首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Heat shock proteins of chicken lens   总被引:12,自引:0,他引:12  
The presence of heat shock proteins HSP-40, HSP-70, and HSc-70 in adult and embryonic chicken lenses were determined. The epithelium, cortex, and nucleus of adult chicken lens were separated and tested for the presence of heat shock proteins (hsps) by western blot, using specific antibodies for HSP-40, HSP-70, and HSc-70. Water soluble (WSF) and water insoluble fractions (WIF) of embryonic chicken lenses were isolated and tested for the presence of HSP-40, HSP-70, and HSc-70 by immunoblot. Embryonic chicken lens sections were also analyzed for the presence of heat shock proteins by immunofluorescence technique. Data obtained from these experiments revealed that HSP-40, HSP-70, and HSc-70 are present in all areas of both adult and embryonic chicken lens. Presence of hsps protein in the deep cortex and nucleus is intriguing as no detectable metabolic activities are reported in this area. However it can be proposed that hsps HSP-40, HSP-70, and HSc-70 can interact with protein of these areas and protect them from stress induced denaturation.  相似文献   

3.
4.
Heat shock proteins of adult and embryonic human ocular lenses.   总被引:11,自引:0,他引:11  
We investigated the presence and distribution of heat shock proteins, HSP-70 [Horwitz, J. 1992. Proc Natl Acad Sci 89:10449-10453], HSP-40, HSc-70, HSP-27, and alphabeta-crystallin in different regions of adult and fetal human lenses and in aging human lens epithelial cells. This study was undertaken because heat shock proteins may play an important role in the maintenance of the supramolecular organization of the lens proteins. Human adult and fetal lenses were dissected to separate the epithelium, superficial cortex, intermediate cortex, and nucleus. The water soluble and insoluble protein fractions were separated by SDS-PAGE, and transferred to nitrocellulose paper. Specific antibodies were used to identify the presence of heat shock proteins in distinct regions of the lens. HSP-70 [Horwitz, 1992], HSP-40, and HSc-70 immunoreactivity was mainly detected in the epithelium and superficial cortical fiber cells of the adult human lens. The small heat shock proteins, HSP-27 and alphabeta-crystallin were found in all regions of the lens. Fetal human lenses showed immunoreactivity to all heat shock proteins. An aging study revealed a decrease in heat shock protein levels, except for HSP-27. The presence of HSP-70 [Horwitz, 1992], HSP-40, and HSc-70 in the epithelium and superficial cortical fiber cells imply a regional cell specific function, whereas the decrease of heat shock protein with age could be responsible for the loss of optimal protein organization, and the eventual appearance of age-related cataract.  相似文献   

5.
Death-inducing ligands tumor necrosis factor alpha (TNFα) and Fas ligand (FasL) do not kill cultured astrocytes; instead they induce a variety of chemokines including macrophage-inflammatory protein-1α/CC chemokine ligand 3 (CCL3), monocyte chemoattractant protein-1 (CC CCL-2), macrophage-inflammatory protein-2/CXC chemokine ligand 2 (CXCL2, a murine homologue of interleukin 8), and interferon-induced protein of 10 kDa (CXCL10). Induction is enhanced by protein synthesis inhibition suggesting the existence of endogenous inhibitors. ERK, NF-κB, heat shock factor-1 (HSF-1) and heat shock proteins were examined for their possible roles in signal transduction. Inhibition of ERK activation by PD98059 partially inhibited expression of all but FasL-induced CXCL10. Although inhibition of NF-κB DNA binding inhibited chemokine induction, PD98059 did not inhibit TNFα-induced NF-κB DNA binding suggesting that ERK serves an NF-κB-independent pathway. Heat shock itself induced astrocytic chemokine expression; both TNFα and FasL induced HSF-1 DNA binding and Hsp72 production; and Hsp72-induced chemokine expression. Inhibition of either HSF-1 binding with quercetin or heat shock protein synthesis with KNK437 compromised chemokine induction without compromising cell survival. These data suggest that the induction of heat shock proteins via HSF-1 contribute to the TNFα- and FasL-induced expression of chemokines in astrocytes.  相似文献   

6.
Flavonoids inhibit the expression of heat shock proteins   总被引:14,自引:0,他引:14  
Cells exposed to several forms of stress, such as heat shock, transiently synthesize a group of proteins called heat shock proteins (hsps). Although many stressors other than heat shock are known to induce hsps, inhibitors of hsp expression have never been reported. Here we show that quercetin and several other flavonoids inhibit the synthesis of hsps induced by heat shock in two human cell lines, Hela cells and COLO320 DM cells. Quercetin inhibited the induction of hsp70 at the level of mRNA accumulation. This is the first report to describe the inhibition of hsp expression by reagents.  相似文献   

7.
Factors influencing the heat shock response of Xenopus laevis embryos   总被引:1,自引:0,他引:1  
We have further characterized the heat shock response of Xenopus laevis embryos. Xenopus embryos respond to heat shock by consistently synthesizing four major heat shock proteins (hsps) of 62, 70, 76, and 87 kilodaltons. In addition to these hsps, heat-shocked embryos also exhibit the synthesis of several minor hsps. The synthesis of these hsps is often variable. We have monitored the effects of different temperatures and lengths of heat shock on the pattern and intensity of hsp synthesis. In general, the four major hsps are induced more strongly at higher temperatures and during increasing intervals of heat shock. The temperature and duration of heat shock can affect the synthesis of the minor hsps, however. Some hsps are synthesized at lower temperatures only (i.e., below 37 degrees C), whereas others are synthesized only at higher temperatures (i.e., above 37 degrees C). We have extensively examined the characteristics of hsp 35 synthesis, one of the most variably synthesized hsps. This hsp is characteristically synthesized at temperatures above 35 degrees C and usually during the first 40 min of heat shock, after which it becomes undetectable. In some experiments, its synthesis is restimulated during later intervals of heat shock. Hsp 35 is also under developmental regulation. It is not synthesized by heat-shocked embryos until the late blastula to early gastrula stage. After this brief period of inducibility, its synthesis is dramatically reduced in mid- to late gastrulae, but reappears in heat-shocked neurulae. We have previously demonstrated that hsp 35 is related to the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The induction of hsp 35 synthesis is inversely correlated with the constitutive levels of GAPDH specific activity. In this paper we document further correlations between the synthesis of hsp 35 and GAPDH specific activity during early Xenopus development.  相似文献   

8.
Glutamine (GLN) has been shown to protect cells, tissues, and whole organisms from stress and injury. Enhanced expression of heat shock protein (HSP) has been hypothesized to be responsible for this protection. To date, there are no clear mechanistic data confirming this relationship. This study tested the hypothesis that GLN-mediated activation of the HSP pathway via heat shock factor-1 (HSF-1) is responsible for cellular protection. Wild-type HSF-1 (HSF-1+/+) and knockout (HSF-1–/–) mouse fibroblasts were used in all experiments. Cells were treated with GLN concentrations ranging from 0 to 16 mM and exposed to heat stress injury in a concurrent treatment model. Cell viability was assayed with phenazine methosulfate plus tetrazolium salt, HSP-70, HSP-25, and nuclear HSF-1 expression via Western blot analysis, and HSF-1/heat shock element (HSE) binding via EMSA. GLN significantly attenuated heat-stress induced cell death in HSF-1+/+ cells in a dose-dependent manner; however, the survival benefit of GLN was lost in HSF-1–/– cells. GLN led to a dose-dependent increase in HSP-70 and HSP-25 expression after heat stress. No inducible HSP expression was observed in HSF-1–/– cells. GLN increased unphosphorylated HSF-1 in the nucleus before heat stress. This was accompanied by a GLN-mediated increase in HSF-1/HSE binding and nuclear content of phosphorylated HSF-1 after heat stress. This is the first demonstration that GLN-mediated cellular protection after heat-stress injury is related to HSF-1 expression and cellular capacity to activate an HSP response. Furthermore, the mechanism of GLN-mediated protection against injury appears to involve an increase in nuclear HSF-1 content before stress and increased HSF-1 promoter binding and phosphorylation. knockout cells; amino acid; heat stress mechanism  相似文献   

9.
Xenopus oocytes have a complex heat shock response. During transition of the oocyte into fertilized egg, the heat shock response undergoes several qualitative and quantitative changes culminating in its complete extinction. Heat shock induces oocytes to synthesize four heat shock proteins (hsps): 83, 76, 70, and 57. After ovulation, two additional proteins (hsps 22 and 16) are inducible. The heat shock response of spawned eggs can be modified by changing the ionic configuration of the external medium and by adding pyruvate and oxaloacetate to the media. Since Xenopus eggs do not synthesize mRNA, these modifications to the external medium apparently alter the utilization of preexisting messenger RNAs in protein synthesis. Artificial activation terminates inducibility of hsps 76, 57, and 16 and diminishes the hsp 70 response. Two new heat shock proteins-66 and 48-are also inducible in artificially activated eggs. Fertilization, on the other hand, terminates the heat shock response; no hsps can be induced. However, hsp 70 appears to be made constitutively in fertilized eggs. RNA blot analyses reveal that oogenic hsp 70 messenger RNA is retained in eggs and early embryos. This messenger is apparently used for heat-induced synthesis of hsp 70 before fertilization and for constitutive synthesis of hsp 70 in zygotes.  相似文献   

10.
11.
12.
13.
Conditions are described for the heat shock acquisition of thermotolerance, peroxide tolerance and synthesis of heat shock proteins (hsps) in the Antarctic, psychrophilic yeast Candida psychrophila. Cells grown at 15°C and heat shocked at 25°C (3 h) acquired tolerance to heat (35°C) and hydrogen peroxide (100 mM). Novel heat shock inducible proteins at 80 and 110 kDa were observed as well as the presence of hsp 90, 70 and 60. The latter hsps were not significantly heat shock inducible. The absence of hsp 104 was intriguing and it was speculated that the 110 kDa protein may play a role in stress tolerance in psychrophilic yeasts, similar to that of hsp 104 in mesophilic species.  相似文献   

14.
15.
Summary The synthesis of heat shock proteins (hsp) has been examined during the early embryogenesis of Drosophila melanogaster. Normal protein synthesis stops after heat shock at all developmental stages, while hsp synthesis is induced only after treatment at blastoderm and later stages. The small hsps continue to be synthesised after heat shock for a longer period than the larger ones. Heat shocks at 35°C, 37°C and 40°C were compared for their effect on hsp synthesis and the effect of heat shock on the normal course of development was analysed.  相似文献   

16.
17.
18.
G Guedon  D Sovia  J P Ebel  N Befort    P Remy 《The EMBO journal》1985,4(13B):3743-3749
Bisnucleosides polyphosphates are thought to be chemical messengers signalling to the cell the onset of various stresses. Diadenosine tri- and tetraphosphates (respectively, Ap3A and Ap4A) accumulate in prokaryotic and eukaryotic cells under heat shock conditions, suggesting they could trigger the synthesis of heat shock proteins (hsps). In this study, Ap4A, Ap3A and, as a control, Ap4 (adenosine tetraphosphate) were injected into Xenopus oocytes. Whereas none of these compounds is able to trigger the synthesis of hsps in the absence of hyperthermic treatment, nuclear microinjection of Ap4A after a mild heat shock specifically enhances the synthesis of the 70-kd hsp, which is involved in the regulation and possibly the termination of the heat shock response. The microinjection of Ap4A prior to the hyperthermic treatment results in a strong inhibition of hsps synthesis (with the exception of the 70-kd hsp) suggesting that Ap4A is involved in the regulation and/or termination of the heat shock response. Ap3A and Ap4 do not induce any detectable modification of hsps expression.  相似文献   

19.
20.
The heat shock response protects against sepsis-induced mortality, organ injury, cardiovascular dysfunction, and apoptosis. Several inducers of the heat shock response, such as hyperthermia, sodium arsenite, and pyrollidine dithiocarbonate, inhibit NF-κB activation and nitric oxide formation. The antioxidant lipoic acid (LA) has recently been found to inhibit NF-κB activation and nitric oxide formation. We therefore tested the hypothesis that LA induces a heat shock response. To test this hypothesis, we determined whether exposure to LA affects expression of both heat shock protein 70 (HSP-70) and nuclear heat shock factor-1 (HSF-1) in lipopolysaccharide (LPS) stimulated macrophages. LA and hyperthermia attenuated LPS-induced increases in nuclear NF-κB, iNOS protein, and media nitrite concentrations. LPS and hyperthermia increased HSP-70 concentrations 8-fold and 20-fold, respectively. No effect of LA treatment alone on HSP-70 protein expression was detected. Likewise, no effect of LA on HSF-1 protein expression was detected. These data suggest that LA inhibits LPS-induced activation of iNOS in macrophages independent of the heat shock response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号