首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Change of biopotentials spatial synchronization under functional loads addressed predominantly to one or the other hemisphere (correlative analysis of the first EEG derivative of more than two thousands healthy subjects of various age), allowed to single out three phenotypes of hemispheric relations differing mainly by different types of information processing: right-hemispheric, left-hemispheric or mixed. Expressed EEG activation in both hemispheres (judged by alpha-index change) is manifest when the subject is presented with a task, the context of which does not correspond to the initially dominating type: in right-hemispheric--at solution of tasks, oriented to logical-verbal context and in left-hemispheric--to spatial-image one. The high level of non-specific EEG activation may be considered as an attempt of compensation of relative functional insufficiency of the right hemisphere systems in initially left-hemispheric or left-hemisphere systems in right-hemispheric individuals.  相似文献   

2.
A new computerized method for EEG rhythms extraction is proposed as a development of the idea of adjustable boundaries of frequency components that was put forward in previous investigations. Principle component analysis of the correlation matrix of EEG spectra with subsequent rotation of factor solutions was used for decomposition of a spectrum into physically meaningful spectral components. The method was tested on EEG of 14 healthy subjects recorded in 17 functional waking states. Fourteen independent spectral components in the spectral range from 0 to 100 Hz were extracted and their frequency boundaries were consistent with the current knowledge on frequency components of EEG oscillations. Main advantage of the described method is the adjustable estimation of EEG frequency oscillators taking into account characteristic properties of individual EEGs. Possible area of application might be the correct evaluation of spectral power of the EEG rhythms, EEG coherence and other spectral characteristics in clinical and experimental research, studies of the frequency characteristics of the EEG rhythms in different human functional states, changes in frequency characteristics of the EEG rhythms during maturation and in mental pathology.  相似文献   

3.
Two experiments, each with 24 normal right-handed adults, examined variability of the response of EEG alpha rhythms during repeated visual stimulations that were contingent on the occurrence of those rhythms. Within-trial variability of alpha durations and no-alpha (alpha blocking) durations were recorded from bipolar derivations along two bilateral posterior-anterior lines. Variability was significantly lower for: (1) the contingent EEG connected to the stimulus compared to the contralateral EEG, which was recorded simultaneously but was not connected to the stimulus; (2) occipitoparietal EEGs compared to parietocentral EEGs; (3) alpha durations compared to no-alpha durations. Differences in variability among the four EEG locations on the left or the right side were significant for contingent EEGs but not for contralateral nonconnected EEGs. The results were interpreted to be a demonstration that feedback EEG method can be applied to research on the functional topography of an EEG response to sensory stimuli in terms of the reduction of variability of the response that can be achieved with feedback.  相似文献   

4.
Method of correction of human stress-induced functional disorders is proposed which is based on two feedback contours from narrow-band EEG oscillators of the patient. The first one is a usual biofeedback contour in which the feedback signals from the narrow-band EEG oscillator are consciously perceived by the patient and serve him as a guide for voluntary reduction/activation of these EEG components. The second one is an additional contour of resonance stimulation which helps a subject to overcome the difficulties of conscious control of feedback signals. In this contour the parameters of audio-visual stimulation are automatically tuned to the frequency of the dominant narrow-band EEG oscillator of the patient (from the same or other EEG frequency range) to reach its resonance activation. Scientific basis of the method is provided, the results of its experimental testing are presented.  相似文献   

5.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3. In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis.   相似文献   

6.
We analyzed the EEG theta rhythm coherence in adult subjects who performed visual object classification task in the condition of uncertainty. The coherence function was estimated for the EEG segment following a feedback signal. It was shown that the functional coupling of cortical areas was stronger in the process of strategy discovering as comparing to the final period when the strategy is already found. The theta-related functional links are characterized by a specific topographical pattern: they converge to the foci located in the polar frontal cortex and reflect the interaction between the latter and the anterior associative cortices of the left hemisphere and occipital areas of both hemispheres. This pattern of functional connectivity may reflect an interaction between limbic structures and the frontal cortex in the process of strategy formation.  相似文献   

7.
At the sensor level many aspects, such as spectral power, functional and effective connectivity as well as relative-power-ratio ratio (RPR) and spatial resolution have been comprehensively investigated through both electroencephalography (EEG) and magnetoencephalography (MEG). Despite this, differences between both modalities have not yet been systematically studied by direct comparison. It remains an open question as to whether the integration of EEG and MEG data would improve the information obtained from the above mentioned parameters. Here, EEG (64-channel system) and MEG (275 sensor system) were recorded simultaneously in conditions with eyes open (EO) and eyes closed (EC) in 29 healthy adults. Spectral power, functional and effective connectivity, RPR, and spatial resolution were analyzed at five different frequency bands (delta, theta, alpha, beta and gamma). Networks of functional and effective connectivity were described using a spatial filter approach called the dynamic imaging of coherent sources (DICS) followed by the renormalized partial directed coherence (RPDC). Absolute mean power at the sensor level was significantly higher in EEG than in MEG data in both EO and EC conditions. At the source level, there was a trend towards a better performance of the combined EEG+MEG analysis compared with separate EEG or MEG analyses for the source mean power, functional correlation, effective connectivity for both EO and EC. The network of coherent sources and the spatial resolution were similar for both the EEG and MEG data if they were analyzed separately. Results indicate that the combined approach has several advantages over the separate analyses of both EEG and MEG. Moreover, by a direct comparison of EEG and MEG, EEG was characterized by significantly higher values in all measured parameters in both sensor and source level. All the above conclusions are specific to the resting state task and the specific analysis used in this study to have general conclusion multi-center studies would be helpful.  相似文献   

8.
The applicability and efficiency of the electroencephalogram (EEG)-based method of biofeedback (BFB) training in correcting functional disorders in pregnancy have been evaluated in an obstetric/gynecological clinic in 65 pregnant women. Each of them took part in 2–12 examinations, which differed in voluntarily regulated EEG rhythm (a decrease in the θ, an increase in the α, or a decrease in the β rhythm), left-or right-hemispheric location of the EEG derivations, and the duration of the delay (3 or 30 s) of auditory feedback stimuli. As compared to the baseline, the most distinct and significant changes were observed in the α and θ rhythms during medical procedures, testifying to a general relaxing effect of the EEG BFB. The greatest number of successful trials (83.3 ± 4.4%) was observed for the BFB sessions aimed at decreasing the θ activity, and the lowest number (32.0 ± 6.7%), for the attempts at decreasing the EEG β rhythm. Voluntary control of the α rhythm of the EEG yielded a moderate number of successful trials (63.7 ± 5.3%), but it was characterized by the lowest efficiency (demonstrating minimal differences in positive changes in the functional state between successful and unsuccessful trials). The comparatively low effectiveness of voluntary BFB control of the α rhythm may have been determined by its high heterogeneity and suggests the necessity of using more narrowband EEG components in BFB sessions.  相似文献   

9.
A comprehensive study with the assessment of reactive responses to motor tasks was performed in nine patients with a tumor localized in the frontal divisions of the brain using two methodological approaches: functional magnetic resonance imaging (fMRI) and EEG. The data obtained were compared to the results of a similar study on 12 healthy subjects. It was established that cerebral pathology was associated with disorders of functional specialization and an increase in the diffuse component of reactivity. The fMRI responses were characterized by greater intactness compared to the EEG parameters of reactive changes. These features are especially marked when an afferent stimulus is sent to the damaged hemisphere. The characteristics of the involvement of individual EEG bands in the formation of motor responses and changes in the fMRI response topography are determined by the degree of cerebral dysfunction reflected by the pattern of baseline EEG reorganization and the severity of the motor defect. The predominant increase in the coherence of slow rhythms in the damaged hemisphere irrespective of the target of the afferent stimulus in patients with severe cerebral dysfunction reflects the dominant formation of a pathological focus and is indicative of a greater, compared to healthy subjects, involvement of deep brain structures in the reactive process, which is confirmed by the fMRI data.  相似文献   

10.
Summary Visual unit activity, EEG changes and sustained potential shifts (SPS) were recorded from the toad tectum whilst the animal was presented with a visual stimulus. Telencephalic EEGs were also recorded.On the surface of the tectum, retinal unit activity preceded a sustained negative shift in potential and an increase in the amplitude and dominant frequency of the EEG. In deeper layers of the tectum, T5 units with configurational selectivity for wormlike stimuli were found. The activity of these units followed a pronounced SPS and EEG change.Visual unit activity was most pronounced during the negative-going phase of the synchronised EEG, when there was also a small decrease in amplitude of neuronal spikes. Similarities between the latencies and durations of EEGs and SPSs, and their response decrements, on repeated stimulus presentation, implies a close relationship between them not shared by the visual units studied. The specific activity of tectal units is discussed in relation to the correlated EEG and SPS changes, which may form part of an adaptive sensitizing mechanism.Abbreviations EEG electroencephalogram - ERF excitatory receptive field - SPS sustained potential shift - T4, T5 tectal neurons  相似文献   

11.
The continuous wavelet transform was applied to the human EEG signals recorded in different states of brain activity. The dynamics of local maxima chains in the matrices of the continuous wavelet transform coefficients was studied. The typologization method was developed for local maxima chains to separate by their drift in the frequency space as well as by dynamics of their signal “energy.” The method proved to be highly informative. It was shown that it was highly sensitive to a selection of one of two responses to the test question. It is determined that local maxima chains in most cases are gradually increasing and decreasing in the frequency space and by changes in the values of their continuous wavelet transform coefficients. The functional asymmetry in local maxima chains types’ distribution is determined. The results obtained allow us to consider the types of the local maxima chains dynamics as a new phenomenon of EEG activity.  相似文献   

12.
13.
基于大脑皮层信息传输的脑电信息图示方法   总被引:4,自引:0,他引:4  
提出一种基于大脑皮层信息传输的脑电地形图示方法—脑电信息图(Brain InformationMapping - BIM) 。其原理是从不同导联电极上采集脑电信号经相空间重建构成头皮电位信息传输矩阵, 将各导联信息传输时间序列的信息传输量和复杂度数据绘制成头皮拓扑分布图, 以直观地反映脑电信息传输分布模式在不同时相中的变化进程。该方法不仅是从新的角度观察大脑功能变化, 而且可克服传统的脑电频谱分段地形图不能表达长程脑电模式变化的不足。对局限性癫痫病患者的试用表明,脑电信息图能较好地反映癫痫发作前后的信息传输动向和复杂度(Kc 、C1 、C2) 的变化趋势。结果提示,脑电信息图(BIM) 有可能成为一种新的观察大脑功能活动的图示诊断方法,值得进一步深入研究。  相似文献   

14.
Complex analysis of EEG and thermographic parameters carried out in 10 healthy subjects and 34 patients, Chernobyl clean-up participants revealed a correlation between EEG and brain temperature changes in the baseline state and during mental arithmetic. During cognitive activity the maximal increase in the average EEG coherence and temperature shifts in healthy subjects were observed in the left frontotemporal and right parietotemporal areas. In patients changes in both parameters under study were most pronounced, the interhemispheric relations were impaired. The visual analysis revealed "flat" and "hypersynchronous" EEG types in patients. The dominant pathologic activity in the betal range indicative of mediobasal and oral brainstem lesions was characteristic of the flat EEG. This type of activity was observed in 60% of patients. In these cases, a general decrease in EEG coherence and temperature was most pronounced in the left hemisphere. The hypersynchronou EEG type (40% patients) was characterized by paroxysmal activity in the theta and alpha ranges suggesting diencephalic brain lesions. In these cases, EEG coherence and temperature were more variable; changes in the right hemisphere were significant, be it increase or decrease. Our complex approach to investigation of brain activity in different aspects seems to be promising in estimation of the brain functional state both in healthy persons and patients in remote terms after exposure to radiation. The specific hemispheric temperature changes revealed in Chernobyl patients especially during cognitive activity can be the sequels of postradiation disorders of vascular neuro-circulation. The EEG findings suggest subcortical disorders at different levels (diencephalic or brainstem) and functional failure of the right or left hemispheres in remote terms after exposure to radiation.  相似文献   

15.
Although the contribution of community members to functional diversity is a key question of conservation ecology, its measurement and interpretation are rather problematic. In this paper, we suggest a novel method for decomposing functional diversity. To do this we consider functional units (i.e. species or a group of species with identical traits) as the functional building blocks of communities. Then we propose the use of a recently developed measure of functional diversity (called modified functional attribute diversity or MFAD) and suggest additive decomposition of MFAD into functional values contributed by the functional units. We point out that functional values are related to changes in MFAD if the functional unit is removed from the community. This property of decomposition allows the quantification of the contribution of community members to functional diversity. By studying artificial and actual communities we compare the performance of our new method with other recently developed contribution measures, which are based on dendrograms and ordinations. Both theoretical considerations and analyses of artificial and actual data sets suggest that the proposed method of calculating functional values expresses more explicitly the contribution of community members to functional diversity and hereby can be used as a simple, yet efficient method for searching for functional keystones in ecological communities or for quantifying the contribution of community members to functional diversity.  相似文献   

16.
Brain waves are proposed as a biometric for verification of the identities of individuals in a small group. The approach is based on a novel two-stage biometric authentication method that minimizes both false accept error (FAE) and false reject error (FRE). These brain waves (or electroencephalogram (EEG) signals) are recorded while the user performs either one or several thought activities. As different individuals have different thought processes, this idea would be appropriate for individual authentication. In this study, autoregressive coefficients, channel spectral powers, inter-hemispheric channel spectral power differences, inter-hemispheric channel linear complexity and non-linear complexity (approximate entropy) values were used as EEG features by the two-stage authentication method with a modified four fold cross validation procedure. The results indicated that perfect accuracy was obtained, i.e. the FRE and FAE were both zero when the proposed method was tested on five subjects using certain thought activities. This initial study has shown that the combination of the two-stage authentication method with EEG features from thought activities has good potential as a biometric as it is highly resistant to fraud. However, this is only a pilot type of study and further extensive research with more subjects would be necessary to establish the suitability of the proposed method for biometric applications.  相似文献   

17.
By the method of factor analysis characteristics of functional brain states in children and juveniles of different age with neuroses were studied by EEG data. Similarity was established of the patients EEG structure at strained and emotional states. In the studied period of individual development (7-14 years) the most expressed changes of background EEG were observed at the age og 9-12 years. At functional loads, beginning from the age of 9-10, insufficient activity of the frontal region of the left hemisphere was found. The greatest changes of the EEG integral characteristics were observed in patients with vegetative-emotional disturbances and the smallest-at verbal-motor ones.  相似文献   

18.
Transcranial Magnetic Stimulation (TMS) is an effective method for establishing a causal link between a cortical area and cognitive/neurophysiological effects. Specifically, by creating a transient interference with the normal activity of a target region and measuring changes in an electrophysiological signal, we can establish a causal link between the stimulated brain area or network and the electrophysiological signal that we record. If target brain areas are functionally defined with prior fMRI scan, TMS could be used to link the fMRI activations with evoked potentials recorded. However, conducting such experiments presents significant technical challenges given the high amplitude artifacts introduced into the EEG signal by the magnetic pulse, and the difficulty to successfully target areas that were functionally defined by fMRI. Here we describe a methodology for combining these three common tools: TMS, EEG, and fMRI. We explain how to guide the stimulator''s coil to the desired target area using anatomical or functional MRI data, how to record EEG during concurrent TMS, how to design an ERP study suitable for EEG-TMS combination and how to extract reliable ERP from the recorded data. We will provide representative results from a previously published study, in which fMRI-guided TMS was used concurrently with EEG to show that the face-selective N1 and the body-selective N1 component of the ERP are associated with distinct neural networks in extrastriate cortex. This method allows us to combine the high spatial resolution of fMRI with the high temporal resolution of TMS and EEG and therefore obtain a comprehensive understanding of the neural basis of various cognitive processes.  相似文献   

19.
《IRBM》2019,40(3):183-191
ObjectiveThe aim was to use a new method to analyze the nonlinear dynamic characteristics of the multi-kinetics neural mass model. We hope that this new method can be as an auxiliary judgment tool for the diagnosis of brain diseases and the identification of brain activity states.MethodsWe apply the Lorenz plot to analyze the nonlinear dynamic characteristics of electroencephalogram (EEG) signals from the multi-kinetics neural mass models. The standard deviations in two orthogonal directions of the Lorenz plot are further used to quantify the nonlinear dynamic characteristics of EEG signals.ResultsThe results show that the normalized signal frequency power spectrum may not be able to distinguish normal EEG signals and epileptiform spikes, but the Lorenz plot can distinguish the normal EEG signals and epileptiform spikes effectively. For EEG signals with multi-rhythms, the Lorenz plot of all the simulated signals are oval, but the value of SD1/SD2 increases monotonically when the multi-rhythm EEG signals change from low frequency to high frequency.ConclusionThe Lorenz plot of EEG signals with different rhythms presents different distribution. It is an effective nonlinear analysis method for EEG signals.  相似文献   

20.
EEG monopolarly recorded in points F3, F4, O1, O2 of 20 healthy subjects in six states (quiet wakefulness with open or closed eyes, spontaneous button pressings in arbitrary moments of time, listening to clicks, reaction to clicks by pressing the button at random or at equal intervals between stimuli), were processed by means of the computer program transforming the raw EEG tracings to a sequence of stationary segments. The accumulated segments were divided into classes of "similar" ones by a two-stage procedure of cluster analysis. In each lead six types of segments were identified forming populations of structural units of an individual human EEG. Four types were recorded all over the brain: their spectra were of a great resemblance in different brain areas. The EEG of each individual was characterized by a certain combination of segment types which practically did not change by their quality in different states of the subject.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号