首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli L-serine deaminase (L-SD) in crude extracts made in glycylglycine could be activated by incubation with iron sulfate and dithiothreitol. This activation could also be demonstrated in vitro in two mutants which were physiologically deficient in L-SD activity in vivo. This suggests that these mutants were deficient not in L-SD but in an enzyme(s) activating L-SD. The suggestion is made that production of a functional L-SD in vivo requires activation of the structural gene product by an enzyme or enzymes that reduce the protein to an active form.  相似文献   

2.
Mutants of Escherichia coli K-12 deficient in L-serine deaminase (L-SD) activity have been isolated. These strains required thiamine and grew normally when it was provided. The decrease in L-SD activity caused no obvious metabolic deficiency. A study of revertants and transductants showed that a single mutation was responsible for the thiamine requirement and for the decrease in L-SD activity.  相似文献   

3.
The structural genes sdhA and sdhB, coding for the alpha- and beta-subunits of the [4Fe-4S] cluster containing L-serine dehydratase from Peptostreptococcus asaccharolyticus, have been cloned and sequenced. Expression of modified sdhB together with sdhA in Escherichia coli led to overproduction of active His6-tagged L-serine dehydratase. E. coli MEW22, deficient in the L-serine dehydratase L-SD1, was complemented by this sdhBA construct. The derived amino acid sequence of SdhBA shares similarities with both monomeric L-serine dehydratases, L-SD1 and L-SD2, from E. coli and with a putative L-serine dehydratase from Haemophilus influenzae, which suggests that these three enzymes are also iron-sulfur proteins.  相似文献   

4.
以谷氨酸棒杆菌(Corynebacterium glutamicum) SYPS-062基因组DNA为模板,扩增得到L-丝氨酸脱水酶(L-SerDH)的编码基因sdaA。将其克隆到表达载体pET-28a(+),并在E.coli BL21(DE3)中诱导表达,对纯化的L-SerDH进行了酶活测定,并与来自C.glutamicum ATCC13032的重组L-SerDH进行了比较,结果显示,两种不同菌株来源的重组L-SerDH降解L-丝氨酸的酶比活力差异并不显著。在此基础上敲除菌株SYPS-062 的sdaA基因,探讨该基因对C.glutamicum SYPS-062生长及产酸的影响。通过构建自杀型重组质粒pK18mobsacB-△sdaA,电击转入C.glutamicum SYPS-062中,以同源重组的方式获得了sdaA基因缺失突变株,并用PCR方法对突变株C.glutamicum SYPS-062△sdaA进行了验证。与出发菌株相比,突变菌株生长缓慢,单位菌体L-丝氨酸的产量(YP/X)提高了15.13%。  相似文献   

5.
Li Y  Chen GK  Tong XW  Zhang HT  Liu XG  Liu YH  Lu FP 《Biotechnology letters》2012,34(8):1525-1530
L-Serine is usually produced from glycine. We have genetically engineered Escherichia coli to produce L-serine from glucose intracellularly. D-3-Phosphoglycerate dehydrogenase (PGDH, EC 1.1.1.95) in E. coli catalyzes the first committed step in L-serine formation but is inhibited by L-serine. To overcome this feedback inhibition, both the His(344) and Asn(346) residues of PGDH were converted to alanine and the mutated PGDH (PGDH(dr)) became insensitive to L-serine. However, overexpression of PGDH(dr) gave no significant increase of L-serine accumulation but, when L-serine deaminase genes (sdaA, sdaB and tdcG) were deleted, serine accumulated: (1) deletion of sdaA gave up to 0.03 mmol L-serine/g; (2) deletion of both sdaA and sdaB accumulated L-serine up to 0.09 mmol/g; and (3) deletion of sdaA, sdaB and tdcG gave up to 0.13 mmol L-serine/g cell dry wt.  相似文献   

6.
H S Su  B F Lang    E B Newman 《Journal of bacteriology》1989,171(9):5095-5102
A new mutant of Escherichia coli K-12 unable to grow with L-serine, glycine, and L-leucine has been isolated by lambda plac Mu insertion and shown to be deficient in L-serine deaminase activity. The corresponding gene, sdaA, has been cloned from a prototrophic strain, and the clone has been characterized and sequenced. The evidence is consistent with the hypothesis that sdaA is the structural gene for L-serine deaminase. However, other possibilities are also considered. No significant homology with previously reported DNA or protein sequences was detected.  相似文献   

7.
Although L-serine proceeds in just three steps from the glycolytic intermediate 3-phosphoglycerate, and as much as 8% of the carbon assimilated from glucose is directed via L-serine formation, previous attempts to obtain a strain producing L-serine from glucose have not been successful. We functionally identified the genes serC and serB from Corynebacterium glutamicum, coding for phosphoserine aminotransferase and phosphoserine phosphatase, respectively. The overexpression of these genes, together with the third biosynthetic serA gene, serA(delta197), encoding an L-serine-insensitive 3-phosphoglycerate dehydrogenase, yielded only traces of L-serine, as did the overexpression of these genes in a strain with the L-serine dehydratase gene sdaA deleted. However, reduced expression of the serine hydroxymethyltransferase gene glyA, in combination with the overexpression of serA(delta197), serC, and serB, resulted in a transient accumulation of up to 16 mM L-serine in the culture medium. When sdaA was also deleted, the resulting strain, C. glutamicum delta sdaA::pK18mobglyA'(pEC-T18mob2serA(delta197)CB), accumulated up to 86 mM L-serine with a maximal specific productivity of 1.2 mmol h(-1) g (dry weight)(-1). This illustrates a high rate of L-serine formation and also utilization in the C. glutamicum wild type. Therefore, metabolic engineering of L-serine production from glucose can be achieved only by addressing the apparent key position of this amino acid in the central metabolism.  相似文献   

8.
Despite its key position in central metabolism, L-serine does not support the growth of Corynebacterium glutamicum. Nevertheless, during growth on glucose, L-serine is consumed at rates up to 19.4 +/- 4.0 nmol min(-1) (mg [dry weight])(-1), resulting in the complete consumption of 100 mM L-serine in the presence of 100 mM glucose and an increased growth yield of about 20%. Use of 13C-labeled L-serine and analysis of cellularly derived metabolites by nuclear magnetic resonance spectroscopy revealed that the carbon skeleton of L-serine is mainly converted to pyruvate-derived metabolites such as L-alanine. The sdaA gene was identified in the genome of C. glutamicum, and overexpression of sdaA resulted in (i) functional L-serine dehydratase (L-SerDH) activity, and therefore conversion of L-serine to pyruvate, and (ii) growth of the recombinant strain on L-serine as the single substrate. In contrast, deletion of sdaA decreased the L-serine cometabolism rate with glucose by 47% but still resulted in degradation of L-serine to pyruvate. Cystathionine beta-lyase was additionally found to convert L-serine to pyruvate, and the respective metC gene was induced 2.4-fold under high internal L-serine concentrations. Upon sdaA overexpression, the growth rate on glucose is reduced 36% from that of the wild type, illustrating that even with glucose as a single substrate, intracellular L-serine conversion to pyruvate might occur, although probably the weak affinity of L-SerDH (apparent Km, 11 mM) prevents substantial L-serine degradation.  相似文献   

9.
(a) The measured L-serine deaminating activity of a crude bacterial extract may originate from L-serine deaminase, from biosynthetic L-threonine deaminase, or from degradative L-serine deaminase. Nevertheless, the contribution of the individual enzymes can be determined.(b) About a half of the L-serine deaminating activity of wild type E. coli bacteria, grown in synthetic minimal medium, originates from L-serine deaminase and about half from biosynthetic L-threonine deaminase.(c) Ninety percent of L-serine deaminating activity of wild type E. coli bacteria, grown in yeast extract-tryptone medium, originates from L-serine deaminase, and the remainging ten percent from the degradative L-threonine deaminase.(d) Conditions have been established in which threonine deaminases are eliminated and the activity of L-serine deaminase alone could be measured, even in crude extracts.  相似文献   

10.
L-Serine deaminase (L-SD) is unstable in intact cells of Escherichia coli K12. The extent of this instability is dependent on the nitrogen content of the medium in which the enzyme is synthesized, and on that in which it is tested. Enzyme activity in cells grown with an inorganic nitrogen source is unstable in the presence of inorganic nitrogen; enzyme activity in cells grown with an organic nitrogen source is unstable in the presence of the amino acids glycine and leucine.  相似文献   

11.
D-3-phosphoglycerate dehydrogenase (EC 1.1.1.95) from Escherichia coli contains two Gly-Gly sequences that have been shown previously to have the characteristics of hinge regions. One of these, Gly(336)-Gly(337), is found in the loop between the substrate binding domain and the regulatory domain. Changing these glycine residues to valine affected the sensitivity of the enzyme to inhibition by L-serine but not the extent of inhibition. The decrease in sensitivity was caused primarily by a decrease in the affinity of the enzyme for L-serine. These mutations also affected the domain rotation of the subunits in response to L-serine binding. A major conclusion of this study was that it defines a minimal limit on the necessary conformational changes leading to inhibition of enzyme activity. That is, some of the conformational differences seen in the native enzyme upon L-serine binding are not critical for inhibition, whereas others are maintained and may play important roles in inhibition and cooperativity. The structure of G336V demonstrates that the minimal effect of L-serine binding leading to inhibition of enzyme activity requires a domain rotation of approximately only 6 degrees in just two of the four subunits of the enzyme that are oriented diagonally across from each other in the tetramer. Moreover the structures show that both pairs of Asn190 to Asn190 hydrogen bonds across the subunit interfaces are necessary for activity. These observations are consistent with the half-the-sites activity, flip-flop mechanism proposed for this and other similar enzymes and suggest that the Asn190 hydrogen bonds may function in the conformational transition between alternate half-the-site active forms of the enzyme.  相似文献   

12.
13.
We have shown that serine-glycine auxotrophs of Escherichia coli K-12 use exogenous L-serine inefficiently as a source of biosynthetic intermediates. Much of the L-serine supplied in the medium is not used to satisfy the auxotrophic requirement, owing to its diversion by L-serine deaminase, presumably to pyruvate. This is the first proof that the activity known as L-serine deaminase actually deaminates L-serine in vivo.  相似文献   

14.
The loss of the ability to deaminate l -serine severely impairs growth and cell division in Escherichia coli K-12. A strain from which the three genes ( sdaA , sdaB , tdcG ) coding for this organism's three l -serine deaminases had been deleted grows well in glucose minimal medium but, on subculture into minimal medium with glucose and casamino acids, it makes very large, abnormally shaped cells, many of which lyse. When inoculated into Luria-Bertani (LB) broth with or without glucose, it makes very long filaments. Provision of S-adenosylmethionine restores cell division in LB broth with glucose, and repairs much of the difficulty in growth in medium with casamino acids. We suggest that replication of E. coli is regulated by methylation, that an unusually high intracellular l -serine concentration, in the presence of other amino acids, starves the cell for S-adenosylmethionine and that it is the absence of S-adenosylmethionine and/or of C1-tetrahydrofolate derivatives that prevents normal cell division.  相似文献   

15.
The activity of the enzyme tryptophan synthase from Escherichia coli was tested as a function of the concentration of L-serine which serves as a substrate in the indole to tryptophan reaction as well as for the L-serine deaminase activity. L-Serine binding was found to follow the pattern of negative cooperativity both by kinetic and by equilibrium methods. The enzyme kinetic data support the view that a rapid equilibration model for the enzyme . substrates complex formation is not strictly obeyed.  相似文献   

16.
Summary A derivative ofEscherichia coli strain W3110 with increased tryptophan synthas (TS) activity was studied in the biosynthesis of L-tryptophan and 5-hydroxy-L-tryptophan, respectively, in presence of precursors. Indole or 5-hydroxyindole was added to growing cells in minimal medium supplemented with tetracycline. The specific activity of TS for 5-hydroxyindole was about 5-fold lower compared with indole. However, this difference in enzyme activity was not observed when the specific productivity (qp) of L-tryptophan or 5-hydroxy-L-tryptophan, which was 0.14–0.15 g (g dry wt cells)–1 · h–1 was determined. In minimal medium L-serine was shown to limit the production of both tryptophan and its hydroxylated derivative. In presence of L-serine, qp, for L-tryptophan and 5-hydroxy-L-tryptophan were increased by a factor of about 3 and 2, respectively.  相似文献   

17.
The anaerobically inducible L-serine dehydratase, TdcG, from Escherichia coli was characterized. Based on UV-visible spectroscopy, iron and labile sulfide analyses, the homodimeric enzyme is proposed to have two oxygen-labile [4Fe-4S]2+ clusters. Anaerobically isolated dimeric TdcG had a kcat of 544 s(-1) and an apparent KM for L-serine of 4.8 mM. L-threonine did not act as a substrate for the enzyme. Exposure of the active enzyme to air resulted in disappearance of the broad absorption band at 400-420 nm, indicating a loss of the [4Fe-4S]2+ cluster. A concomitant loss of dehydratase activity was demonstrated, indicating that integrity of the [4Fe-4S]2+ cluster is essential for enzyme activity.  相似文献   

18.
19.
An open reading frame of 828 base pairs was found in the CHO1 gene region of Saccharomyces cerevisiae by nucleotide sequencing analysis. Its enhanced expression with the aid of the PHO5 regulatory sequence resulted in an overproduction of a protein with a molecular weight of approximately 30,000, which in turn was converted by proteolysis to active phosphatidylserine synthase, whose molecular weight was approximately 23,000. The larger protein was concluded to be the primary product of the CHO1 gene, since its amino-terminal sequence was identical to that deduced from the nucleotide sequence of the above open reading frame, except for the terminal methionine residue. A partial homology in primary structures was noticed between this yeast enzyme and phosphatidylglycerophosphate synthase of Escherichia coli which also uses CDP-diacylglycerol as a substrate. The overproduced phosphatidylserine synthase in both microsomal and extensively purified fractions displayed two different Km values for L-serine, i.e., 0.14 mM at low L-serine concentrations and 9.5 mM at high L-serine concentrations. This may indicate a negatively cooperative regulation of this enzyme activity or the presence of two active components with different affinities for L-serine.  相似文献   

20.
Morii H  Koga Y 《Journal of bacteriology》2003,185(4):1181-1189
CDP-2,3-di-O-geranylgeranyl-sn-glycerol:L-serine O-archaetidyltransferase (archaetidylserine synthase) activity in cell extracts of Methanothermobacter thermautotrophicus cells was characterized. The enzyme catalyzed the formation of unsaturated archaetidylserine from CDP-unsaturated archaeol and L-serine. The identity of the reaction products was confirmed by thin-layer chromatography, fast atom bombardment-mass spectrum analysis, and chemical degradation. The enzyme showed maximal activity in the presence of 10 mM Mn2+ and 1% Triton X-100. Among various synthetic substrate analogs, both enantiomers of CDP-unsaturated archaeols with ether-linked geranylgeranyl chains and CDP-saturated archaeol with ether-linked phytanyl chains were similarly active toward the archaetidylserine synthase. The activity on the ester analog of the substrate was two to three times higher than that on the corresponding ether-type substrate. The activity of D-serine with the enzyme was 30% of that observed for L-serine. A trace amount of an acid-labile, unsaturated archaetidylserine intermediate was detected in the cells by a pulse-labeling experiment. A gene (MT1027) in M. thermautotrophicus genome annotated as the gene encoding phosphatidylserine synthase was found to be homologous to Bacillus subtilis pssA but not to Escherichia coli pssA. The substrate specificity of phosphatidylserine synthase from B. subtilis was quite similar to that observed for the M. thermautotrophicus archaetidylserine synthase, while the E. coli enzyme had a strong preference for CDP-1,2-diacyl-sn-glycerol. It was concluded that M. thermautotrophicus archaetidylserine synthase belongs to subclass II phosphatidylserine synthase (B. subtilis type) on the basis of not only homology but also substrate specificity and some enzymatic properties. The possibility that a gene encoding the subclass II phosphatidylserine synthase might be transferred from a bacterium to an ancestor of methanogens is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号