首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Sequence-selective recognition of double-stranded (ds) DNA by homopyrimidine peptide nucleic acid (PNA) oligomers can occur by major groove triplex binding or by helix invasion via triplex P-loop formation. We have compared the binding of a decamer, a dodecamer and a pentadecamer thymine–cytosine homopyrimidine PNA oligomer to a sequence complementary homopurine target in duplex DNA using gel-shift and chemical probing analyses. We find that all three PNAs form stable triplex invasion complexes, and also conventional triplexes with the dsDNA target. Triplexes form with much faster kinetics than invasion complexes and prevail at lower PNA concentrations and at shorter incubation times. Furthermore, increasing the ionic strength strongly favour triplex formation over invasion as the latter is severely inhibited by cations. Whereas a single triplex invasion complex is formed with the decameric PNA, two structurally different target-specific invasion complexes were characterized for the dodecameric PNA and more than five for the pentadecameric PNA. Finally, it is shown that isolated triplex complexes can be converted to specific invasion complexes without dissociation of the Hoogsteen base-paired triplex PNA. These result demonstrate a clear example of a ‘triplex first’ mechanism for PNA helix invasion.  相似文献   

2.
We investigated the mechanism and kinetic specificity of binding of peptide nucleic acid clamps (bis-PNAs) to double-stranded DNA (dsDNA). Kinetic specificity is defined as a ratio of initial rates of PNA binding to matched and mismatched targets on dsDNA. Bis-PNAs consist of two homopyrimidine PNA oligomers connected by a flexible linker. While complexing with dsDNA, they are known to form P-loops, which consist of a [PNA]2-DNA triplex and the displaced DNA strand. We report here a very strong pH-dependence, within the neutral pH range, of binding rates and kinetic specificity for a bis-PNA consisting of only C and T bases. The specificity of binding reaches a very sharp and high maximum at pH 6.9. In contrast, if all the cytosine bases in one of the two PNA oligomers within the bis-PNA are replaced by pseudoisocytosine bases (J bases), which do not require protonation to form triplexes, a weak dependence on pH of the rates and specificity of the P-loop formation is observed. A theoretical analysis of the data suggests that for (C+T)-containing bis-PNA the first, intermediate step of PNA binding to dsDNA occurs via Hoogsteen pairing between the duplex target and one oligomer of bis-PNA. After that, the strand invasion occurs via Watson-Crick pairing between the second bis-PNA oligomer and the homopurine strand of the target DNA, thus resulting in the ultimate formation of the P-loop. The data for the (C/J+T)-containing bis-PNA show that its high affinity to dsDNA at neutral pH does not seriously compromise the kinetic specificity of binding. These findings support the earlier expectation that (C/J+T)-containing PNA constructions may be advantageous for use in vivo.  相似文献   

3.
Bentin T  Larsen HJ  Nielsen PE 《Biochemistry》2003,42(47):13987-13995
"Tail-clamp" PNAs composed of a short (hexamer) homopyrimidine triplex forming domain and a (decamer) mixed sequence duplex forming extension have been designed. Tail-clamp PNAs display significantly increased binding to single-stranded DNA compared with PNAs lacking a duplex-forming extension as determined by T(m) measurements. Binding to double-stranded (ds) DNA occurred by combined triplex and duplex invasion as analyzed by permanganate probing. Furthermore, C(50) measurements revealed that tail-clamp PNAs consistently bound the dsDNA target more efficiently, and kinetics experiments revealed that this was due to a dramatically reduced dissociation rate of such complexes. Increasing the PNA net charge also increased binding efficiency, but unexpectedly, this increase was much more pronounced for tailless-clamp PNAs than for tail-clamp PNAs. Finally, shortening the tail-clamp PNA triplex invasion moiety to five residues was feasible, but four bases were not sufficient to yield detectable dsDNA binding. The results validate the tail-clamp PNA concept and expand the applications of the P-loop technology.  相似文献   

4.
Peptide nucleic acids (PNAs) have been developed for applications in biotechnology and therapeutics. There is great potential in the development of chemically modified PNAs or other triplex-forming ligands that selectively bind to RNA duplexes, but not single-stranded regions, at near-physiological conditions. Here, we report on a convenient synthesis route to a modified PNA monomer, thio-pseudoisocytosine (L), and binding studies of PNAs incorporating the monomer L. Thermal melting and gel electrophoresis studies reveal that L-incorporated 8-mer PNAs have superior affinity and specificity in recognizing the duplex region of a model RNA hairpin to form a pyrimidine motif major-groove RNA2–PNA triplex, without appreciable binding to single-stranded regions to form an RNA–PNA duplex or, via strand invasion, forming an RNA–PNA2 triplex at near-physiological buffer condition. In addition, an L-incorporated 8-mer PNA shows essentially no binding to single-stranded or double-stranded DNA. Furthermore, an L-modified 6-mer PNA, but not pseudoisocytosine (J) modified or unmodified PNA, binds to the HIV-1 programmed −1 ribosomal frameshift stimulatory RNA hairpin at near-physiological buffer conditions. The stabilization of an RNA2–PNA triplex by L modification is facilitated by enhanced van der Waals contacts, base stacking, hydrogen bonding and reduced dehydration energy. The destabilization of RNA–PNA and DNA–PNA duplexes by L modification is due to the steric clash and loss of two hydrogen bonds in a Watson–Crick-like G–L pair. An RNA2–PNA triplex is significantly more stable than a DNA2–PNA triplex, probably because the RNA duplex major groove provides geometry compatibility and favorable backbone–backbone interactions with PNA. Thus, L-modified triplex-forming PNAs may be utilized for sequence-specifically targeting duplex regions in RNAs for biological and therapeutic applications.  相似文献   

5.
6.
Peptide nucleic acid (PNA) is a synthetic DNA mimic with valuable properties and a rapidly growing scope of applications. With the exception of recently introduced pseudocomplementary PNAs, binding of common PNA oligomers to target sites located inside linear double-stranded DNAs (dsDNAs) is essentially restricted to homopurine–homopyrimidine sequence motifs, which significantly hampers some of the PNA applications. Here, we suggest an approach to bypass this limitation of common PNAs. We demonstrate that PNA with mixed composition of ordinary nucleobases is capable of sequence-specific targeting of complementary dsDNA sites if they are located at the very termini of DNA duplex. We then show that such targeting makes it possible to perform capturing of designated dsDNA fragments via the DNA-bound biotinylated PNA as well as to signal the presence of a specific dsDNA sequence, in the case a PNA beacon is employed. We also examine the PNA–DNA conjugate and prove that it can initiate the primer-extension reaction starting from the duplex DNA termini when a DNA polymerase with the strand-displacement ability is used. We thus conclude that recognition of duplex DNA by mixed-base PNAs via the end invasion has a promising potential for site-specific and sequence-unrestricted DNA manipulation and detection.  相似文献   

7.
8.
A simple theoretical analysis shows that specificity of double-stranded DNA (dsDNA) targeting by homopyrimidine peptide nucleic acids (hpyPNAs) is a kinetically controlled phenomenon. Our computations give the optimum conditions for sequence-specific targeting of dsDNA by hpyPNAs. The analysis shows that, in agreement with the available experimental data, kinetic factors play a crucial role in the selective targeting of dsDNA by hpyPNAs. The selectivity may be completely lost if PNA concentration is too high and/or during prolonged incubation of dsDNA with PNA. However, quantitative estimations show that the experimentally observed differences in the kinetic constants for hpyPNA binding with the correct and mismatched DNA sites are sufficient for sequence-specific targeting of long genomic DNA by hpyPNAs with a high yield under appropriate experimental conditions. Differential dissociation of hpyPNA/dsDNA complexes is shown to enhance the selectivity of DNA targeting by PNA.  相似文献   

9.
Targeting double-stranded DNA with homopyrimidine PNAs results in strand displacement complexes PNA/DNA/PNA rather than PNA/DNA/DNA triplex structures. Not much is known about the binding properties of DNA-PNA chimeras. A 16-mer 5'-DNA-3'-p-(N)PNA(C) has been investigated for its ability to hybridize a complementary duplex DNA by DSC, CD, and molecular modeling studies. The obtained results showed the formation of a triplex structure having similar, if not slightly higher, stability compared to the same all-DNA complex.  相似文献   

10.
The synthesis and DNA binding properties of bis-PNA (peptide nucleic acid) are reported. Two PNA segments each of seven nucleobases in length were connected in a continuous synthesis via a flexible linker composed of three 8-amino-3,6-dioxaoctanoic acid units. The sequence of the first strand was TCTCTTT (C- to N-terminal), while the second strand was TTTCTCT or TTTJTJT, where J is pseudoisocytosine. These bis-PNAs form triple-stranded complexes of somewhat higher thermal stability than monomeric PNA with complementary oligonucleotides and the thermal melting transition shows very little hysteresis. When the J base is placed in the strand parallel to the DNA complement ('Hoogsteen strand'), the DNA binding was pH independent. The bis-PNAs were also superior to monomeric PNAs for targeting double-stranded DNA by strand invasion.  相似文献   

11.
Dissociation kinetics of triplexes formed by molecules of peptide nucleic acid (PNA) and DNA have been studied. The complexes consisted of oligomeric PNA containing 10 thymine bases and the dA(10) target incorporated in single-stranded (ssDNA) or double-stranded DNA (dsDNA). Their dissociation was followed by means of the gel mobility shift assay at various temperatures and sodium ion concentrations. In all experiments, the dissociation kinetics of triplexes were exponential; the effective lifetime of a triplex, tau, depended on temperature in accordance with the Arrhenius law. The tau values for T(10) PNA complexes with ss- and dsDNA were equal within the accuracy of experiments. The activation energy, U, value for T(10) PNA-DNA complexes did not change when the NaCl concentration was increased from 50 to 200 or 600 mM. Conversely, the tau values decreased with the increase in NaCl concentration. The equal lifetimes of the T(10) PNA-DNA triplexes containing ss- and dsDNA suggest that the loop formed in dsDNA does not noticeably affect the triplex structure. The decrease in the triplex lifetime tau with an increase in ionic strength was accounted for by the fact that the PNA backbone is neutral. The lack of relationship between the activation energy of dissociation and salt concentration suggests that the dissociation enthalpy does not depend on the ionic strength. Thus, the effect of ionic strength on the lifetime is entropic by its nature. Contrary to this, for complexes of ssDNA with bis-PNA 1743, which also consists of 10 thymine bases but contains 2 additional positive charges inside the sequence in 1 of the PNA arms, an increase of the dissociation enthalpy at low salt concentration was observed. We suggest that this effect is a result of a direct electrostatic interaction of the positive charges of the PNA with the DNA backbone. Finally, our results allow an estimate of the lifetime of a 10-mer triplex invasion complex in dsDNA at 37 degrees C in excess of several hundred days.  相似文献   

12.
Peptide nucleic acid (PNA) binding-mediated gene regulation   总被引:2,自引:0,他引:2  
Wang G  Xu XS 《Cell research》2004,14(2):111-116
  相似文献   

13.
The binding of PNA (peptide nucleic acid) T2CT2CT4-LysNH2 to the double-stranded DNA target 5′ -A2GA2GA4 was studied by KMnO4 and dimethylsulfate (DMS) probing. It is found that upon sequence-specific strand displacement binding of the PNA to the dsDNA target concomitant protection of the N-7 of guanines within the target takes place. It is furthermore shown that the binding of this PNA is more efficient at pH 5.5 that at pH 6.5 and very inefficient at pH 7.5. These results clearly indicate that C+G Hoogsteen base pairing is present and important for binding and that the strand displacement complex therefore involves a PNA·DNA-PNA triplex.  相似文献   

14.
A novel bicyclic mimic of protonated cytosine [1,8-naphthyridin-2,7-(1,8H)-dione, (K)] for Hoogsteen type triplex recognition of guanine has been designed for incorporation into peptide nucleic acids. Bis-PNA clamps with the K base incorporated in the Hoogsteen strand showed a significant stabilization of the triplexes at pH 7 as compared to similar triplexes with PNA oligomers containing either cytosine (6.7 degrees C per unit) or pseudoisocytosine (1.5 degrees C per unit). Cooperative stabilization was observed when the K units were placed in adjacent positions ( approximately 3 degrees C per unit).  相似文献   

15.
Solution structure of a dsDNA:LNA triplex   总被引:1,自引:1,他引:0       下载免费PDF全文
We have determined the NMR structure of an intramolecular dsDNA:LNA triplex, where the LNA strand is composed of alternating LNA and DNA nucleotides. The LNA oligonucleotide binds to the dsDNA duplex in the major groove by formation of Hoogsteen hydrogen bonds to the purine strand of the duplex. The structure of the dsDNA duplex is changed to accommodate the LNA strand, and it adopts a geometry intermediate between A- and B-type. There is a substantial propeller twist between base-paired nucleobases. This propeller twist and a concomitant large propeller twist between the purine and LNA strands allows the pyrimidines of the LNA strand to interact with the 5′-flanking duplex pyrimidines. Altogether, the triplex has a regular global geometry as shown by a straight helix axis. This shows that even though the third strand is composed of alternating DNA and LNA monomers with different sugar puckers, it forms a seamless triplex. The thermostability of the triplex is increased by 19°C relative to the unmodified DNA triplex at acidic pH. Using NMR spectroscopy, we show that the dsDNA:LNA triplex is stable at pH 8, and that the triplex structure is identical to the structure determined at pH 5.1.  相似文献   

16.
17.
Strand displacement binding kinetics of cationic pseudoisocytosine-containing linked homopyrimidine peptide nucleic acids (bis-PNAs) to fully matched and singly mismatched decapurine targets in double-stranded DNA (dsDNA) are reported. PNA-dsDNA complex formation was monitored by gel mobility shift assay and pseudo-first order kinetics of binding was obeyed in all cases studied. The kinetic specificity of PNA binding to dsDNA, defined as the ratio of the initial rates of binding to matched and mismatched targets, increases with increasing ionic strength, whereas the apparent rate constant for bis-PNA-dsDNA complex formation decreases exponentially. Surprisingly, at very low ionic strength two equally charged bis-PNAs which have the same sequence of nucleobases but different linkers and consequently different locations of three positive charges differ in their specificity of binding by one order of magnitude. Under appropriate experimental conditions the kinetic specificity for bis-PNA targeting of dsDNA is as high as 300. Thus multiply charged cationic bis-PNAs containing pseudoisocytosines (J bases) in the Hoogsteen strand combined with enhanced binding affinity also exhibit very high sequence specificity, thereby making such reagents extremely efficient for sequence-specific targeting of duplex DNA.  相似文献   

18.
Oligodeoxynucleotide (ODN) directed triplex formation has therapeutic importance and depends on Hoogsteen hydrogen bonds between a duplex DNA and a third DNA strand. T*A:T triplets are formed at neutral pH and C+*G:C are favoured at acidic pH. It is demonstrated that spermine conjugation at N4 of 5-Me-dC in ODNs 1-5 (sp-ODNs) imparts zwitterionic character, thus reducing the net negative charge of ODNs 1-5. sp-ODNs form triplexes with complementary 24mer duplex 8:9 show foremost stability at neutral pH 7.3 and decrease in stability towards lower pH, unlike the normal ODNs where optimal stability is found at an acidic pH 5.5. At pH 7.3, control ODNs 6 and 7 carrying dC or 5-Me-dC, respectively, do not show any triple helix formation. The stability order of triplex containing 5-Me-dC-N4-(spermine) with normal and mismatched duplex was found to be X*G:C approximately X*A:T > X*C:G > X*T:A. The hysteresis curve of sp-ODN triplex 3*8:9 indicated a better association with complementary duplex 8:9 as compared to unmodified ODN 6 in triplex 6*8:9. pH-dependent UV difference spectra suggest that N3 protonation is not a requirement for triplex formation by sp-ODN and interstrand interaction of conjugated spermine more than compensates for loss in stability due to absence of a single Hoogsteen hydrogen bond. These results may have importance in designing oligonucleotides for antigene applications.  相似文献   

19.
In the search of facile and efficient methods for PNA cellular delivery, we have tested a series of PNA conjugates based on (hetero) aromatic, lipophilic compounds such as 9-aminoacridine, benzimidazoles, carbazole, anthraquinone, porphyrine, psoralen, pyrene, and phenyl-bis-benzimidazole ("Hoechst"). These chemically modified PNAs were delivered to cultured pLuc705HeLa cells mediated by cationic liposomes (LipofectAMINE or LiofectAMINE2000), and their nuclear delivery was inferred from induced luciferase activity as a consequence of pre-mRNA splicing correction by the antisense-PNA. PNAs modified with 9-aminoacridine, "Hoechst", or acetyl-"Hoechst" showed highest antisense activities (while unmodified PNA failed to show any significant antisense activity). In particular, bis-acridine-conjugated PNA showed nearly 60% splicing correction at 250 nM concentration in combination with LipofectAMINE2000. Interestingly, relative differences between the derivatives were observed when LipofectAMINE was used as compared to LipofectAMINE2000, but in general the latter yielded the higher antisense activity. The most active modifications of these PNA constructs were further tested for antisense down-regulation of luciferase in p53R cells in order to evaluate the cytoplasmic activity (uptake) of the PNAs. A dose-dependent down regulation of luciferase was demonstrated also in this system. The PNA conjugated to acetyl-Hoechst caused a reduction of luciferase activity to less than 40% of the control at a concentration of 1 muM. These results indicate that conjugation of (hetero) polyaromatic compounds to PNA can dramatically improve liposome-mediated cellular delivery both to cytoplasm as well as to the nucleus. However, no clear structure/activity relations are apparent from the present results, except that both 9-aminoacridine and "Hoechst" are also nucleic acid binding ligands.  相似文献   

20.
The P-N bond in oligonucleotide P3' --> N5' phosphoramidates (5'-amino-DNA) is known to be chemoselectively cleaved under mild acidic conditions. We prepared homopyrimidine oligonucleotides containing 5'-amino-5'-deoxythymidine (5'-amino-DNA thymine monomer) or its conformationally locked congener, 5'-amino-2',4'-BNA thymine monomer, at midpoint of the sequence. The effect of triplex formation with homopurineohomopyrimidine dsDNA targets on acid-mediated hydrolysis of the P3' --> N5' phosphoramidate linkage was evaluated. Very interestingly, it was found that the triplex formation significantly accelerates the P-N bond cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号