首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation of repression in the trp system of Escherichia coli was undertaken using operon fusions and plasmids constructed via recombinant DNA technology. The promoters of the trp operon and the trpR gene were fused to lacZ, enabling the activity of these promoters to be evaluated under various conditions through measurements of beta-galactosidase production. In confirmation of earlier studies, the trpR gene was shown to be regulated autogenously. This control feature of the trp system was found to maintain intracellular Trp repressor protein at essentially invariant levels under most conditions studied. Increasing the trpR+ gene dosage did not significantly elevate Trp repressor protein levels, nor did the introduction of additional operator "sinks" result in significantly decreased levels of Trp repressor protein. Definite alterations in intracellular Trp repressor protein levels were achieved only by subverting the normal trpR regulatory elements. The placement of the lacUV5 or the lambda PL promoters upstream of the trpR gene resulted in significant increases in repression of the trp system. Substituting the primary trp promoter/operator for the native trpR promoter/operator resulted in an altered regulatory response of the trp system to tryptophan limitation or excess. The regulation of the trpR gene effectively imparts a broad range of expression to the trp operon in a manner finely attuned to fluctuations in intracellular tryptophan levels.  相似文献   

2.
We examined tryptophan regulation in merodiploid hybrids in which a plasmid carrying the trp operon of Escherichia was introduced into Trp mutants of other enteric genera, or in which a plasmid carrying the trpR+ (repressor) gene of E. coli was transfered into fully constitutive trpR mutants of other genera. In these hybrids the trp operon of one species is controlled by the repressor of a different species. Similar investigations were possible in transduction hybrids in which either the trp operon or the trpR+ locus of Shigella dysenteriae was introduced into E. coli. Our measurements of trp enzymes levels in repressed and nonrepressed cells indicate that Trp regulation is normal, with only minor quantitative variations, in hybrids between E coli and Shigella dysenteriae, Salmonella typhimurium, Klebsiella aerogenes, Serratia marcescens, and Proteus mirabilis. Our results support the idea that a repressor-operator mechanism for regulating trp messenger ribonucleic acid production evolved in a common ancestor of the enteric bacteria, and that this repressor-operator recognition has been conversed during the evolutionary divergence of the Enterobacteriaceae.  相似文献   

3.
A trp-lac fusion strain of Escherichia coli in which the lac structural genes are part of the tryptophan operon has been used to isolate trp regulatory mutants. This was accomplished by isolating lac(+) colonies on either lactose-minimal agar or lactose-MacConkey indicator agar. Seventy-seven of 78 lac(+) isolates contained mutations which mapped near the ara locus and most of these isolates were found to be 5-methyltryptophan-resistant after introduction of an F-trp episome. The lac(+) phenotypes of these 77 isolates were therefore probably the result of trpR(-) mutations. The one remaining isolate carried a mutation which was not part of the trp regulatory system.  相似文献   

4.
Salmonella typhimurium prototrophs carrying a trpR mutation synthesize tryptophan biosynthetic enzymes constitutively. When feedback inhibition of anthranilate synthetase but not 5'-phosphoribosylpyrophosphate phosphoribosyltransferase activity was by-passed by growing cells on media supplemented with anthranilic acid, all trpR prototrophs overproduced and excreted tryptophan. However, the rate of tryptophan production depended on both the ancestry of the trpR strain and the integrity of its trpA gene. Prototrophs with trp genes derived from S. typhimurium strain LT2 produced tryptophan more efficiently than those with trp genes derived from strain LT7. This strain difference was cryptic insofar as it did not affect the growth rate; it was revealed only as a rate-limiting step in the constitutive biosynthesis of tryptophan in the presence of anthranilic acid, and was due to a lesion in the LT7-derived trpB gene. Strains with LT7-derived trp genes bearing a deletion in trpA produced tryptophan as readily as LT2 trpR prototrophs. This indicated that LT7-specific 5-phosphoribosylpyrophosphate phosphoribosyltransferase must be aggregated with the trpA gene produce to give an observable reduction of constitutive tryptophan production. The discovery of this strain difference has particular implications for studies involving the activities of trpA and B genes and their products in S. typhimurium and may have general significance for other studies involving different strains of Salmonella.  相似文献   

5.
6.
7.
Mutants of Escherichia coli exhibiting temperature-sensitive repression of the tryptophan operon have been isolated among the revertants of a tryptophan auxotroph, trpS5, that produces an altered tryptophanyl transfer ribonucleic acid (tRNA) synthetase. Unlike the parental strain, these mutants grew in the absence of tryptophan at high but not at low temperature. When grown at 43.5 C with excess tryptophan (repression conditions), they produced 10 times more anthranilate synthetase than when grown at 36 C or lower temperatures. Similar, though less striking, temperature-sensitivity was observed with respect to the formation of tryptophan synthetase. Transduction mapping by phage P1 revealed that these mutants carry a mutation cotransducible with thr at 60 to 80%, in addition to trpS5, and that the former mutation is primarily responsible for the temperature-sensitive repression. These results suggest that the present mutants represent a novel type of mutation of the classical regulatory gene trpR, which probably determines the structure of a protein involved in repression of the tryptophan operon. In agreement with this conclusion, tRNA of several trpR mutants was found to be normal with respect to its tryptophan acceptability. It was also shown that the trpS5 allele, whether present in trpR or trpR(+) strains, produced appreciably higher amounts of anthranilate synthetase than the corresponding trpS(+) strains under repression conditions. This was particularly true at higher temperatures. These results provide further evidence for our previous conclusion that tryptophanyl-tRNA synthetase is somehow involved in repression of this operon.  相似文献   

8.
Genetic Fine Structure of the Leucine Operon of Escherichia coli K-12   总被引:15,自引:10,他引:5       下载免费PDF全文
The order of mutational sites in 10 independently isolated leucine auxotrophys of Escherichia coli K-12 was determined by three-point reciprocal transductions. The sites of mutation mapped in linear sequence in a cluster; all leucine auxotrophic mutations were cotransducible with mutations in the arabinose operon. The mutations were assigned to four complementation groups by abortive transduction tests, designated D, C, B, and A, reading in a clockwise direction from the arabinose operon. Enzyme analyses showed that strains with a mutation in gene A lacked alpha-isopropylmalate synthetase activity (EC 4.1.3), and those with a mutation in gene B lacked beta-isopropylmalate dehydrogenase activity (EC 1.1.1). It is concluded that the gross structure of the leucine operon in E. coli is closely similar to, if not identical with, the gross structure of the leucine operon in Salmonella typhimurium.  相似文献   

9.
Two classes of pyridine nucleotide uptake mutants isolated previously in a strain of Salmonella typhimurium defective in both de novo NAD biosynthesis (nad) and pyridine nucleotide recycling (pncA) were analysed in terms of their genetic relationship to each other and their roles in the transport of nicotinamide mononucleotide as a precursor to NAD. The first class of uptake mutants, pnuA (99 units), failed to grow on nicotinamide mononucleotide (NMN) as a precursor for NAD. The second class, pnuB, grew on lower than normal levels of NMN and suppressed pnuA mutations. A third class of uptake mutant, pnuC, isolated in a nadB pncA pnuB background, also failed to grow on NMN. Transport studies and enzyme analyses confirmed these strains as defective in NMN uptake. A fourth locus, designated pnuD, was found to diminish NMN utilization in a nad pncA+ background. Tn10 insertions near pnuA, pnuC and pnuD were isolated and utilized in mapping studies. pnuA was found to map between thr and serB near trpR. The pnuC locus was cotransducible with nadA at 17 units while pnuD mapped at approximately 60 units. The biochemical and genetic data suggest that the pnuA and pnuC gene products cooperate in the utilization of NMN under normal conditions. A pnuB mutant, however, does not require the pnuA gene product for NMN uptake but does rely on the pnuC product. Fusion studies indicate that pnuC is regulated by internal NAD concentrations.  相似文献   

10.
Interaction of the Escherichia coli trp repressor with the promoter-operator regions of the trp, aroH and trpR operons was studied in vivo and in vitro. The three operators have similar, but non-identical, sequences; each operator is located in a different segment of its respective promoter. In vivo repression of the three operons was measured using single-copy gene fusions to lacZ. The extent of repression varied from 300-fold for the trp operon, to sixfold for the aroH operon and threefold for the trpR operon. To determine whether differential binding of repressor to the three operators was responsible for the differences in repression observed in vivo, three in vitro binding assays were employed. Restriction-site protection, gel retardation and DNase footprinting analyses revealed that repressor binds to the three operators with almost equal affinity. It was also shown in an in vivo competition assay that repressor binds approximately equally well to each of the three operators. It is proposed that the differential regulation observed in vivo may be due to the different relative locations of the three operators within their respective promoters.  相似文献   

11.
For the purpose of studying the production of L-tryptophan by Escherichia coli, the deletion mutants of the trp operon (trpAE1) were transformed with mutant plasmids carrying the trp operon whose anthranilate synthase and phosphoribosyl anthranilate transferase (anthranilate aggregate), respectively, had been desensitized to tryptophan inhibition. In addition to release of the anthranilate aggregate from the feedback inhibition required for plasmids such as pSC101 trp.I15, the properties of trp repression (trpR) and tryptophanase deficiency (tnaA) were both indispensable for host strains such as strain Tna (trpAE1 trpR tnaA). The gene dosage effects on tryptophan synthase activities and on production of tryptophan were assessed. A moderate plasmid copy number, approximately five per chromosome, was optimal for tryptophan production. Similarly, an appropriate release of the anthranilate aggregate from feedback inhibition was also a necessary step to ward off the metabolic anomaly. If the mutant plasmid pSC101 trp-I15 was further mutagenized (pSC101 trp.I15.14) and then transferred to Tna cells, an effective enhancement of tryptophan production was achieved. Although further improvement of the host-plasmid system is needed before commercial production of tryptophan can be realized by this means, a promising step toward this goal has been established.  相似文献   

12.
13.
A comparison of the rates of synthesis of the tryptophan biosynthetic enzymes of Salmonella typhimurium under derepression showed that the genes of the trp operon can be expressed in a coordinate fashion in auxotrophs carrying nonpolar mutations. This coordination disappeared in trpA polar mutants. The loss of coordination affected only trpB, the second gene in the operon, which was always more drastically affected than the three distal genes. Polar mutations in trpA, the first gene of the trp operon, reduced the rates of synthesis of the tryptophan biosynthetic enzymes under conditions of derepression. When these rates were measured and correlated with the map position of each polar mutation, a polarity gradient of decreasing intensity (moving distally from the operator end of the gene) was obtained. Certain mutations ("unusual mutations") mapping at the operator distal end of trpA, and considered by other workers to correspond to the operator proximal end of trpB, were found to be polar. The bearing of our observations on the question of coordinate versus semicoordinate expression of the trp genes and the status of the "unusual mutations" is discussed.  相似文献   

14.
Repression of aromatic amino acid biosynthesis in Escherichia coli K-12   总被引:24,自引:20,他引:4  
Mutants of Escherichia coli K-12 were isolated in which the synthesis of the following, normally repressible enzymes of aromatic biosynthesis was constitutive: 3-deoxy-d-arabinoheptulosonic acid 7-phosphate (DAHP) synthetases (phe and tyr), chorismate mutase T-prephenate dehydrogenase, and transaminase A. In the wild type, DAHP synthetase (phe) was multivalently repressed by phenylalanine plus tryptophan, whereas DAHP synthetase (tyr), chorismate mutase T-prephenate dehydrogenase, and transaminase A were repressed by tyrosine. DAHP synthetase (tyr) and chorismate mutase T-prephenate dehydrogenase were also repressed by phenylalanine in high concentration (10(-3)m). Besides the constitutive synthesis of DAHP synthetase (phe), the mutants had the same phenotype as strains mutated in the tyrosine regulatory gene tyrR. The mutations causing this phenotype were cotransducible with trpA, trpE, cysB, and pyrF and mapped in the same region as tyrR at approximately 26 min on the chromosome. It is concluded that these mutations may be alleles of the tyrR gene and that synthesis of the enzymes listed above is controlled by this gene. Chorismate mutase P and prephenate dehydratase activities which are carried on a single protein were repressed by phenylalanine alone and were not controlled by tyrR. Formation of this protein is presumed to be controlled by a separate, unknown regulator gene. The heat-stable phenylalanine transaminase and two enzymes of the common aromatic pathway, 5-dehydroquinate synthetase and 5-dehydroquinase, were not repressible under the conditions studied and were not affected by tyrR. DAHP synthetase (trp) and tryptophan synthetase were repressed by tryptophan and have previously been shown to be under the control of the trpR regulatory gene. These enzymes also were unaffected by tyrR.  相似文献   

15.
16.
17.
18.
Abstract A new tryptophan auxotroph of Streptomyces venezuelae was isolated by transduction of a histidine mutant to His+ after hydroxylamine mutagenesis of the transducing lysate. Cotransduction of at least two his genes and two trp genes was then demonstrated. One trp and two his markers were not cotransducible with this gene cluster, but the separate trp marker, trp -4, was cotransducible with a nic marker. These results are compatible with the distribution of similar markers on the conjugational linkage map of S. coelicolor A3(2), and so support the hypothesis of conservation of linkage relationships among putative homologous loci within the genus Streptomyces .  相似文献   

19.
Mutant strains of Escherichia coli K-12 have been isolated in which the synthesis of 3-deoxy-d-arabinoheptulosonic acid-7-phosphate (DAHP) synthetase (trp) is partially constitutive. The mutation causing derepression is closely linked to aroH [the structural gene for DAHP synthetase (trp)] and occurs in a locus designated aroJ. The aroJ mutation is not recessive in an aroJ(+)/aroJ(-) diploid strain, as the synthesis of DAHP synthetase (trp) is still derepressed in this strain. On the basis of its close linkage to aroH and its continued expression in an aroJ(+)/aroJ(-) diploid, it is postulated that aroJ is an operator locus controlling the expression of the structural gene aroH. In support of this conclusion, the synthesis of anthranilate synthetase is still normally repressible in aroJ(-) strains, whereas, in trpR(-) strains, both DAHP synthetase (trp) and anthranilate synthetase are synthesized constitutively. The synthesis of DAHP synthetase (trp) remains repressible in an operator-constitutive mutant of the tryptophan operon. In two trpS mutants which possess defective tryptophanyl transfer ribonucleic acid synthetase enzymes, neither DAHP synthetase (trp) nor anthranilate synthetase derepress under conditions in which the defective synthetase causes a decrease in growth rate. On the other hand, an effect of the trpS mutant alleles on the level of anthranilate synthetase has been observed in strains which are derepressed for the synthesis of this enzyme, because of a mutation in the gene trpR. Possible explanations for this effect are presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号