共查询到20条相似文献,搜索用时 15 毫秒
1.
通过培养高山被孢霉利用糖蜜来发酵生产花生四烯酸(ARA),研究了不同甘蔗糖蜜预处理方法对ARA发酵生产的影响。研究表明:H2SO4法是最利于ARA发酵生产的糖蜜预处理方法。利用预处理的甘蔗糖蜜发酵生产ARA,通过单因素实验设计,确定了最优的培养条件,包括初始还原糖80 g/L,N源6 g/L,接种量20%,初始pH6.0和培养温度25℃,在此条件下发酵,干细胞质量、油脂含量、ARA产量和糖利用率分别达到28.5 g/L、11.7g/L、3.68 g/L和94.5%。 相似文献
2.
3.
AIM: Formulation of an inexpensive cane molasses medium for improved cell-bound phytase production by Pichia anomala. METHODS AND RESULTS: Cell-bound phytase production by Pichia anomala was compared in synthetic glucose-beef extract and cane molasses media. The yeast was cultivated in 250 ml flasks containing 50 ml of the medium, inoculated with a 12 h-old inoculum (3 x 10(6) CFU ml(-1)) and incubated at 25 degrees C for 24 h at 250 rev min(-1). Different cultural parameters were optimized in cane molasses medium in batch fermentation. The cell-bound phytase content increased significantly in cane molasses medium (176 U g(-1) dry biomass) when compared with the synthetic medium (100 U g(-1) dry biomass). In fed-batch fermentation, a marked increase in biomass (20 g l(-1)) and the phytase yield (3000 U l(-1)) were recorded in cane molasses medium. The cost of production in cane molasses medium was pound 0.006 per 1000 U, which is much lower when compared with that in synthetic medium (pound 0.25 per 1000 U). CONCLUSIONS: An overall 86.6% enhancement in phytase yield was attained in optimized cane molasses medium using fed-batch fermentation when compared with that in synthetic medium. Furthermore, the production in cane molasses medium is cost-effective. SIGNIFICANCE AND IMPACT OF THE STUDY: Phytase yield was improved in cane molasses when compared with the synthetic medium, and the cost of production was also significantly reduced. This enzyme can find application in the animal feed industry for improving the nutritional status of feed and combating environmental pollution. 相似文献
4.
AIMS: The present investigation is aimed at assessing the suitability of cane molasses as a cheaper carbon and energy source for glucoamylase production using alginate-immobilized Thermomucor indicae-seudaticae. METHODS AND RESULTS: The culture variables for glucoamylase production were optimized by 'one-variable-at-a-time' strategy and response surface methodology (RSM). A high glucoamylase titre was attained when 40 alginate beads (c. 5x10(6) immobilized spores) were used to inoculate 50 ml of cane molasses (8%) medium in 250-ml Erlenmeyer flasks. Response surface optimization of fermentation parameters (cane molasses 7%, inoculum level 44 alginate beads per 50 ml of medium and ammonium nitrate 0.25%) resulted in 1.8-fold higher glucoamylase production (27 U ml(-1)) than that in the unoptimized medium (15 U ml(-1)). Enzyme production was also sustainable in 22 l of laboratory air-lift bioreactor. CONCLUSIONS: Cane molasses served as an excellent carbon and energy source for the economical production of glucoamylase, which was almost comparable with that in sucrose yeast-extract broth. The statistical model developed using RSM allowed determination of optimum levels of the variables for improving glucoamylase production. SIGNIFICANCE AND IMPACT OF THE STUDY: The cost of glucoamylase produced in cane molasses supplemented with ammonium nitrate was considerably lower (euro1.43 per million U) than in synthetic medium containing sucrose and yeast-extract (euro35.66 per million U). The reduction in fermentation time in air-lift bioreactor with sustainable glucoamylase titres suggested the feasibility of scale up of the process. 相似文献
5.
Poly(L-malic acid) (PMA) is a natural polyester with many attractive properties for biomedical application. However, the cost of PMA production is high when glucose is used as a carbon source. To solve this problem, cane molasses as a low-cost feedstock was applied for the production of PMA. Six pretreatment methods were applied to cane molasses before fermentation. Pretreatment with combined tricalcium phosphate, potassium ferrocyanide, and sulfuric acid (TPFSA) removed significant amounts of metal ions from cane molasses. The PMA concentration increased from 5.4?g/L (untreated molasses) to 36.9?g/L (TPFSA-pretreated molasses) after fermentation in shake flasks. A fed-batch fermentation strategy was then developed. In this method, TPFSA-pretreated cane molasses solution was continuously fed into the fermentor to maintain the total sugar concentration at 20?g/L. This technique generated approximately 95.4?g/L PMA with a productivity of 0.57?g/L/hr. The present study indicated that fed-batch fermentation using pretreated cane molasses is a feasible technique for producing high amounts of PMA. 相似文献
6.
AIM: Development and optimization of an efficient and inexpensive medium for succinic acid production by Escherichia coli under anaerobic conditions. METHODS AND RESULTS: Initially, 0.8 gl(-1) of succinic acid was produced in 60 h in 300-ml medium. On optimization, glucose and peptone were replaced by cane molasses and corn steep liquor. Three hundred ml of this medium was inoculated with 4% (v/v) of seed inoculum, incubated at 39 degrees C for 72 h, resulted in 7.1 gl(-1) of succinic acid in 36 h. Scale up in a 10-l fermentor under conditions of controlled pH and continuous CO2 supply in this medium resulted in 17 gl(-1) of succinic acid in 30 h. CONCLUSIONS: A ninefold increase in succinic acid production was obtained in 500-ml anaerobic bottles with optimized medium having cane molasses and corn steep liquor as against initial medium containing glucose and peptone. However, a subsequent scale up in a 10-l fermentor resulted in a 2.5-fold increase in succinic acid production as against optimized medium used in 500-ml anaerobic bottles. SIGNIFICANCE AND IMPACT OF THE STUDY: Succinic acid production was enhanced in medium consisting of inexpensive carbon and nitrogen sources in a shorter span of time. 相似文献
7.
Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses 总被引:2,自引:0,他引:2
A three-stage process was developed to produce polyhydroxyalkanoates (PHAs) from sugar cane molasses. The process includes (1) molasses acidogenic fermentation, (2) selection of PHA-accumulating cultures, (3) PHA batch accumulation using the enriched sludge and fermented molasses. In the fermentation step, the effect of pH (5–7) on the organic acids profile and productivity was evaluated. At higher pH, acetic and propionic acids were the main products, while lower pH favoured the production of butyric and valeric acids. PHA accumulation using fermented molasses was evaluated with two cultures selected either with acetate or fermented molasses. The effect of organic acids distribution on polymer composition and yield was evaluated with the acetate selected culture. Storage yields varied from 0.37 to 0.50 Cmmol HA/Cmmol VFA. A direct relationship between the type of organic acids used and the polymers composition was observed. Low ammonia concentration (0.1 Nmmol/l) in the fermented molasses stimulated PHA storage (0.62 Cmmol HA/Cmmol VFA). In addition, strategies of reactor operation to select a PHA-accumulating culture on fermented molasses were developed. The combination of low organic loading with high ammonia concentration selected a culture with a stable storage capacity and with a storage yield (0.59 Cmmol HA/Cmmol VFA) similar to that of the acetate-selected culture. 相似文献
8.
AIMS: Statistical optimization of phytase production by a thermophilic mould Sporotrichum thermophile in a cost-effective cane molasses medium. METHODS AND RESULTS: Sporotrichum thermophile secreted phytase in cane molasses medium at 45 degrees C and 250 rev min(-1) after 5 days. The important factors identified by Plackett-Burman design (magnesium sulfate, Tween 80, ammonium sulfate and incubation period) were further optimized by response surface methodology (RSM). An overall 107% improvement in phytase production was achieved due to optimization. Supplementation of the medium with inorganic phosphate repressed the enzyme synthesis. When inorganic phosphate was reduced from the cane molasses medium by treatment with calcium chloride, the enzyme production increased. The phytase activity was not affected by the enzyme treatment with trypsin and pepsin. CONCLUSIONS: A twofold increase in phytase production was achieved due to optimization using statistical designs in a cost-effective cane molasses medium. SIGNIFICANCE AND IMPACT OF THE STUDY: Phytase production was doubled due to optimization. The enzyme, being resistant to trypsin and pepsin, thermostable and acid stable, can find application in animal feed industry for improving nutritional status of the feed and combating environmental phosphorus pollution. 相似文献
9.
Several wild strains and mutants of Rhodotorula spp. were screened for growth, carotenoid production and the proportion of -carotene produced in sugarcane molasses. A better
producer, Rhodotorula glutinis mutant 32, was optimized for carotenoid production with respect to total reducing sugar (TRS) concentration and pH. In shake
flasks, when molasses was used as the sole nutrient medium with 40 g l−1 TRS, at pH 6, the carotenoid yield was 14 mg l−1 and -carotene accounted for 70% of the total carotenoids. In a 14-l stirred tank fermenter, a 20% increase in torulene content
was observed in plain molasses medium. However, by addition of yeast extract, this effect was reversed and a 31% increase
in -carotene content was observed. Dissolved oxygen (DO) stat fed-batch cultivation of mutant 32 in plain molasses medium
yielded 71 and 185 mg l−1 total carotenoids in double- and triple-strength medium, respectively. When supplemented with yeast extract, the yields were
97 and 183 mg l−1 total carotenoid with a 30% increase in -carotene and a simultaneous 40% decrease in torulene proportion. Higher cell mass
was also achieved by double- and triple-strength fed-batch fermentation. Journal of Industrial Microbiology & Biotechnology (2001) 26, 327–332.
Received 18 September 2000/ Accepted in revised form 02 March 2001 相似文献
10.
11.
Aims: Phytase production by Sporotrichum thermophile in a cost‐effective cane molasses medium in submerged fermentation and its application in bread. Methods and Results: The production of phytase by a thermophilic mould S. thermophile was investigated using free and immobilized conidiospores in cane molasses medium in shake flasks, and stirred tank and air‐lift fermenters. Among surfactants tested, Tweens (Tween‐20, 40 and 80) and sodium oleate increased phytase accumulation, whereas SDS and Triton X‐100 inhibited the enzyme production. The mould produced phytase optimally at aw 0·95, and it declined sharply below this aw value. The enzyme production was comparable in air‐lift and stirred tank reactors with a marked reduction in fermentation time. Among the matrices tried, Ca‐alginate was the best for conidiospore immobilization, and fungus secreted sustained levels of enzyme titres over five cycles. The phytic acid in the dough was efficiently hydrolysed by the enzyme accompanied by the liberation of soluble phosphate in the bread. Conclusions: The phytase production by S. thermophile was enhanced in the presence of Tween‐80 in cane molasses medium. A peak in enzyme production was attained in 48 h in the fermenter when compared with that of 96 h in shake flasks. Ca‐alginate immobilized conidiospores germinated to produce fungal growth that secreted sustained levels of phytase over five cycles. The bread made with phytase contained reduced level of phytic acid and a high‐soluble phosphate. Significance and Impact of the Study: The phytase accumulation by S. thermophile was increased by the surfactants. The sustainability of enzyme production in stirred tank and air‐lift fermenters suggested the possibility for scaling up of phytase. The bread made with phytase contained low level of antinutrient, i.e. phytic acid. 相似文献
12.
Jiangang Yang Chaoyu Tian Tong Zhang Chenxi Ren Yueming Zhu Yan Zeng Yan Men Yuanxia Sun Yanhe Ma 《Biotechnology and bioengineering》2019,116(4):745-756
D -Allulose 3-epimerase (DAE) has been applied to produce D -allulose, a low-calorie and functional sweetener. In this study, a new DAE from Paenibacillus senegalensis was characterized in Escherichia coli. Furthermore, we presented a tandem isoenzyme gene expression strategy to express multiple DAEs in one cell and construct food-grade expression systems based on Corynebacterium glutamicum. Seventeen expression cassettes based on three DAE genes from different organisms were constructed. Among all recombinant strains, DAE16 harboring three DAE genes in an expression vector exhibited the highest enzyme activity with 22.7 U/mg. Whole-cell transformation of DAE16 produced 225 g/L D -allulose with a volumetric productivity of 353 g·g −1·hr −1. The catalytic efficiency of strain C-DAE9 integrating total 11 DAE genes in chromosome was 16.4-fold higher than strains carrying one DAE. Fed-batch culture of C-DAE9 gave enzyme activity of 44,700 U/L. We also expressed a thermostable invertase in C. glutamicum and obtained enzyme activity of 29 U/mg. Immobilized cells expressing DAE or invertase exhibited 80% of retained activity after 30 cycles of catalytic reactions. Those immobilized cells were coupled to produce 61.2 g/L D -allulose from cane molasses in a two-step reaction process. This study provided an efficient approach for enzyme preparation and allowed access to produce D -allulose from other abundant and low-cost feedstock enriched with sucrose. 相似文献
13.
研究1株产氢细菌Ethanoligenens sp.B49利用废糖蜜为基本原料进行生物制氢的条件,及外加氮素营养物对废糖蜜生物制氢的影响.结果表明,在10.3~20.6 g·L-1的化学需氧量(COD)范围内,经过驯化的Ethanoligenens sp.B49细胞具有较好的生物利用能力,细胞生长量和产氢能力随着废糖蜜COD的提高而增加.当废糖蜜COD超过20.6 g·L-1时Ethanoligenens sp.B49的细胞生长受到抑制,同时产氢能力下降,COD超过41.2 g·L-1时细胞基本不具有生长和产氢能力.Ethanoligenens sp.B49利用废糖蜜产氢的最佳COD为20.6 g·L-1.在20.6 g·L-1COD条件下外加有机氮源可以促进Ethanoligenens sp.B49利用废糖蜜制氢的能力,促进作用顺序为酵母粉>牛肉膏>蛋白胨>脲素.添加4 g·L-1的酵母粉时,Ethanoligenens sp.B49细胞具有最好的生长活性和产氢能力.优化营养条件后,单位体积产氢量从44.82 mmol·L-1提高到78.97 mmol·L-1,提高了76.2%. 相似文献
14.
W. Borzani A. Gerab G. A. De La Higuera M. H. Pires R. Piplovic 《World journal of microbiology & biotechnology》1993,9(2):265-268
Batch fermentations of sugar-cane blackstrap molasses to ethanol, using pressed yeast as inoculum, demonstrated an exponential relationship between the time necessary to complete the fermentation and the initial concentrations of sugar and yeast cells. The parameters of the derived exponential equations depended on the experimental conditions. 相似文献
15.
During the oscillatory phase of an undisturbed continuous ethanol fermentation of sugar-cane blackstrap molasses, the relative ethanol yield oscillated between 70 and 92% of the theoretical value (0.511), while its actual value was 85.6%. The ethanol yield based on catabolic activity oscillated between 0.290 and 1.174 g/kcal, while its actual value was 0.686 g/kcal. The specific production rate of ethanol increased when the specific growth rate of the yeast cells increased; a linear equation correlates the above specific rates. 相似文献
16.
以甘蔗糖蜜为底物,用响应面法对高丁醇比突变菌株拜氏梭菌(Clostridium beijerinckii)ART124发酵生产丁醇的培养条件进行优化.首先利用Plackett - Burman试验设计筛选出影响丁醇生产的3个重要因素CaCO3和NH4 HCO3和K2HPO4的用量,再通过最陡爬坡路径逼近最大向应区域,最后根据响应面中心组合设计理论,确定主要影响因素的最佳条件:CaCO3、NH4HCO3和K2HPO4的质量浓度分别为2.65、2.16和0.43 g/L.利用数学模型分析预测得甘蔗糖蜜质量浓度为30 g/L时,最佳的丁醇产量为8.10 g/L,比优化前提高了53.14%.在最佳工艺条件下得到的实验结果与模型预测值很吻合,说明所建立的模型是有效的. 相似文献
17.
Summary
Zymomonas mobilis strains were compared with each other and with a Saacharomyces cerevisiae strain for the production of ethanol from sugar cane molasses in batch fermentations. The effect of pH and temperature on ethanol production by Zymomonas was studied. The ability of Z. mobilis to produce ethanol from molasses varied from one strain to another. At low sugar concentrations Zymomonas compared favourably with S. cerevisiae. However, at higher sugar concentrations the yeast produced considerably more ethanol than Zymomonas. 相似文献
18.
M G A Felipe M Vitolo I M Mancilha S S Silva 《Journal of industrial microbiology & biotechnology》1997,18(4):251-254
The bioconversion of xylose to xylitol by Candida guilliermondii FTI 20037 cultivated in sugar cane bagasse hemicellulosic hydrolyzate was influenced by cell inoculum level, age of inoculum
and hydrolyzate concentration. The maximum xylitol productivity (0.75 g L−1 h−1) occurred in tests carried out with hydrolyzate containing 54.5 g L−1 of xylose, using 3.0 g L−1 of a 24-h-old inoculum. Xylitol productivity and cell concentration decreased with hydrolyzate containing 74.2 g L−1 of xylose.
Received 02 February 1996/ Accepted in revised form 15 November 1996 相似文献
19.
Simultaneous saccharification and fermentation of pretreated sugar cane leaves to ethanol 总被引:2,自引:0,他引:2
The simultaneous saccharification and fermentation (SSF) of pretreated sugar cane leaves to produce ethanol using a cellulolytic enzyme complex from Trichoderma reesei QM 9414 and Saccharomyces cerevisiae NRRL-Y-132 was optimized. Enzymic saccharification parameters were evaluated prior to SSF studies. A 92% conversion of 2·5% substrate (alkaline hydrogen peroxide pretreated) to sugars was achieved at 50°C and pH 4·5, using T. reesei cellulase (40 FPU/g substrate), in 48 h. The pretreated substrate was then subjected to an SSF process using the cellulase complex and S. cerevisiae cells. Optimization of the SSF system is described. 相似文献
20.
Thu Lan T. Nguyen Shabbir H. Gheewala 《The International Journal of Life Cycle Assessment》2008,13(4):301-311