首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The I.29 B cell lymphoma consists of IgM+ and IgA+ cells which express the same germ-line VH gene. IgA+ cells of the I.29 lymphoma were derived from the IgM+ cells by a typical H chain switch recombination event. The IgM+ cells can be induced with LPS to undergo H chain switching in culture. It has been proposed that the somatic hypermutation process is activated during H chain switch, since V genes expressed in IgG+ and IgA+ cells have more frequently undergone mutation than those expressed in IgM+ cells. We have investigated this question by sequencing VH genes expressed before and after H chain switch in the I.29 lymphoma. We have also sequenced the germ-line VH gene corresponding to the gene expressed by I.29 cells to determine whether the VH gene expressed in the IgM+ cells had already undergone somatic mutation. Our results indicate that somatic mutation was not activated in the precursor cell for the I.29 lymphoma, nor during isotype switch in I.29 cells. It is possible that cells of the I.29 lymphoma, or their precursor, have not received the signal which induces somatic mutation, or that I.29 cells belong to a subset of B cells that cannot be induced to undergo any (or much) somatic mutation.  相似文献   

2.
Twenty unique phage antibodies to human tumor necrosis factor alpha were selected from a naive combinatorial library of human single chain variable fragments. Analysis of gene segments encoding selected antibodies showed that the repertoire of variable domains of heavy and light chains included variable domains of both naive autoantibodies and antibodies produced through somatic hypermutation.  相似文献   

3.
The anti-idiotype 3I which recognizes a determinant on kappa-chains of anti-DNA antibodies in SLE patients also recognizes a determinant on kappa-chains of 82/706 myeloma proteins tested. Twenty-nine of these 82 proteins bind to double-stranded DNA, including two monoclonal IgM, one monoclonal IgA, and 26 monoclonal IgG proteins. DNA binding is much more frequent in the IgG than in the IgM myeloma proteins (p less than 0.001), and is also associated with cationic antibody charge. Two-dimensional gel electrophoresis reveals markedly increased charge heterogeneity of both heavy and light chains of the monoclonal IgG as compared with the monoclonal IgM proteins. We postulate that the increased charge heterogeneity of the IgG-associated 3I-reactive kappa-light chains may reflect somatic mutation, and that DNA specificity within the 3I idiotype system arises by somatic mutation of germ-line genes found in normal individuals. DNA binding may be associated with those mutations that give rise to a cationic immunoglobulin charge.  相似文献   

4.
Modification of antibody class and binding properties typically requires cloning of antibody genes, antibody library construction, phage or yeast display and recombinant antibody expression. Here, we describe an alternative “cloning-free” approach to generate antibodies with altered antigen-binding and heavy chain isotype by mimicking the germinal center reaction in antibody-secreting hybridoma cells. This was accomplished by lentiviral transduction and controllable expression of activation-induced cytidine deaminase (AID) to generate somatic hypermutation and class switch recombination in antibody genes coupled with high-throughput fluorescence-activated cell sorting (FACS) of hybridoma cells to detect altered antibody binding properties. Starting from a single established hybridoma clone, we isolated mutated antibodies that bind to a low-temperature structure of polyethylene glycol (PEG), a polymer widely used in nanotechnology, biotechnology and pharmaceuticals. FACS of AID-infected hybridoma cells also facilitated rapid identification of class switched variants of monoclonal IgM to monoclonal IgG. Mimicking the germinal center reaction in hybridoma cells may offer a general method to identify and isolate antibodies with altered binding properties and class-switched heavy chains without the need to carry out DNA library construction, antibody engineering and recombinant protein expression.  相似文献   

5.
《MABS-AUSTIN》2013,5(4):1069-1083
Modification of antibody class and binding properties typically requires cloning of antibody genes, antibody library construction, phage or yeast display and recombinant antibody expression. Here, we describe an alternative “cloning-free” approach to generate antibodies with altered antigen-binding and heavy chain isotype by mimicking the germinal center reaction in antibody-secreting hybridoma cells. This was accomplished by lentiviral transduction and controllable expression of activation-induced cytidine deaminase (AID) to generate somatic hypermutation and class switch recombination in antibody genes coupled with high-throughput fluorescence-activated cell sorting (FACS) of hybridoma cells to detect altered antibody binding properties. Starting from a single established hybridoma clone, we isolated mutated antibodies that bind to a low-temperature structure of polyethylene glycol (PEG), a polymer widely used in nanotechnology, biotechnology and pharmaceuticals. FACS of AID-infected hybridoma cells also facilitated rapid identification of class switched variants of monoclonal IgM to monoclonal IgG. Mimicking the germinal center reaction in hybridoma cells may offer a general method to identify and isolate antibodies with altered binding properties and class-switched heavy chains without the need to carry out DNA library construction, antibody engineering and recombinant protein expression.  相似文献   

6.
Antibodies to the nuclear ribonucleoprotein Sm are found in 25% of MRL/Mp-lpr/lpr mice, which develop a syndrome similar to human systemic lupus erythematosus. We have previously described that these autoantibodies are relatively restricted to the IgG2a isotype. In the current study, we analyze the isotype distribution of anti-Sm antibodies in these mice over time. The most common pattern observed was an initial response of the IgG2a isotype, which progressed such that this isotype was the major one at the time of peak response. No IgM to IgG class switch was observed. Additional studies directed at the clonality of the anti-Sm response indicated that both kappa- and lambda-light chains could be involved, and that the isoelectric focusing pattern of the anti-Sm antibodies was in general characteristic of multiple spectrotypes. These results also support a special role for the IgG2a isotype in the anti-Sm response in MRL/Mp-lpr/lpr mice. Despite this heavy chain isotype restriction, the response usually evidences substantial diversity, which suggests either multiple B cell clones or somatic mutation of antibody variable region genes.  相似文献   

7.
8.
The nature of fish antibodies (concentrating primarily on the most studied species of bony and cartilaginous fishes) is discussed in terms of their immunoglobulin biochemistry and immunobiology. The major serum immunoglobulin (IgM) is described in detail, and structural variants of IgM are discussed in terms of their distribution in different fish species, and different anatomical sites within a fish (e.g. blood, mucus, bile). Structural variation in IgM includes the size of the constituent heavy and light polypeptide chains, and the extent to which they are covalently associated with one another. The intramolecular heterogeneity of binding sites for antigen on IgM is reviewed and possible mechanisms for the phenomenon are presented. The evidence suggests that some, but not all, species of fish possess a detectable J chain in their IgM. The general nature of the fish immune response is that IgM antibody of moderate affinity is produced and prolonged or repeated immunization: (a) fails to produce a switch to production of a non-IgM class of antibody, and (b) fails to induce substantial increases in the affinity of the specific antibodies. Evidence supports a conclusion that fish lack the typical secondary antibody response seen in mammals, and possess antibodies of limited heterogeneity. Our current understanding of the genetic basis for fish antibodies is presented. Fish appear to utilize the same basic genetic elements as mammals to encode and regulate the expression of their immunoglobulins. The teleost heavy chain (IgH) locus resembles that of mammals and amphibia in its organization. The IgH locus of elasmobranchs is arranged in a unique multicluster organization. The light chain loci of elasmobranchs are organized analogously to the heavy chain locus (in multiclusters). The structure of the light chain locus of teleosts is presently unknown. Teleost fish utilize a unique pattern of RNA processing to generate the secreted and membrane receptor forms of the IgM heavy chain. The genes encoding the unique low molecular weight Ig heavy chain found in skates and rays have been cloned and sequenced, and also display the multicluster pattern of organization. Teleost fish appear to have normal numbers of variable regions: it is hypothesized (but as yet unproven) that the failure of their IgM to increase in affinity is due to a deficiency of somatic hypermutational mechanisms in their Ig gene variable regions during B lymphocyte differentiation.  相似文献   

9.
10.
The secondary antibody response of mice to phosphorylcholine (PC) shows a markedly different clonal profile than the primary response. In particular, the T15 antibodies that dominate the primary response are a minor part of secondary IgG antibodies, whereas 511 and 603 antibodies become a more prominent part of the PC-specific secondary response. These three anti-PC families differ only in L chain usage. We partially sequenced the IgH chain mRNA of a series of secondary T15 and 511 hybridomas to determine the role of somatic mutation and affinity maturation in these changes in clonal profile. None of the sequenced T15 antibodies showed somatic mutations or affinity increases. In contrast, all of the 511 antibodies had extensive somatic mutation and most had significantly increased affinity for nitrophenyl-PC. The failure of T15-expressing B cells to contribute to the secondary IgG response thus is likely to be explained by their inability to undergo (or tolerate) substantial somatic mutation and affinity maturation. We also noted that all 511 antibodies sequenced by us or others had an extra amino acid encoded at the VH-D junction by either N region addition or diversity of VH-D joining. Published sequences also show a 603 family-specific change at the VH-D junction. The frequency with which these changes, which appear obligate for PC binding, occur may determine the under-representation of these clonotypes in the primary anti-PC response. The affinity maturation in 511 antibodies after somatic mutation appears to account for their expansion in the secondary response.  相似文献   

11.
We have compared the pattern of somatic mutation in different immunoglobulin kappa transgenes and suggest that an element(s) located between 1 kb and 9 kb 3' of C kappa is necessary for somatic hypermutation of the antibody V gene. The sequences of transgenic and endogenous Ig V regions were determined in antigen-specific B cell hybridomas specific for 2-phenyloxazolone from independent lines of hyperimmunized transgenic mice. We analysed somatic mutation of the transgene both in hybridomas in which the transgenic kappa chain contributes to the antigen combining site as well as in hybridomas in which the transgene is a passenger with the expressed antibody being composed of endogenously-encoded heavy and light chains. In both cases, nucleotide changes in the transgene are correctly targeted to the V region and are absent from the C region. They accumulate at a similar rate to that in the endogenous Ig genes within the same cell and we find that, irrespective of whether or not the transgene kappa is directly selected by antigen, somatic mutation occurs at a similar rate and involves only single base substitutions. Furthermore, the pattern of mutations in passenger transgenes gives information about the intrinsic sequence specificities of the somatic hypermutation mechanism.  相似文献   

12.
Whether memory B cells possess altered differentiative potentials and respond in a qualitatively distinct fashion to extrinsic signals as compared with their naive precursors is a current subject of debate. We have investigated this issue by examining the participation of a predominant anti-arsonate clonotype in the primary and secondary responses in the spleens of A/J mice. While this clonotype gives rise to few Ab-forming cells (AFC) in the primary response, shortly after secondary immunization its memory cell progeny produce a massive splenic IgG AFC response, largely in the red pulp. Extensive clonal expansion and migration take place during the secondary AFC response but Ab V region somatic hypermutation is not reinduced. The primary and secondary germinal center (GC) responses of this clonotype are both characterized by ongoing V gene hypermutation and phenotypic selection, little or no inter-GC migration, and derivation of multiple, spatially distinct GCs from a single progenitor. However, the kinetics of these responses differ, with V genes containing a high frequency of total as well as affinity-enhancing mutations appearing rapidly in secondary GCs, suggesting either recruitment of memory cells into this response, or accelerated rates of hypermutation and selection. In contrast, the frequency of mutation observed per V gene does not increase monotonically during the primary GC response of this clonotype, suggesting ongoing emigration of B cells that have sustained affinity- and specificity-enhancing mutations.  相似文献   

13.
The variable region sequences of light and heavy chains (VL and VH) were determined for 11 hybridoma antibodies produced in response to the PC moiety on Proteus morganii. These hybridomas were derived from two separate fusions, one obtained from mice early in a secondary response and the other from late in a secondary response. All of these antibodies possessed a cross-reactive idiotype found on anti-PC antibodies in the M603 family, and exhibited preferential specificity for PC in the context of P. morganii. We found that all of the antibodies were derived from a single VH/VL pair. VH was encoded by V1, DFL16.1 and JH1, and VL was encoded by a consensus VK8 gene and JK5. Antibodies differed from each other by somatic point mutations that occurred at a high rate. The mutations in VL were approximately one-third as abundant as those in VH and were randomly distributed throughout the molecule. Mutations in VH were concentrated in CDR 2 and 3 and had a replacement to silent ratio that was three to six times greater than predicted from random accumulation. Based on the sequence data, a single genealogic tree with multiple branches could accommodate all the hybrids from a fusion. We concluded that in both examples the anti-PC response arose by somatic mutation and stepwise selection from a single precursor. Antigen binding studies with these 11 hybridomas and a 12th that had no mutations revealed that the acquisition of preferential specificity for antigen was dependent on somatic mutation of germline genes. Additional binding studies demonstrated that continued selection during clonal expansion was probably antigen driven. An unexpected finding was five independently selected antibodies from one fusion that had identically mutated VH and VL sequences. We suggest that the hypermutation mechanism is not a continuously active process during clonal expansion and that it is regulated, probably during the mid to late phase of the primary response.  相似文献   

14.
2a2 is the most commonly rearranged gene in the human V(lambda )locus. It has been postulated that certain immunoglobulin genes (including 2a2) are rearranged preferentially because their germline sequences encode structures capable of binding to a range of antigens. Somatic mutation could then increase the specificity and affinity of binding to a particular antigen.We studied the properties of five IgG molecules in which the same heavy chain was paired with different light chains derived from 2a2. The pattern of somatic mutations in 2a2 was shown to be crucial in conferring the ability to bind DNA, but two different patterns of mutation each conferred this ability.Computer-generated models of the three-dimensional structures of these antibodies illustrate the ability of 2a2 to form a DNA binding site in different ways. Somatic mutations at the periphery of the DNA binding site were particularly important. In two different light chains, mutations to arginine at different sites in the complementarity determining regions (CDRs) enhanced binding to DNA. In a third light chain, however, mutation to arginine at a different site blocked binding to DNA.  相似文献   

15.
The influence of structural variation, previously observed in a panel of V186.2 VH/V lambda 1-expressing anti-NP antibodies from the secondary response, on the affinity of these antibodies was examined by site-specific mutagenesis and recombinant antibody construction. A tryptophan----leucine exchange at position 33 in the VH segment of all but one of the high-affinity antibodies is the most frequently observed somatic mutation and by itself leads to a 10-fold higher affinity; all other somatic exchanges are irrelevant for affinity selection. In the single case of a high-affinity antibody without this common exchange, high affinity is mediated by a combination of mutations (including a one-codon deletion) in VH and the particular D-JH rearrangement carried by this antibody. The data indicate that the pattern of somatic diversification through hypermutation is shaped by affinity selection, but that only a single point mutation is available in the VH and the VL gene of lambda 1 chain-bearing anti-NP antibodies which by itself leads to an increase of hapten-binding affinity. Based on the analysis of two secondary response antibodies from which somatic mutations in VH and VL have been eliminated, it is also concluded that the recruitment of B cell clones into the pathway of hypermutation involves a mechanism which is not based upon affinity differences towards the antigen.  相似文献   

16.
17.
Peripheral blood was obtained from a healthy human volunteer and transformed with Epstein-Barr virus (EBV). This produced an oligoclonal cell library in culture medium that was screened by ELISA for anti-human tumor necrosis factor-alpha (TNFalpha) activity. RNA from two positive clones was applied to RT-PCR using antibody-specific primers, and the light (kappa and lambda) and heavy chain genes (gamma and mu) were cloned into the plasmid vector pFab1-His2. The antibodies produced in Escherichia coli as Fab fragments were assayed for anti-TNFalpha activity utilizing ELISA. Two IgG1/kappa anti-TNFalpha antibodies and two IgM/kappa anti-TNFalpha antibodies were isolated. DNA sequence analysis showed that the VL and VH gene families of IgM and IgG were the same. Both the antibodies showed almost the same activity on ELISA-testing. Ten clones randomly selected from light (kappa and lambda) and heavy (gamma and mu) chain genes in the oligoclonal cell library 1D5 were sequenced, and each gene (kappa, lambda, gamma, and mu) was found to be composed of one to three different genes. These data support the conclusion that the cell clone is oligoclonal at the molecular level.  相似文献   

18.
We isolated HIV-1 Envelope (Env)-specific memory B cells from a cow that had developed high titer polyclonal immunoglobulin G (IgG) with broad neutralizing activity after a long duration vaccination with HIV-1AD8 Env gp140 trimers. We cloned the bovine IgG matched heavy (H) and light (L) chain variable (V) genes from these memory B cells and constructed IgG monoclonal antibodies (mAbs) with either a human constant (C)-region/bovine V-region chimeric or fully bovine C and V regions. Among 42 selected Ig+ memory B cells, two mAbs (6A and 8C) showed high affinity binding to gp140 Env. Characterization of both the fully bovine and human chimeric isoforms of these two mAbs revealed them as highly type-specific and capable of binding only to soluble AD8 uncleaved gp140 trimers and covalently stabilized AD8 SOSIP gp140 cleaved trimers, but not monomeric gp120. Genomic sequence analysis of the V genes showed the third heavy complementarity-determining region (CDRH3) of 6A mAb was 21 amino acids in length while 8C CDRH3 was 14 amino acids long. The entire V heavy (VH) region was 27% and 25% diverged for 6A and 8C, respectively, from the best matched germline V genes available, and the CDRH3 regions of 6A and 8C were 47.62% and 78.57% somatically mutated, respectively, suggesting a high level of somatic hypermutation compared with CDRH3 of other species. Alanine mutagenesis of the VH genes of 6A and 8C, showed that CDRH3 cysteine and tryptophan amino acids were crucial for antigen binding. Therefore, these bovine vaccine-induced anti-HIV antibodies shared some of the notable structural features of elite human broadly neutralizing antibodies, such as CDRH3 size and somatic mutation during affinity-maturation. However, while the 6A and 8C mAbs inhibited soluble CD4 binding to gp140 Env, they did not recapitulate the neutralizing activity of the polyclonal antibodies against HIV infection.  相似文献   

19.
A group of hybridoma antibodies that recognize structurally overlapping epitopes on the influenza virus hemagglutinin have been analyzed for the sequence of their immunoglobulin heavy and light chain variable regions. All VH regions derive from the same gene family, and only two Vk genes, from different families, are involved. The repetitive and restricted use of these variable region genes indicates that considerable structural requirements influence the generation of antibodies specific for this region of the hemagglutinin. The degree of amino acid variability which is permissive for interaction with this region suggests that two thirds of the possible replacement mutations may abolish either antibody function or specificity. Analysis of the somatic mutation which occurred in the individual antibodies indicates that the light chains acquired replacement mutations at the rate predicted for random mutation. The heavy chains, however, accumulated a 3-fold excess of replacement mutations over that predicted for random accumulation, correlating with the dominant role they apparently play in determining fine differences in the specificity of these antibodies. The effect of somatic mutation on the clonal amplification and diversification of these B cell lineages is discussed.  相似文献   

20.
We have produced mice that carry the human Ig heavy (IgH) and both kappa and lambda light chain transloci in a background in which the endogenous IgH and kappa loci have been inactivated. The B lymphocyte population in these translocus mice is restored to about one-third of normal levels, with preferential (3:1) expression of human lambda over human kappa. Human IgM is found in the serum at levels between 50 and 400 microg/ml and is elevated following immunization. This primary human Ab repertoire is sufficient to yield diverse Ag-specific responses as judged by analysis of mAbs. The use of DH and J segments is similar to that seen in human B cells, with an analogous pattern of N nucleotide insertion. Maturation of the response is accompanied by somatic hypermutation, which is particularly effective in the light chain transloci. These mice therefore allow the production of Ag-specific repertoires of both IgM,kappa and IgM,lambda Abs and should prove useful for the production of human mAbs for clinical use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号