首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 822 毫秒
1.
2.
Mechanoreceptor organs occur in great diversity in insect legs. This study investigates sensory organs in the leg of atympanate cave crickets (Troglophilus neglectus KRAUSS, 1879) by neuronal tracing. Previously, the subgenual and the intermediate organs were recognised in the subgenual organ complex, lacking the tympanal membranes present for example in the tibial hearing organs of Gryllidae and Tettigoniidae. We document the presence of the accessory organ in T. neglectus. This scolopidial organ is located in the posterior tibia close to the subgenual organ and can be identified by position, innervation and orientation of the dendrites of sensory neurons. The main motor nerve in the leg innervates a part of the subgenual organ and the accessory organ. The dendrites of sensory neurons in the accessory organ are characteristically bent in proximo‐dorsal direction, while the subgenual organ dendrites run distally along the longitudinal axis of the leg. The accessory organ contains 6–10 scolopidial sensilla, and no differences in neuroanatomy occur between the three thoracic leg pairs. Hence, the subgenual organ complex in cave crickets is more complex than previously known. The wider taxonomic distribution of the accessory scolopidial organ among orthopteroid insects is inconsistent, indicating its repeated losses or convergent evolution.  相似文献   

3.
Summary The anatomy of the complex tibial organs in the pro-, meso- and metathoracic legs of adults and larvae of the bushcricketEphippiger ephippiger is described comparatively. The subgenual organ and the intermediate organ are differentiated in the same way in legs I, II and III; the anatomy of the crista acustica and the tracheal morphology are significantly different. The final number of scolopidia in the tibial organ of each leg is present at the time of hatching. In the subgenual organ, the number of scolopidia is the same in all legs; in the intermediate organ, and especially in the crista acustica, the number of scolopidia decreases from leg I to legs II and III. In the first larval instar, the morphology of the tibia, the course of the trachea and the anatomy of accessory structures are developed in the same way in each leg. The specific differentiations forming the auditory receptor organ in leg I, such as the acoustic trachea, the tympana and tympanal cavities, develop step by step in subsequent instars. The auditory threshold recorded from the tympanal nerve in the prothoracic leg of adults is remarkably lower than in the meso- and metathoracic legs. Morphometrical analyses of structures that are suggested to play a role in stimulus transduction on scolopidia of the crista acustica reveal significant differences in the three legs.  相似文献   

4.
This paper describes the embryonic development of some parts of the sensory peripheral nervous system in the leg anlagen of the cricket Teleogryllus commodus in normal and heat shocked embryos. The first peripheral neurons appear at the 30% stage of embryogenesis. These tibial pioneer neurons grow on a stereotyped path to the central nervous system and form a nerve which is joined by the growth cones of axons that arise later, including those from the femoral chordotonal organ, subgenual organ and tympanal organ. The development of these organs is described with respect to the increase in number of sensory receptor cells and the shape and position of the organs. At the 100% stage of embryogenesis all three organs have completed their development in terms of the number of sense cells and have achieved an adult shape. To study the function of the tibial pioneer neurons during embryogenesis a heat shock was used to prevent their development. Absence of these neurons has no effect on the development of other neurons and organs proximal to them. However, the development of distal neurons and organs guided by them is impaired. The tibial pioneer neurons grow across the segmental boundary between femur and tibia early in development, and the path they form seems to be essential for establishing the correct connections of the distal sense organs with the central nervous system.  相似文献   

5.
The structure of the complex tibial organs in the fore-, mid-, and hindlegs of the East Asian bushcricket Gampsocleis gratiosa (Tettigoniidae, Decticinae) is described comparatively. In each leg the tibial organs consist of three scolopale organs: the subgenual organ, the intermediate organ, and the crista acoustica. Only in the forelegs are the tibial organs differentiated as tympanal organs, and sound transmitting structures (acoustic trachea, tympana, and tympanal covers) are present. The morphology of the tracheae in the mid- and hindlegs is significantly different from that found in the forelegs. The number of scolopidia in the subgenual organ is highest in the midleg and lowest in the foreleg; in the intermediate organ the number is also highest in the midleg, and the fore- and hindleg contain 40% fewer scolopidia. In the crista acoustica, the number of scolopidia decreases from, the fore- to the mid- and hindlegs. The morphology and the dimensions of the scolopidia and the attachment structures within the crista acoustica of the mid- and hindlegs differ strongly from those in the foreleg. The results indicate that, in addition to the presence of a sound transmitting system, the specific differentiations within the crista acoustica are important for the high auditory sensitivity of the tibial organs in the forelegs. © 1994 Wiley-Liss, Inc.  相似文献   

6.
Summary The postembryonic development of the morphology and anatomy of the complex tibial organ in the foreleg of the bushcricket Ephippiger ephippiger is described. All the receptor cells are present in the subgenual organ, the intermediate organ and the crista acustica in the 1st larval instar. Generally, even in the 1st instar, the arrangement of the scolopidia in the three organs resembles the adult structure. The acoustic trachea, the tympana, the tympanal covers and the acoustic spiracle develop step by step in subsequent instars. The acoustic trachea resembles the adult structure for the first time in the 4th instar, although its volume is still small. The auditory threshold curves recorded from the tympanal nerve in instars 4, 5 and 6 show the same frequency maxima as those in the adult. The overall sensitivity significantly increases after the final moult. The dimensions of structures that lie within the crista acustica and that are probably involved in stimulus transduction and in frequency tuning have been analysed. The dorsal wall of the anterior trachea, the tectorial membrane and the cap cells have similar dimensions, especially in the last three instars and in adults.  相似文献   

7.
Summary The morphology of the complex tibial organs in the forelegs of two bushcricket species belonging to the Phaneropterinae and Decticinae (Tettigoniidae) is described comparatively. In both species the tibial organs are made up of the subgenual organ, the intermediate organ and the crista acustica; the latter are parts of the tympanal organs and serve as auditory receptors. The very thin tympana in the forelegs ofPholidoptera griseoaptera (Decticinae) are protected by tympanal covers whereas inLeptophyes punctatissima (Phaneropterinae) the tympana are thicker and fully exposed. The overall auditory sensitivity ofL. punctatissima is lower and the sensitivity maximum of the hearing threshold lies at higher frequencies compared toP. griseoaptera. The number of scolopidia in the three scolopale organs and the dimensions of parts of the sound conducting system differs in the two species. In the crista acustica ofL. punctatissima a higher number of scolopidia is distributed in a smaller range than inP. griseoaptera; the scolopidia are especially concentrated in the distal part. Morphometrical analyses indicate that the dimensions of the spiracles, the acoustic trachea and the tympana determine the overall auditory sensitivity and that the arrangement of the scolopidia and the dimensions of structures in the crista acustica affect the frequency tuning of the hearing threshold.  相似文献   

8.
The fine structure of the cockroach subgenual organ   总被引:1,自引:0,他引:1  
This paper describes the fine structure of the cockroach subgenual organ, a complex ciliated mechanoreceptor that detects vibrations in the substrate upon which the animal stands. Located beneath the knee in each walking leg, the cockroach subgenual organ is a thin, fan-shaped flap of tissue slung across the dorsal blood space of the tibia at right angles to the leg's long axis. It is innervated by approximately 50 chordotonal sensilla. The fine structure of the chordotonal sensilla is is described in detail ; possible transducer sites are discussed.  相似文献   

9.
Summary Most of the auditory neurons in the ventral nerve cord ofLocusta migratoria carry information not only from the tympanal organs but also from the subgenual organs (vibration sensors). Six of the eight neuron types studied electrophysiologically respond to at least these two modalities. Artificial sounds (white noise and pure tones varying in frequency and intensity) and sinusoidal vibration (200 Hz with an acceleration of 15.8 cm/s2 or 2000 Hz and 87 cm/s2) were used as stimuli.Complex excitatory and/or inhibitory interactions of the signals from both tympanal organs form the discharge patterns of auditory ventral-cord neurons in response to stimulation with air-borne sound. Normally the input of the ipsilateral sense organ dominates. The response patterns of these same neurons elicited by vibration stimuli are formed differently, as follows: (1) the sensory inputs of all subgenual organs are integrated in the responses of the ventral-cord neurons; in a single neuron they have either excitatory or inhibitory effects, but not both. (2) The more legs vibrated, the larger is the response. (3) The subgenual organs in the middle legs are most effective, those in the hind legs least so. (4) Ipsilateral vibration has more effect than contralateral.The six auditory neurons react to vibration combined with air-borne sound in different ways. The B neuron is the only one inhibited by vibration stimuli. The G neuron has been studied more intensively; because its anatomical arrangement and the location of the endings of the subgenual receptor fibers are known, it could be inferred from effects of transection of the connectives that interneurons are interposed between receptor cells and the G neuron.Part of the program Sonderforschungsbereich 114 (Bionach) Bochum, under the auspices of the Deutsche Forschungsgemeinschaft, with the support of the Slovenic Research Society (RSS)  相似文献   

10.
The central projections of trichoid hairs and of some scolopidial organs of the mesothoracic leg of the locust Schistocerca gregaria were studied by using nickel chloride backfilling and single cell recording. Trichoid hair sensilla on different parts of the legs project somatotopically in the ventral part of the ipsilateral neuropile of the mesothoracic ganglion. Generally, distally located receptors have their terminal arborizations in ventro-lateral areas of the neuropile, and proximally located receptors in ventro-medial areas. The axons of the subgenual organ and tarsal chordotonal organs project into the intermediate neuropile.  相似文献   

11.
Troglophilus neglectus (Gryllacridoidea, Raphidophoridae) is a nocturnal Ensifera which can be found in caves of Slovenia. The anatomy of the tibial organs in the fore-, mid-, and hindlegs, as well as the external morphology of the proximal fore-tibia and the prothoracic tracheal system, is described comparatively. In the prothorax and in the forelegs, no sound-conducting structures such as an acoustic trachea, enlarged spiracles, or tympana are developed. A group of 8–10 campaniform sensillae is located in the dorsal cuticle of the proximal tibia. In each leg, the tibial organ complex is built up by two scolopale organs, the subgenual organ and the intermediate organ; the structure and the number of scolopidia is similar in each leg. No structure resembling the crista acoustica is found. The subgenual organ contains around 30 scolopidia; the intermediate organ is subdivided into a proximal part containing 8-9 scolopidia and a distal part with 5–6 scolopidia. The two groups of scolopidia are not directly connected to the tracheal system. The tibial organs in the forelegs are insensitive to airborne sound, and they appear to be more primitive compared to those found in members of the Tettigoniidae and the Gwllidae. The results indicate that the complex tibial organs in all legs of T. neglectus are primarily vibrosensitive. © 1995 Wiley-Liss, Inc.  相似文献   

12.
Summary The praying mantis, Mantis religiosa, is unique in possessing a single, tympanal auditory organ located in the ventral midline of its body between the metathoracic coxae. The ear is in a deep groove and consists of two tympana facing each other and backed by large air sacs. Neural transduction takes place in a structure at the anterior end of the groove. This tympanal organ contains 32 chordotonal sensilla organized into three groups, two of which are 180° out of line with the one attaching directly to the tympanum. Innervation is provided by Nerve root 7 from the metathoracic ganglion. Cobalt backfills show that the auditory neuropile is a series of finger-like projections terminating ipsilaterally near the midline, primarily near DC III and SMC. The auditory neuropile thus differs from the pattern common to all other insects previously studied.  相似文献   

13.
I. Hasenfuss 《Zoomorphology》1997,117(3):155-164
 The patterns of scolopal organs and their innervation were studied by the methylene blue method in larvae, pupae and adults of an Yponomeuta species (Yponomeutidae) and of tympanate adult representatives of the Noctuoidea, Geometridae, Drepanidae and Pyraloidea. The studies were focused mainly on the mesothorax, the metathorax and some anterior abdominal segments. In the abdominal tympanal organs of Geometridae, Drepanidae and Pyraloidea, the auditory scolopidia are homologous with the lateral scolopal organs of the first abdominal segment; however, the hearing organs as such evolved independently in the three taxa. The studies confirm that the tympanal organ in the Noctuoidea is derived from the caudal dorsolateral region of the metathorax including its dorsal scolopal organ and the B-cell. The adult scolopal organs are present already in the larvae and are maintained nearly unchanged during metamorphosis to the adult. Only in the Noctuoidea are the three sensory cells of the larval scolopal organs, which become part of the tympanal organs, reduced to one (in Notodontidae) or two (in other Noctuoidea) during metamorphosis. A hypothetical scenario of the evolution of the tympanal organs is outlined. Accepted: 12 March 1997  相似文献   

14.
Regeneration and reestablishment of synaptic connections is an important topic in neurobiological research. In the present study, the regeneration of auditory afferents and the accompanying effects in the central nervous system are investigated in nymphs and adults of the bush cricket Tettigonia viridissima L. (Orthoptera: Tettigoniidae). In all animals in which the tympanal nerve is crushed, neuronal tracing shows a regrowth of the afferents into the prothoracic ganglion. This regeneration is seen in both adult and nymphal stages and starts 10–15 days after nerve crushing. Physiological recordings from the leg nerve indicate a recovery of tympanal fibres and a formation of functional connections to interneurones in the same time range. Electrophysiological recordings from the neck connective suggest additional contralateral sprouting of interneurones and the formation of aberrant connections. The regeneration processes of the tympanal nerve in nymphal stages and adults appear to be similar.  相似文献   

15.
The tympanal organ of the bushcricket Mecopoda elongata emits pronounced distortion-product otoacoustic emissions (DPOAEs). Their characteristics are comparable to those measured in other insects, such as locusts and moths, with the 2f1–f2 emission being the most prominent one. Yet the site of their generation is still unclear. The spatial separation between the sound receiving spiracle and the hearing organ in this species allows manipulations of the sensory cells without interfering with the acoustical measurements. We tried to interfere with the DPOAE generation by pharmacologically influencing the tympanal organ using the insecticide pymetrozine. The compound appears to act selectively on scolopidia, i.e., the mechanosensor type characteristically constituting tympanal organs. Pymetrozine solutions were applied as closely as possible to the scolopidia via a cuticle opening in the tibia, distally to the organ. Applications of pymetrozine at concentrations between 10−3 and 10−7 M to the tympanal organ led to a pronounced and irreversible decrease of the DPOAE amplitudes.  相似文献   

16.
Insect thoracic ganglia contain efferent octopaminergic unpaired median neurons (UM neurons) located in the midline, projecting bilaterally and modulating neuromuscular transmission, muscle contraction kinetics, sensory sensitivity and muscle metabolism. In locusts, these neurons are located dorsally or ventrally (DUM- or VUM-neurons) and divided into functionally different sub-populations activated during different motor tasks. This study addresses the responsiveness of locust thoracic DUM neurons to various sensory stimuli. Two classes of sense organs, cuticular exteroreceptor mechanosensilla (tactile hairs and campaniform sensilla), and photoreceptors (compound eyes and ocelli) elicited excitatory reflex responses. Chordotonal organ joint receptors caused no responses. The tympanal organ (Müller's organ) elicited weak excitatory responses most likely via generally increased network activity due to increased arousal. Vibratory stimuli to the hind leg subgenual organ never elicited responses. Whereas DUM neurons innervating wing muscles are not very responsive to sensory stimulation, those innervating leg and other muscles are very responsive to stimulation of exteroreceptors and hardly responsive to stimulation of proprioceptors. After cutting both cervical connectives all mechanosensory excitation is lost, even for sensory inputs from the abdomen. This suggests that, in contrast to motor neurons, the sensory inputs to octopaminergic efferent neuromodulatory cells are pre-processed in the suboesophageal ganglion.  相似文献   

17.
In a recent study on the honeybee (Apis mellifera), the subgenual organ was observed moving inside the leg during sinusoidal vibrations of the leg (Kilpinen and Storm 1997). The subgenual organ of the honeybee is suspended in a haemolymph channel in the tibia of each leg. When the leg accelerates, the inertia causes the haemolymph and the subgenual organ to lag behind the movement of the rest of the leg. To elucidate the biophysics of the subgenual organ system of the honeybee, two mathematical models to simulate the experimentally observed mechanical response are considered. The models are a classical mass-spring model and a newly developed tube model consisting of an open-ended, fluid-filled tube occluded by an elastic structure midway. Both models suggest that the subgenual organ included in the haemolymph channel resembles that of an overdamped system. In resembling the biophysics of the subgenual organ system in the honeybee, we consider the tube model to be the better of the two because it simulates a mechanical response which complies best with the experimental data, and the physical parameters in the model can be related to the␣constituent parts of the subgenual organ included in the haemolymph channel. Received: 25 July 1997 / Accepted in revised form: 8 December 1997  相似文献   

18.
The tympanal organ of the cricket Scapsipedus marginatus contains receptor neurons that are tuned to the dominant frequency of the species-specific calling song (F1 units), as demonstrated by single unit recordings. F1 units have simple threshold curves with just one characteristic frequency, and they can be characterized by their latency and adaptation rate. The pattern with which these units respond to song indicates that they are a principal source of peripheral input to the CNS for song reception. The tympanal nerve sends its sensory arborizations to the ventromedial neuropile of the prothoracic ganglion. Fibers of the tympanal nerve do not cross the midline; nor do they project to other ganglia, insofar as can be demonstrated with cobalt chloride iontophoresis.  相似文献   

19.
The subgenual organ of the honeybee (Apis mellifera) is suspended in a haemolymph channel in the tibia of each leg. When the leg is accelerated, inertia causes the haemolymph (and the subgenual organ) to lag behind the movement of the rest of the leg. The magnitude of this phase lag determines the displacement of the subgenual organ relative to the leg and to the proximal end of the organ, which is connected to the cuticle. Oscillations of the subgenual organ are visualised during vibration stimulation of the leg, by means of stroboscopic light. Video analysis provides fairly accurate values of the amplitude and phase of the oscillations, which are compared with the predictions of a model.   The model comparison shows that the haemolymph channel can be described as an oscillating fluid-filled tube occluded by an elastic structure (probably the subgenual organ). The mechanical properties of the subgenual organ and haemolymph channel resemble those of an overdamped mass-spring system. A comparison of the threshold curve of the subgenual organ determined using electrophysiology with that predicted by the oscillating tube model suggests that the sensory cells respond to displacements of the organ relative to the leg. Accepted: 10 May 1997  相似文献   

20.
Small swellings near the base of the radial vein in each fore wing of the green lacewing, Chrysopa carnea, resemble typical insect tympanal organs, but some important differences are apparent. The swellings are bounded dorsally and laterally by thick cuticle and ventrally by thin, membranous cuticle. The ventral membrane is formed by a single, thin sheet of exocuticle with flattened hypodermis internally, but lacks the tracheal component that forms part of the tympanum in the typical insect tympanal organ. The portion of the membrane beneath each swelling is rippled while proximally it is smooth. In contrast to typical insect tympanal organs, the swellings in C. carnea are largely fluid-filled since an unexpanded trachea runs through each organ. A distal and a proximal chordotonal organ composed of typical chordotonal sensory units are associated with each swelling. The distal organ contains from five to seven units while the proximal organ is composed of from 18 to 20 units. Each sensory unit is composed of three readily identifiable cells. Distally, an attachment cell unites with the membrane and is contiguous with the scolopale cell, which surrounds the dendrite of the bipolar neuron. On the basis of the morphological evidence, one would not expect these swellings to function as sound receptors. However, the results of physiological and behavioral experiments, presented elsewhere, show that these organs are receptors for ultrasound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号