bile acids, all compounds were analysed by capillary gas chromatography and gas chromatography—mass spectrometry of their trimethylsilyl ether derivatives. Semiquantification of individual compounds in each profile by gas—liquid chromatography had a coefficient of variation of less than 30%. The total analysis required 3 days for serum and 4 days for urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号