首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Considerable advances in our understanding of the control of mitochondrial metabolism and its interactions with nitrogen metabolism and associated carbon/nitrogen interactions have occurred in recent years, particularly highlighting important roles in cellular redox homeostasis. The tricarboxylic acid (TCA) cycle is a central metabolic hub for the interacting pathways of respiration, nitrogen assimilation, and photorespiration, with components that show considerable flexibility in relation to adaptations to the different functions of mitochondria in photosynthetic and non-photosynthetic cells. By comparison, the operation of the oxidative pentose phosphate pathway appears to represent a significant limitation to nitrogen assimilation in non-photosynthetic tissues. Valuable new insights have been gained concerning the roles of the different enzymes involved in the production of 2-oxoglutarate (2-OG) for ammonia assimilation, yielding an improved understanding of the crucial role of cellular energy balance as a broker of co-ordinate regulation. Taken together with new information on the mechanisms that co-ordinate the expression of genes involved in organellar functions, including energy metabolism, and the potential for exploiting the existing flexibility for NAD(P)H utilization in the respiratory electron transport chain to drive nitrogen assimilation, the evidence that mitochondrial metabolism and machinery are potential novel targets for the enhancement of nitrogen use efficiency (NUE) is explored.  相似文献   

2.
Photosynthesis is the principal process responsible for fixation of inorganic carbon dioxide into organic molecules with sunlight as the energy source. Potentially, many chemicals could be inexpensively produced by photosynthetic organisms. Mathematical modeling of photoautotrophic metabolism is therefore important to evaluate maximum theoretical product yields and to deeply understand the interactions between biochemical energy, carbon fixation, and assimilation pathways. Flux balance analysis based on linear programming is applied to photoautotrophic metabolism. The stoichiometric network of a model photosynthetic prokaryote, Synechocystis sp. PCC 6803, has been reconstructed from genomic data and biochemical literature and coupled with a model of the photophosphorylation processes. Flux map topologies for the hetero-, auto-, and mixotrophic modes of metabolism under conditions of optimal growth were determined and compared. The roles of important metabolic reactions such as the glyoxylate shunt and the transhydrogenase reaction were analyzed. We also theoretically evaluated the effect of gene deletions or additions on biomass yield and metabolic flux distributions.  相似文献   

3.
For the metabolically diverse nonsulfur purple phototrophic bacteria, maintaining redox homeostasis requires balancing the activities of energy supplying and energy-utilizing pathways, often in the face of drastic changes in environmental conditions. These organisms, members of the class Alphaproteobacteria, primarily use CO2 as an electron sink to achieve redox homeostasis. After noting the consequences of inactivating the capacity for CO2 reduction through the Calvin-Benson-Bassham (CBB) pathway, it was shown that the molecular control of many additional important biological processes catalyzed by nonsulfur purple bacteria is linked to expression of the CBB genes. Several regulator proteins are involved, with the two component Reg/Prr regulatory system playing a major role in maintaining redox poise in these organisms. Reg/Prr was shown to be a global regulator involved in the coordinate control of a number of metabolic processes including CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy-generation pathways. Accumulating evidence suggests that the Reg/Prr system senses the oxidation/reduction state of the cell by monitoring a signal associated with electron transport. The response regulator RegA/PrrA activates or represses gene expression through direct interaction with target gene promoters where it often works in concert with other regulators that can be either global or specific. For the key CO2 reduction pathway, which clearly triggers whether other redox balancing mechanisms are employed, the ability to activate or inactivate the specific regulator CbbR is of paramount importance. From these studies, it is apparent that a detailed understanding of how diverse regulatory elements integrate and control metabolism will eventually be achieved.  相似文献   

4.
Photosynthetic organisms have evolved various acclimatory responses to high-light (HL) conditions to maintain a balance between energy supply (light harvesting and electron transport) and consumption (cellular metabolism) and to protect the photosynthetic apparatus from photodamage. The molecular mechanism of HL acclimation has been extensively studied in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Whole genome DNA microarray analyses have revealed that the change in gene expression profile under HL is closely correlated with subsequent acclimatory responses such as (1) acceleration in the rate of photosystem II turnover, (2) downregulation of light harvesting capacity, (3) development of a protection mechanism for the photosystems against excess light energy, (4) upregulation of general protection mechanism components, and (5) regulation of carbon and nitrogen assimilation. In this review article, we survey recent progress in the understanding of the molecular mechanisms of these acclimatory responses in Synechocystis sp. PCC 6803. We also briefly describe attempts to understand HL acclimation in various cyanobacterial species in their natural environments.  相似文献   

5.
Sudden exposure of plants to high light (HL) leads to metabolic and physiological disruption of the photosynthetic cells. Changes in ROS content, adjustment of photosynthetic processes and the antioxidant pools and, ultimately, gene induction are essential components for a successful acclimation to the new light conditions. The influence of salicylic acid (SA) on plant growth, short-term acclimation to HL, and on the redox homeostasis of Arabidopsis thaliana leaves was assessed here. The dwarf phenotype displayed by mutants with high SA content (cpr1-1, cpr5-1, cpr6-1, and dnd1-1) was less pronounced when these plants were grown in HL, suggesting that the inhibitory effect of SA on growth was partly overcome at higher light intensities. Moreover, higher SA content affected energy conversion processes in low light, but did not impair short-term acclimation to HL. On the other hand, mutants with low foliar SA content (NahG and sid2-2) were impaired in acclimation to transient exposure to HL and thus predisposed to oxidative stress. Low and high SA levels were strictly correlated to a lower and higher foliar H(2)O(2) content, respectively. Furthermore high SA was also associated with higher GSH contents, suggesting a tight correlation between SA, H(2)O(2) and GSH contents in plants. These observations implied an essential role of SA in the acclimation processes and in regulating the redox homeostasis of the cell. Implications for the role of SA in pathogen defence signalling are also discussed.  相似文献   

6.
The present study shows the importance of alternative oxidase (AOX) pathway in optimizing photosynthesis under high light (HL). The responses of photosynthesis and respiration were monitored as O2 evolution and O2 uptake in mesophyll protoplasts of pea pre‐incubated under different light intensities. Under HL (3000 µmol m?2 s?1), mesophyll protoplasts showed remarkable decrease in the rates of NaHCO3‐dependent O2 evolution (indicator of photosynthetic carbon assimilation), while decrease in the rates of respiratory O2 uptake were marginal. While the capacity of AOX pathway increased significantly by two fold under HL, the capacity of cytochrome oxidase (COX) pathway decreased by >50% compared with capacities under darkness and normal light (NL). Further, the total cellular levels of pyruvate and malate, which are assimilatory products of active photosynthesis and stimulators of AOX activity, were increased remarkably parallel to the increase in AOX protein under HL. Upon restriction of AOX pathway using salicylhydroxamic acid (SHAM), the observed decrease in NaHCO3‐dependent O2 evolution or p‐benzoquinone (BQ)‐dependent O2 evolution [indicator of photosystem II (PSII) activity] and the increase in total cellular levels of pyruvate and malate were further aggravated/promoted under HL. The significance of raised malate and pyruvate levels in activation of AOX protein/AOX pathway, which in turn play an important role in dissipating excess chloroplastic reducing equivalents and sustenance of photosynthetic carbon assimilation to balance the effects of HL stress on photosynthesis, was depicted as a model.  相似文献   

7.
In Synechocystis PCC 6803 as in other cyanobacteria, involvement of protein PII in the co-regulation of inorganic carbon and nitrogen metabolism was established based on post-translational modifications of the protein resulting from changes in the carbon/nitrogen regimes. Uptake of bicarbonate and nitrate in response to changes of the carbon and/or nitrogen regimes is altered in a PII-null mutant, indicating that both processes are under control of PII. Modulation of electron flow by addition of methyl viologen with or without duroquinol, or in a NAD(P)H dehydrogenase-deficient mutant, affects the phosphorylation level of PII. The redox state of the cells would thus act as a trigger for PII phosphorylation.  相似文献   

8.
冷锻炼对甜椒叶片光合作用及其低温光抑制的影响   总被引:5,自引:1,他引:4  
以冷敏感植物甜椒 (CapsicumannuumL .)抗冷性不同的两个品种为试材 ,利用CIRAS 1光合测定系统和FMS2调制式荧光仪 ,在控温控光条件下分析比较了冷锻炼苗与未经锻炼苗的叶片光合特性、叶绿素荧光参数对温度的响应。结果表明 ,随着温度的降低 ,无论是否经过锻炼 ,低温主要通过抑制碳同化能力来影响光合作用 ,并使光能过剩 ,导致低温光抑制。提高环境CO2 浓度以增强暗反应对光能的利用 ,低温光抑制减轻。 5d的亚适温锻炼过程中甜椒叶片已发生一定程度的光抑制 ,但锻炼苗叶片能在低温下维持较高的光系统II光化学效率(ФPSII)、光化学猝灭系数 (qP)和光适应下光系统II最大光化学效率 (Fv′/Fm)值 ;冷锻炼提高了两品种低温下对光抑制的抗性 ,而且对抗冷品种的作用效果更明显  相似文献   

9.
Keren N  Aurora R  Pakrasi HB 《Plant physiology》2004,135(3):1666-1673
Cyanobacteria are key contributors to global photosynthetic productivity, and iron availability is essential for cyanobacterial proliferation. While iron is abundant in the earth's crust, its unique chemical properties render it a limiting factor for photoautotrophic growth. As compared to other nonphotosynthetic organisms, oxygenic photosynthetic organisms such as cyanobacteria, algae, and green plants need large amounts of iron to maintain functional PSI complexes in their photosynthetic apparatus. Ferritins and bacterioferritins are ubiquitously present iron-storage proteins. We have found that in the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803), bacterioferritins are responsible for the storage of as much as 50% of cellular iron. Synechocystis 6803, as well as many other cyanobacterial species, have two bacterioferritins, BfrA and BfrB, in which either the heme binding or di-iron center ligating residues are absent. Purified bacterioferritin complex from Synechocystis 6803 has both BfrA and BfrB proteins. Targeted mutagenesis of each of the two bacterioferritin genes resulted in poor growth under iron-deprived conditions. Inactivation of both genes did not result in a more severe phenotype. These results support the presence of a heteromultimeric structure of Synechocystis bacterioferritin, in which one subunit ligates a di-iron center while the other accommodates heme binding. Notably, the reduced internal iron concentrations in the mutant cells resulted in a lower content of PSI. In addition, they triggered iron starvation responses even in the presence of normal levels of external iron, thus demonstrating a central role of bacterioferritins in iron homeostasis in these photosynthetic organisms.  相似文献   

10.
Photosynthetic electron flux allocation, stomatal conductance, and the activities of key enzymes involved in photosynthesis were investigated in Rumex K-1 leaves to better understand the role of nitric oxide (NO) in photoprotection under osmotic stress caused by polyethylene glycol. Gas exchange and chlorophyll fluorescence were measured simultaneously with a portable photosynthesis system integrated with a pulse modulated fluorometer to calculate allocation of photosynthetic electron fluxes. Osmotic stress decreased stomatal conductance, photosynthetic carbon assimilation, and nitrate assimilation, increased Mehler reaction, and resulted in photoinhibition. Addition of external NO enhanced the stomatal conductance, photosynthetic rate, activities of glutamine synthetase and nitrate reductase, and reduced Mehler reaction and photoinhibition. These results demonstrated that osmotic stress reduced CO2 assimilation, decreasing the use of excited energy via CO2 assimilation which caused significant photoinhibition. Improving stomatal conductance by the addition of external NO enhanced the use of excited energy via CO2 assimilation. As a result, less excited energy was allocated to Mehler reaction, which reduced production of reactive oxygen species via this pathway. We suppose that Mehler reaction is not promoted unless photosynthesis and nitrogen metabolism are prominently inhibited.  相似文献   

11.
12.
氮输入对植物光合固碳的影响研究进展   总被引:4,自引:0,他引:4  
植物光合固碳(C)是生物固C的重要途径和生态系统C循环中的重要环节。在全球环境变化背景下,研究氮(N)输入对植物光合固C的影响,对于更好的认识C、N循环过程及生态系统对全球变化的响应过程等具有重要意义。N输入是否能够增加植物固C取决于生态系统类型以及生态系统的N饱和度;草原和湿地生态系统N输入的临界负荷值较高,干旱、半干旱荒漠地区较低;N输入可能改变植物光合固C在各器官的分配,主要由植物生理、自身生长节律和环境养分等决定。由于物种和生态系统类型的差异,N输入对植物固C的影响仍具有很大的不确定性,目前缺乏准确、定量表达N输入对生态系统光合和C同化物分配影响的数学表达方法和过程算法。未来应着重加强N输入下C同化物分配的生物地球化学模型和N、P富集下植物光合固C耦合模型研究,并应用同位素标记和分子生物学技术,从生态系统角度综合探讨N输入下植物光合固C的分配和转化特征。  相似文献   

13.
14.
Tocopherols (vitamin E) are lipid-soluble antioxidants synthesized only by photosynthetic eukaryotes and some cyanobacteria, and have been assumed to play important roles in protecting photosynthetic membranes from oxidative stress. To test this hypothesis, tocopherol-deficient mutants of Synechocystis sp. strain PCC 6803 (slr1736 and slr1737 mutants) were challenged with a series of reactive oxygen species-generating and lipid peroxidation-inducing chemicals in combination with high-light (HL) intensity stress. The tocopherol-deficient mutants and wild type were indistinguishable in their growth responses to HL in the presence and absence of superoxide and singlet oxygen-generating chemicals. However, the mutants showed enhanced sensitivity to linoleic or linolenic acid treatments in combination with HL, consistent with tocopherols playing a crucial role in protecting Synechocystis sp. strain PCC 6803 cells from lipid peroxidation. The tocopherol-deficient mutants were also more susceptible to HL treatment in the presence of sublethal levels of norflurazon, an inhibitor of carotenoid synthesis, suggesting carotenoids and tocopherols functionally interact or have complementary or overlapping roles in protecting Synechocystis sp. strain PCC 6803 from lipid peroxidation and HL stress.  相似文献   

15.
In order to ensure the cooperative function with the photosynthetic system, the mitochondrial respiratory chain needs to flexibly acclimate to a fluctuating light environment. The non-phosphorylating alternative oxidase (AOX) is a notable respiratory component that may support a cellular redox homeostasis under high-light (HL) conditions. Here we report the distinct acclimatory manner of the respiratory chain to long- and short-term HL conditions and the crucial function of AOX in Arabidopsis thaliana leaves. Plants grown under HL conditions (HL plants) possessed a larger ubiquinone (UQ) pool and a higher amount of cytochrome c oxidase than plants grown under low light conditions (LL plants). These responses in HL plants may be functional for efficient ATP production and sustain the fast plant growth. When LL plants were exposed to short-term HL stress (sHL), the UQ reduction level was transiently elevated. In the wild-type plant, the UQ pool was re-oxidized concomitantly with an up-regulation of AOX. On the other hand, the UQ reduction level of the AOX-deficient aox1a mutant remained high. Furthermore, the plastoquinone pool was also more reduced in the aox1a mutant under such conditions. These results suggest that AOX plays an important role in rapid acclimation of the respiratory chain to sHL, which may support efficient photosynthetic performance.  相似文献   

16.
Iron is essential for phytoplankton growth, as it is involved in many metabolic processes. It controls photosynthesis as well as many enzymatic processes. As such, iron affects the cell's energy supply and contributes to the assimilation of carbon and nitrogen. To determine whether iron limitation would result in energy stress or induced nitrogen deficiency, an Antarctic Phaeocystis sp. (Prymnesiophyceae) strain was studied for its biochemical composition, with the main emphasis on intracellular production of dimethylsulfoniopropionate (DMSP). DMSP is suggested to replace nitrogen containing solutes under conditions of nitrogen deficiency. Batch cultures of Antarctic Phaeocystis sp. were grown under iron-rich and iron-poor conditions and simultaneously subjected to high and low light intensities. Iron depletion induced chlorosis and suppressed growth rates as well as the maximum yield of the cultures; these effects were reinforced by low light intensities. Cell volumes were strongly reduced under iron-limited conditions. However, this reduction in cell volume was accompanied by a reduced DMSP content only in cultures experiencing low light intensities. Under high light conditions, no reduction of DMSP was observed; hence, intracellular DMSP concentrations increased. These observations are discussed relative to carbon and nitrogen metabolism and the biosynthetic pathway of DMSP. It is argued that under high light, low iron conditions, the cells were bordering on nitrogen deficiency induced by iron limitation, whereas under low light, low iron conditions, the cells were energy limited resulting in overall suppressed metabolic rates. Between treatments, DMSP to chlorophyll- a ratios varied by a factor of 5, demonstrating the dependence of this parameter on the physiological state of the cell.  相似文献   

17.
不同施氮量对杂交酸模叶片光合电子流分配的影响   总被引:4,自引:0,他引:4  
研究了不同施氮量对高蛋白含量植物杂交酸模(Rumex patientiaxR.tianschanicus)叶片中总光合电子流和分配在碳同化、光呼吸、Mehler反应以及氮代谢上的光合电子流的影响,并研究了不同施氮量对硝酸还原酶(NR)和谷氨酰胺合成酶(GS)的活性、叶片的蛋白质含量及叶绿素含量的影响。结果表明随着施氮量的增加,硝酸还原酶和谷氨酰胺合成酶的活性都显著提高,同时更多的光合电子流分配到氮代谢和光呼吸。氮代谢所需光合电子流约占总光合电子流的15%~21%。缺氮并没有造成光合电子流向Mehler反应分配的增加。  相似文献   

18.
19.
In this work, we investigated electron transport processes in the cyanobacterium Synechocystis sp. PCC 6803, with a special emphasis focused on oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains. Redox transients of the photosystem I primary donor P700 and oxygen exchange processes were measured by the EPR method under the same experimental conditions. To discriminate between the factors controlling electron flow through photosynthetic and respiratory electron transport chains, we compared the P700 redox transients and oxygen exchange processes in wild type cells and mutants with impaired photosystem II and terminal oxidases (CtaI, CydAB, CtaDEII). It was shown that the rates of electron flow through both photosynthetic and respiratory electron transport chains strongly depended on the transmembrane proton gradient and oxygen concentration in cell suspension. Electron transport through photosystem I was controlled by two main mechanisms: (i) oxygen-dependent acceleration of electron transfer from photosystem I to NADP(+), and (ii) slowing down of electron flow between photosystem II and photosystem I governed by the intrathylakoid pH. Inhibitor analysis of P700 redox transients led us to the conclusion that electron fluxes from dehydrogenases and from cyclic electron transport pathway comprise 20-30% of the total electron flux from the intersystem electron transport chain to P700(+).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号