首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Monocytes/macrophages (Mphi) play a pivotal role in the persistence of chronic inflammation and local tissue destruction in diseases such as rheumatoid arthritis and atherosclerosis. The production by Mphi of cytokines, chemokines, metalloproteinases and their inhibitors is an essential component in this process, which is tightly regulated by multiple factors. The peroxisome proliferator-activated receptors (PPARs) were shown to be involved in modulating inflammation. PPARgamma is activated by a wide variety of ligands such as fatty acids, the anti-diabetic thiazolidinediones (TZDs), and also by certain prostaglandins of which 15-deoxy-Delta(12,14)-PGJ2 (PGJ2). High concentrations of PPARgamma ligands were shown to have anti-inflammatory activities by inhibiting the secretion of interleukin-1 (IL-1), interleukin-6 (IL-6) and tumour necrosis factor alpha (TNFalpha) by stimulated monocytes.The aim of this study was to determine whether PGJ2 and TZDs would also exert an immunomodulatory action through the up-regulation of anti-inflammatory cytokines such as the IL-1 receptor antagonist (IL-1Ra). THP-1 monocytic cells were stimulated with PMA, thereby enhancing the secretion of IL-1, IL-6, TNFalpha, IL-1Ra and metalloproteinases. Addition of PGJ2 had an inhibitory effect on IL-1, IL-6 and TNFalpha secretion, while increasing IL-1Ra production. In contrast, the bona fide PPARgamma ligands (TZDs; rosiglitazone, pioglitazone and troglitazone) barely inhibited proinflammatory cytokines, but strongly enhanced the production of IL-1Ra from PMA-stimulated THP-1 cells. Unstimulated cells did not respond to TZDs in terms of IL-1Ra production, suggesting that in order to be effective, PPAR ligands depend on PMA signalling. Basal levels of PPARgamma are barely detectable in unstimulated THP-1 cells, while stimulation with PMA up-regulates its expression, suggesting that higher levels of PPARgamma expression are necessary for receptor ligand effects to occur. In conclusion, we demonstrate for the first time that TZDs may exert an anti-inflammatory activity by inducing the production of the IL-1Ra.  相似文献   

3.
Asthma is characterized by a predominant T(H)2 type immune response to airborne allergens. Controlling T(H)2 cell function has been proposed as therapy for this disease. We show here that ligands for the nuclear receptor peroxisome proliferator activated receptor (PPAR)gamma significantly reduced the immunological symptoms of allergic asthma in a murine model of this disease. A PPARgamma ligand, 15-deoxy-delta(12,14)-prostaglandin J(2), significantly inhibited production of the T(H)2 type cytokine IL-5 from T cells activated in vitro. More importantly, in a murine model of allergic asthma, mice treated orally with ciglitazone, a potent synthetic PPARgamma ligand, had significantly reduced lung inflammation and mucous production following induction of allergic asthma. T cells from these ciglitazone treated mice also produced less IFNgamma, IL-4, and IL-2 upon rechallenge in vitro with the model allergen. Our results suggest that ligands for PPARgamma may be effective treatments for asthmatic patients.  相似文献   

4.
We have investigated the potential use of peroxisome proliferator-activated receptor gamma (PPARgamma) agonists as anti-inflammatory agents in cell-based assays and in a mouse model of endotoxemia. Human peripheral blood monocytes were treated with LPS or PMA and a variety of PPARgamma agonists. Although 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) at micromolar concentrations significantly inhibited the production of TNF-alpha and IL-6, four other high affinity PPARgamma ligands failed to affect cytokine production. Similar results were obtained when the monocytes were allowed to differentiate in culture into macrophages that expressed significantly higher levels of PPARgamma or when the murine macrophage cell line RAW 264.7 was used. Furthermore, saturating concentrations of a potent PPARgamma ligand not only failed to block cytokine production, but also were unable to block the inhibitory activity of 15d-PGJ2. Thus, activation of PPARgamma does not appear to inhibit the production of cytokines by either monocytes or macrophages, and the inhibitory effect observed with 15d-PGJ2 is most likely mediated by a PPARgamma-independent mechanism. To examine the anti-inflammatory activity of PPARgamma agonists in vivo, db/db mice were treated with a potent thiazolidinedione that lowered their elevated blood glucose and triglyceride levels as expected. When thiazolidinedione-treated mice were challenged with LPS, they displayed no suppression of cytokine production. Rather, their blood levels of TNF-alpha and IL-6 were elevated beyond the levels observed in control db/db mice challenged with LPS. Comparable results were obtained with the corresponding lean mice. Our data suggest that compounds capable of activating PPARgamma in leukocytes will not be useful for the treatment of acute inflammation.  相似文献   

5.
6.
7.
8.
Studying the production of IL-6 (interleukin-6) by monocytes, endothelial cells and smooth muscle cells we observed that cytokine inducers like IL-1, TNF alpha (tumor necrosis factor alpha), LPS (lipopolysaccharide), SAC (Staphylococcus Aureus Cowan 1) and PMA could be divided roughly into two categories. Bacterial products such as LPS or SAC have a potent IL-6 inducing effect on monocytes and minor or no effect on endothelial- and smooth muscle cells. The other category comprising IL-1, TNF alpha and PMA induces IL-6 production in endothelial- and smooth muscle cells. Only IL-1 induces IL-6 production in monocytes as well as in endothelial cells and smooth muscle cells. In addition to IL-6, also IL-1 and TNF alpha are produced by monocytes however with different kinetics. None of the stimuli had any inhibitory effect on IL-6 production with the exception of PMA. Whereas PMA induced IL-6 production in endothelial cells and it potentiated the induction of IL-6 by IL-1 in these cells, it inhibited LPS-stimulated IL-6 production in monocytes. In line with the effects of PMA, staurosporin induced IL-6 production in monocytes and it inhibited IL-1 driven IL-6 production by endothelial cells.  相似文献   

9.
Amyloid deposition within the brains of Alzheimer's Disease patients results in the activation of microglial cells and the induction of a local inflammatory response. The interaction of microglia or monocytes with beta-amyloid (A beta) fibrils elicits the activation a complex tyrosine kinase-based signal transduction cascade leading to stimulation of multiple independent signaling pathways and ultimately to changes in proinflammatory gene expression. The A beta-stimulated expression of proinflammatory genes in myeloid lineage cells is antagonized by the action of a family of ligand-activated nuclear hormone receptors, the peroxisome proliferator-activated receptors (PPARs). We report that THP-1 monocytes express predominantly PPAR gamma isoform and lower levels of PPAR alpha and PPAR delta isoforms. PPAR mRNA levels are not affected by differentiation of the cells into a macrophage phenotype, nor are they altered following exposure to the classical immune stimulus, lipopolysaccharide. Previous studies have found that PPAR gamma agonists act broadly to inhibit inflammatory responses. The present study explored the action of the PPAR alpha isoform and found that PPAR alpha agonists inhibited the A beta-stimulated expression of TNFalpha and IL-6 reporter genes in a dose-dependent manner. Moreover, the PPAR alpha agonist WY14643 inhibited macrophage differentiation and COX-2 gene expression. However, the PPAR alpha agonists failed to inhibit A beta-stimulated elaboration of neurotoxic factors by THP-1 cells. These findings demonstrate that PPAR alpha acts to suppress a diverse array of inflammatory responses in monocytes.  相似文献   

10.
11.
12.
ObjectivesTNF-like weak inducer of apoptosis (TWEAK), a member of the TNF superfamily, has been shown to increase cytokine production by rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS). In this study, we determined the effect of interaction between TWEAK and its receptor fibroblast growth factor-inducible-14 (Fn14) on cytokine expression in RAFLS.MethodsRAFLS were obtained from surgical synovial specimens and used at passage 5–10. Cytokine protein and mRNA expression were measured with ELISA and real time-PCR, respectively. Apoptotic cells were detected by TUNEL assay. RelB activation was detected by Western blot analysis.ResultsTWEAK inhibited IL-6 production from total synovial cells from RA. TWEAK weakly induced FLS IL-6 and IL-8, but in contrast TWEAK dose-dependently inhibited IL-6 and IL-8 production by TNFα-activated FLS. TWEAK did not induce apoptosis in FLS but inhibited proliferation of TNFα-activated FLS. TWEAK induced RelB activation and suppressed IL-6 mRNA expression in TNFα-activated FLS and both of these phenomenon were abolished by inhibition of new protein synthesis with cycloheximide.ConclusionsTWEAK has a previously unsuspected inhibitory effect on cytokine production by TNFα-activated RAFLS. This observation suggests that the effects of TWEAK on cytokine expression varies with the pro-inflammatory context, and that in TNFα-activated states such as RA TWEAK may have a net inhibitory effect.  相似文献   

13.
We examined the expression of peroxisome proliferator-activated receptors (PPARs) and the role of PPARs in cytokine production in mouse bone marrow-derived mast cells (mBMMCs). mBMMCs expressed PPARbeta strongly and gamma slightly, but not alpha. Activation of mBMMCs with antigen or calcium ionophore resulted in the increased expression of PPARgamma mRNA specifically. 15-Deoxy-Delta(12, 14)-prostaglandin J(2) (15d-PGJ(2)) and troglitazone, all PPARgamma ligands, attenuated the antigen-induced cytokine production by mBMMCs. Carbaprostacyclin, a PPARbeta ligand, also inhibited cytokine production, whereas PPARalpha ligands did not. These results suggest that PPARbeta and gamma might be included in the negative regulation of mast cell activation.  相似文献   

14.
15.
A number of studies have investigated the effects of fish oil on the production of pro-inflammatory cytokines using peripheral blood mononuclear cell models. The majority of these studies have employed heterogeneous blends of long-chain n-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which preclude examination of the individual effects of LC n-3 PUFA. This study investigated the differential effects of pure EPA and DHA on cytokine expression and nuclear factor kappaB (NF-kappaB) activation in human THP-1 monocyte-derived macrophages. Pretreatment with 100 microM EPA and DHA significantly decreased lipopolysaccharide (LPS)-stimulated THP-1 macrophage tumor necrosis factor (TNF) alpha, interleukin (IL) 1beta and IL-6 production (P<.02), compared to control cells. Both EPA and DHA reduced TNF-alpha, IL-1beta and IL-6 mRNA expression. In all cases, the effect of DHA was significantly more potent than that of EPA (P<.01). Furthermore, a low dose (25 microM) of DHA had a greater inhibitory effect than that of EPA on macrophage IL-1beta (P<.01 and P<.04, respectively) and IL-6 (P<.003 and P<.003, respectively) production following 0.01 and 0.1 microg/ml LPS stimulation. Both EPA and DHA down-regulated LPS-induced NF-kappaB/DNA binding in THP-1 macrophages by approximately 13% (P< or =.03). DHA significantly decreased macrophage nuclear p65 expression (P< or =.05) and increased cytoplasmic IkappaBalpha expression (P< or =.05). Although similar trends were observed with EPA, they were not significant. Our findings suggest that DHA may be more effective than EPA in alleviating LPS-induced pro-inflammatory cytokine production in macrophages - an effect that may be partly mediated by NF-kappaB. Further work is required to elucidate additional divergent mechanisms to account for apparent differences between EPA and DHA.  相似文献   

16.
17.
This report describes the anti-inflammatory effects of MeOH extract from leaves of Carpinus tschonoskii (CE) on primary bone marrow-derived macrophage (BMDMs) and dendritic cells (BMDCs). Primary BMDMs and BMDCs were used for pro-inflammatory cytokine production and Western blot analysis. Human embryonic kidney cell line 293?T (HEK293?T) was used to access NF-κB activity. In all cases, CpG DNA was used to stimulate the cells. The CE (0-150?μg/ml) was treated to BMDMs, BMDCs, and HEK293T cells. CE pre-treatment in CpG-stimulated BMDMs and BMDCs showed a dose-dependent inhibitory effect on pro-inflammatory cytokine (e.g., IL-12 p40, IL-6, and TNF-α) production as compared to non-treated controls. The CE pre-treatment had no significant inhibition on mitogen-activated protein kinases (MAPKs) phosphorylation but strongly inhibited IκBα degradation. In NF-κB reporter gene assay, the CE pre-treatment inhibited NF-κB-dependent luciferase activity in a dose-dependent manner. Taken together, these data suggest that CE has significant inhibitory effect on pro-inflammatory cytokine production and warrant further studies concerning potentials of CE for medicinal uses.  相似文献   

18.
Human adipose tissue is a main contributor to plasma levels of pro-inflammatory cytokine IL-6. How IL-6 expression is regulated in adipocytes remains unclear. In the current study, we investigated the effect of the HMG-CoA reductase inhibitor, cerivastatin, on the production of IL-6 from cultured human adipocytes. Cerivastatin reduced both IL-6 mRNA and secretion in a dose- and time-dependent manner. The inhibitory effect on IL-6 mRNA was prevented by the intermediates of the cholesterol synthesis pathway, mevalonate and geranyl-geranyl-phyrophosphate (GGPP) but not by farnesyl-pyrophosphate. This suggests the involvement of geranylgeranyl-modified intermediates in the effect of cerivastatin on IL-6. Moreover, cerivastatin induced an inactivation of the phosphorylation of the p65 subunit of NFkappaB which was prevented by GGPP. Our data suggest that cerivastatin exerts an anti-inflammatory effect by down-regulating IL-6 levels in adipocytes, which seems to be mediated by reduced production of GGPP and interference with the NFkappaB pathway.  相似文献   

19.
Park JY  Kawada T  Han IS  Kim BS  Goto T  Takahashi N  Fushiki T  Kurata T  Yu R 《FEBS letters》2004,572(1-3):266-270
Capsaicin, a major ingredient of hot pepper, is considered to exhibit anti-inflammatory properties. Our previous study demonstrated that capsaicin inhibited the production of pro-inflammatory mediators through NF-kappaB inactivation in LPS-stimulated macrophages. In order to further clarify the mechanism underlying the anti-inflammatory action of capsaicin, we investigated whether capsaicin alters PPARgamma activity, which regulates the production of the pro-inflammatory cytokine TNFalpha. Capsaicin significantly inhibited the production of TNFalpha by macrophages in a dose-dependent manner. Simultaneous exposure of the cells to capsaicin and PPARgamma agonist troglitazone or RXR agonist LG100268 resulted in stronger inhibition of TNFalpha production compared to the cells treated with either capsaicin, troglitazone, or LG100268 alone. Luciferase reporter assay revealed that capsaicin induced GAL4/PPARgamma chimera and full length PPARgamma (PPRE) transactivations in a dose-dependent manner. Furthermore, a specific PPARgamma antagonist T0070907 abrogated the inhibitory action of capsaicin on LPS-induced TNFalpha production by RAW 264.7 cells, indicating that capsaicin acts like a ligand for PPARgamma. Our data demonstrate for the first time that the anti-inflammatory action of capsaicin may be mediated by PPARgamma activation in LPS-stimulated RAW 264.7 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号