首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dube MG  Horvath TL  Kalra PS  Kalra SP 《Peptides》2000,21(10):1557-1560
Intracerebroventricular (icv) injections of orexin A stimulate feeding in sated rats. Since neuropeptide Y is a potent orexigenic peptide and orexin-containing neurons are morphologically linked with NPY-producing neurons in the hypothalamus, we evaluated the functional relationship between the two orexigenic peptides. The results show that whereas it was ineffective on its own, a selective NPY Y5 receptor antagonist, injected icv 15 min. before orexin A significantly suppressed orexin A-induced feeding. Since previous investigations demonstrated that an NPY Y1 receptor antagonist also inhibits feeding induced by orexin A, the current results further underscore the existence of a functional link between orexin and NPY producing neurons as the orexin network appears to be capable of influencing NPYergic signaling through Y1 and Y5 receptors to stimulate feeding.  相似文献   

3.
4.
In goldfish, intracerebroventricular (ICV) administration of melanin-concentrating hormone (MCH) inhibits feeding behavior, and fasting decreases hypothalamic MCH-like immunoreactivity. However, while MCH acts as an anorexigenic factor in goldfish, in rodents MCH has an orexigenic effect. Therefore, we examined the involvement of two anorexigenic neuropeptides, alpha-melanocyte-stimulating hormone (alpha-MSH) and corticotropin-releasing hormone (CRH), in the anorexigenic action of MCH in goldfish, using an alpha-MSH receptor antagonist, HS024, and a CRH receptor antagonist, alpha-helical CRH((9-41)). ICV injection of HS024, but not alpha-helical CRH((9-41)), suppressed MCH-induced anorexigenic action for a 60-min observation period. We then examined, using a real-time PCR method, whether MCH affects the levels of mRNAs encoding various orexigenic neuropeptides, including neuropeptide Y (NPY), orexin, ghrelin and Agouti-related peptide (AgRP), in the goldfish diencephalon. ICV administration of MCH at a dose sufficient to inhibit food consumption decreased the expression of mRNAs for NPY and ghrelin, but not for orexin and AgRP. These results indicate that the anorexigenic action of MCH in the goldfish brain is mediated by the alpha-MSH signaling pathway and is accompanied by inhibition of NPY and ghrelin synthesis.  相似文献   

5.
6.
Neuropeptides,food intake and body weight regulation: a hypothalamic focus   总被引:7,自引:0,他引:7  
Hillebrand JJ  de Wied D  Adan RA 《Peptides》2002,23(12):2283-2306
Energy homeostasis is controlled by a complex neuroendocrine system consisting of peripheral signals like leptin and central signals, in particular, neuropeptides. Several neuropeptides with anorexigenic (POMC, CART, and CRH) as well as orexigenic (NPY, AgRP, and MCH) actions are involved in this complex (partly redundant) controlling system. Starvation as well as overfeeding lead to changes in expression levels of these neuropeptides, which act downstream of leptin, resulting in a physiological response. In this review the role of several anorexigenic and orexigenic (hypothalamic) neuropeptides on food intake and body weight regulation is summarized.  相似文献   

7.
TRH is a peptide produced by the hypothalamus which major function in mammals is the regulation of TSH secretion by the pituitary. In fish, TRH does not appear to affect TSH secretion, suggesting that it might regulate other functions. In this study, we assessed the effects of central (intracerebroventricular, icv) injections of TRH on feeding and locomotor behavior in goldfish. TRH at 10 and 100 ng/g, but not 1 ng/g, significantly increased feeding and locomotor behaviors, as indicated by an increase in food intake and in the number of total feeding acts as compared to saline-injected fish. In order to assess possible interactions between TRH and other appetite regulators, we examined the effects of icv injections of TRH on the hypothalamic expression of orexin, orexin receptor and CART. The mRNA expression levels of all three peptides were significantly increased in fish injected with TRH at 100 ng/g as compared to saline-injected fish. Fasting increased TRH, orexin, and orexin receptor hypothalamic mRNA levels and decreased CART hypothalamic mRNA levels. Our results suggest that TRH is involved in the regulation of feeding/locomotor activity in goldfish and that this action is associated with a stimulation of both the orexin and CART systems.  相似文献   

8.
9.
Melanin-concentrating hormone (MCH) and neuropeptide Y (NPY) are orexigenic peptides found in hypothalamic neurons that project throughout the forebrain and hindbrain. The effects of fourth ventricle (4V) infusions of NPY (5 microg) and MCH (5 microg) on licking for water, 4 mM saccharin, and sucrose (0.1 and 1.0 M) solutions were compared to identify the contributions of each peptide to hindbrain-stimulated feeding. NPY increased mean meal size only for the sucrose solutions, suggesting that caloric feedback or taste quality is pertinent to the orexigenic effect; MCH infusions under identical testing conditions failed to produce increases for any tastant. A second experiment also observed no intake or licking effects after MCH doses up to 15 microg, supporting the conclusion that MCH-induced orexigenic responses require forebrain stimulation. A third experiment compared the 4V NPY results with those obtained after NPY infusions (5 microg) into the third ventricle (3V). In contrast to the effects observed after the 3V NPY injections and previously reported forebrain intracerebroventricular (ICV) NPY infusion studies, 4V NPY failed to increase meal frequency for any taste solution or ingestion rate in the early phases of the sucrose meals. Overall, 4V NPY responses were limited to intrameal behavioral processes, whereas forebrain ICV NPY stimulation elicited both consummatory and appetitive responses. The dissociation between MCH and NPY effects observed for 4V injections is consistent with reports that forebrain ICV injections of MCH and NPY produced nearly dichotomous effects on the pattern of licking microstructure, and, collectively, the results indicate that the two peptides have separate sites of feeding action in the brain.  相似文献   

10.
11.
Agouti protein and agouti-related protein (AGRP) antagonize alpha-melanocyte-stimulating hormone that binds to and activates the melanocortin-4 receptor (MC4-R) in the hypothalamus, thereby stimulating food intake. Melanin-concentrating hormone (MCH) and orexin are orexigenic peptides that specifically are synthesized in the lateral hypothalamus. MCH gene expression was augmented in A(y)/a (agouti) mice which overexpress agouti protein, but orexin mRNA was not. AGRP administered intracerebroventricularly into wild-type rats augmented MCH but not orexin gene expression. Also, SHU9119, a peptidergic antagonist of MC4-R, increased only MCH mRNA. These findings indicate that interruption of signaling at MC4-R activates the MCH but not the orexin gene. The biosyntheses of MCH and orexin are regulated through different pathways.  相似文献   

12.
Neuropeptide Y (NPY) produced in the arcuate nucleus (ARC) of the hypothalamus stimulates feeding both directly by activating NPY receptors and indirectly through release of the orexigenic peptides, galanin and beta-endorphin (beta-END), in the paraventricular nucleus (PVN) and surrounding neural sites. Orexin A and orexin B, produced outside the ARC in the lateral hypothalamic area (LH), have recently been shown to stimulate feeding. In the present studies we tested the hypothesis that NPYergic signaling may mediate feeding stimulated by orexins. In adult male rats injected intracerebroventricularly (i.c.v.) with orexin A (3, 10, 15 nmol) or orexin B (3, 10, 30 nmol) feeding was stimulated in a dose-dependent manner; maximal feeding was seen after 15 nmol orexin A and 30 nmol orexin B. To determine whether NPY may mediate this orexin stimulated feeding, we used 1229U91, a selective NPY Y1 receptor antagonist (NPY-A). Whereas NPY-A on its own was ineffective, it suppressed NPY-induced feeding. Furthermore, NPY-A completely blocked the feeding evoked by either orexin A (15 nmol) or orexin B (30 nmol). These results show that orexin A and B stimulate feeding and further suggest that these excitatory effects may be mediated by NPYergic signaling through Y1 receptors. These findings are in accord with the view that the orexin-NPY pathway may comprise a functional link upstream from NPY within the hypothalamic appetite regulating network.  相似文献   

13.
14.
The aim of the present study was to evaluate in hypothalamus and hindbrain of rainbow trout in vitro the effect of leptin treatment on glucosensing capacity and the expression of orexigenic and anorexigenic peptides involved in the control of food intake. In a first experiment, the response of parameters involved in glucosensing (GK, PK and GSase activities; GK expression and glucose; glycogen and DHAP levels) and the expression of orexigenic (NPY) and anorexigenic (POMC, CART, CRF) peptides was assessed in hypothalami and hindbrain incubated for 1 h with 2, 4 or 8 mM d-glucose alone (controls) or with 10 nM leptin, or with 10 nM leptin plus inhibitors of leptin signaling pathways (50 nM wortmannin and 500 nM AG490). Leptin treatment increased levels in parameters involved in glucosensing. Leptin treatment decreased NPY mRNA levels in hypothalamus without affecting the expression of the other peptides assessed. Leptin effects were reverted in the presence of inhibitors for all parameters assessed suggesting the involvement of JAK/STAT and IRS-PI(3)K pathways. In a second experiment, we observed time-dependent (1-3 h) and dose (10, 20 and 50 nM)- effects of leptin treatment in decreasing NPY mRNA levels without affecting expression of the other peptides assessed. Considering the orexigenic action of NPY in fish, it seems that the anorexic effect of leptin can be mediated by reduced expression of NPY occurring in hypothalamus, and that change can be related to the activation of the glucosensing system occurring simultaneously.  相似文献   

15.
The gastrointestinal peptide hormone ghrelin stimulates appetite in rodents and humans via hypothalamic actions. We discovered expression of ghrelin in a previously uncharacterized group of neurons adjacent to the third ventricle between the dorsal, ventral, paraventricular, and arcuate hypothalamic nuclei. These neurons send efferents onto key hypothalamic circuits, including those producing neuropeptide Y (NPY), Agouti-related protein (AGRP), proopiomelanocortin (POMC) products, and corticotropin-releasing hormone (CRH). Within the hypothalamus, ghrelin bound mostly on presynaptic terminals of NPY neurons. Using electrophysiological recordings, we found that ghrelin stimulated the activity of arcuate NPY neurons and mimicked the effect of NPY in the paraventricular nucleus of the hypothalamus (PVH). We propose that at these sites, release of ghrelin may stimulate the release of orexigenic peptides and neurotransmitters, thus representing a novel regulatory circuit controlling energy homeostasis.  相似文献   

16.
17.
18.
Glutamate acts in the hypothalamus promoting region-, and cell-dependent effects on feeding. Part of these effects are mediated by NMDA receptors, which are up regulated in conditions known to promote increased food intake and thermogenesis, such as exposure to cold and consumption of highly caloric diets. Here, we hypothesized that at least part of the effect of glutamate on hypothalamic control of energy homeostasis would depend on the control of neurotransmitter expression and JAK2 signaling. The expression of NMDA receptors was co-localized to NPY/AgRP, POMC, CRH, and MCH but not to TRH and orexin neurons of the hypothalamus. The acute intracerebroventricular injection of glutamate promoted a dose-dependent increase in JAK2 tyrosine phosphorylation. In obese rats, 5 days intracerebroventricular treatment with glutamate resulted in the reduction of food intake, accompanied by a reduction of spontaneous motility and reduction of body mass, without affecting oxygen consumption. The reduction of food intake and body mass were partially restrained by the inhibition of JAK2. In addition, glutamate produced an increased hypothalamic expression of NPY, POMC, CART, MCH, orexin, CRH, and TRH, and the reduction of AgRP. All these effects on neurotransmitters were hindered by the inhibition of JAK2. Thus, the intracerebroventricular injection of glutamate results in the reduction of body mass through a mechanism, at least in part, dependent on JAK2, and on the broad regulation of neurotransmitter expression. These effects are not impaired by obesity, which suggest that glutamate actions in the hypothalamus may be pharmacologically explored to treat this disease.  相似文献   

19.
The neuropeptides orexin A (OXA), neuropeptide Y (NPY) and galanin (GAL) have been shown to play a role in the regulation of food intake in mammals. They also significantly stimulate feeding in goldfish. In order to assess the interactions between these peptides in the control of feeding in goldfish, we investigated the effects of central injection of specific receptor antagonists for NPY (BIBP 3226) and GAL (M40) on OXA-induced feeding and the effects of desensitization of orexin receptors on NPY- and GAL-induced feeding. We investigated the effects of BIBP 3226 on GAL-induced feeding and the effects of M40 on NPY-induced feeding. We also examined the effects of coinjection of each pair of neuropeptides on feeding behavior. Injections of 10 ng/g OXA, 5 ng/g NPY and 10 ng/g GAL each induced an increase in feeding. Fish treated with 5 ng/g BIBP or 20 ng/g M40 had food consumption similar to saline controls. BIBP at 5 ng/g significantly reduced NPY- and OXA-induced feeding. Injections of 20 ng/g M40 significantly decreased GAL-induced feeding, but had no effect on OXA-induced feeding. Blocking of orexin receptors by treatment with high doses of OXA (100 ng/g) resulted in a decrease in both NPY- and GAL-induced feeding. Coinjection with 0.5 ng/g OXA and either 0.5 ng/g NPY or 0.5 ng/g GAL resulted in a food intake higher than that observed in saline control fish and in fish treated with NPY or GAL alone at 0.5 ng/g. NPY mRNA expression was increased in the telencephalon and in the hypothalamus compared to saline-treated fish, following injection of OXA. These results indicate that both NPY and GAL are at least, in part, dependent on coaction with OXA for the stimulation of food intake and feeding behavior in goldfish. In addition, the effects of OXA are mediated, in part, by the NPY pathway. This suggests a functional interdependence between these three peptidergic systems in the control of energy balance in goldfish.  相似文献   

20.
B. Griffond  P.Y. Risold   《Peptides》2009,30(11):2045
Numerous works associate the MCH peptide, and the hypothalamic neurons that produce it, to the feeding behavior and energy homeostasis. It is commonly admitted that MCH is an orexigenic peptide, and MCH neurons could be under the control of arcuate NPY and POMC neurons. However, the literature data is not always concordant. In particular questions about the intrahypothalamic circuit involving other neuropeptides and about the mechanisms through which MCH could act are not yet clearly answered. For example, which receptors mediate a MCH response to NPY or alpha-MSH, does MCH act alone, is there any local anatomical organization within the tuberal LHA? A review of the current literature is then needed to help focus attention on these unresolved and often neglected issues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号