首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the current work nanoparticles (NPs) of α-amylase were generated in an aqueous solution using high-intensity ultrasound, and were subsequently immobilized on polyethylene (PE) films, or polycarbonate (PC) plates, or on microscope glass slides. The α-amylase NPs coated on the solid surfaces have been characterized by ESEM, TEM, FTIR, XPS and AFM. The substrates immobilized with α-amylase were used for hydrolyzing soluble potato starch to maltose. The amount of enzyme introduced in the substrates, leaching properties, and the catalytic activity of the immobilized enzyme were compared. The catalytic activity of the amylase deposited on the three solid surfaces was compared to that of the same amount of free enzyme at different pHs and temperatures. α-Amylase coated on PE showed the best catalytic activity in all the examined parameters when compared to native amylase, especially at high temperatures. When immobilized on glass, α-amylase showed better activity than the native enzyme over all pH and temperature values studied. However, the immobilization on PC did not improve the enzyme activity at any pH and any temperature compared to the free amylase. The kinetic parameters, Km and Vmax were also calculated. The amylase coated PE showed the most favorable kinetic parameters (Km = 5 g L−1 and Vmax = 5E−07 mol mL−1 min−1). In contrast, the anchored enzyme-PC exhibited unfavorable kinetic parameters (Km = 16 g L−1, Vmax = 4.2E−07 mol mL−1 min−1). The corresponding values for amylase-glass were Km = 7 g L−1, Vmax = 1.8E−07 mol mL−1 min−1, relative to those obtained for the free enzyme (Km = 6.6 g L−1, Vmax = 3.3E−07 mol mL−1 min−1).  相似文献   

2.
An industrial enzyme, alkaline serine endopeptidase, was immobilized on surface modified SBA-15 and MCF materials by amide bond formation using carbodiimide as a coupling agent. The specific activities of free enzyme and enzyme immobilized on SBA-15 and MCF were studied using casein (soluble milk protein) as a substrate. The highest activity of free enzyme was obtained at pH 9.5 while this value shifted to pH 10 for SBA-15 and MCF immobilized enzyme. The highest activity of immobilized enzymes was obtained at higher temperature (60 °C) than that of the free enzyme (55 °C). Kinetic parameters, Michaelis–Menten constant (Km) and maximum reaction velocity (Vmax), were calculated as Km = 13.375, 11.956, and 8.698 × 10?4 mg/ml and Vmax = 0.156, 0.163 and 0.17 × 10?3 U/mg for the free enzyme and enzyme immobilized on SBA-15 and MCF, respectively. The reusability of immobilized enzyme showed 80% of the activity retained even after 15 cycles. Large pore sized MCF immobilized enzyme was found to be more promising than the SBA-15 immobilized enzyme due to the availability of larger pores of MCF, which offer facile diffusion of substrate and product molecules.  相似文献   

3.
Pectinesterase isolated from Malatya apricot pulp was covalently immobilized onto glutaraldehyde-containing amino group functionalized porous glass beads surface by chemical immobilization at pH 8.0. The amount of covalently bound apricot PE was found 1.721 mg/g glass support. The properties of immobilized enzyme were investigated and compared to those of free enzyme. The effect of various parameters such as pH, temperature, activation energy, heat and storage stability on immobilized enzyme were investigated. Optimum pH and temperature were determined to be 8.0 and 50 °C, respectively. The immobilized PE exhibited better thermostability than the free one. Kinetic parameters of the immobilized enzyme (Km and Vmax values) were also evaluated. The Km was 0.71 mM and the Vmax was 0.64 μmol min?1 mg?1. No drastic change was observed in the Km and Vmax values. The patterns of heat stability indicated that the immobilization process tends to stabilize the enzyme. Thermal and storage stability experiments were also carried out. It was observed that the immobilized enzyme had longer storage stability and retained 50% of its initial activity during 30 days.  相似文献   

4.
In this study, we synthesized magnetic nanoparticles (MNPs) by co-precipitation method. After that, silica coating with tetraethyl orthosilicate (TEOS) (SMNPs), amine functionalization of silica coated MNPs (ASMNPs) by using 3-aminopropyltriethoxysilane (APTES) were performed, respectively. After activation with glutaraldehyde (GA) of ASMNPs, human carbonic anhydrase (hCA I) was immobilized on ASMNPs. The characterization of nanoparticles was performed by transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). The immobilization conditions such as GA concentration, activation time of support with GA, enzyme amount, enzyme immobilization time were optimized. In addition of that, optimum conditions for activity, kinetic parameters (Km, Vmax, kcat, kcat/Km), thermal stability, storage stability and reusability of immobilized enzyme were determined.The immobilized enzyme activity was optimum at pH 8.0 and 25 °C. The Km value of the immobilized enzyme (1.02 mM) was higher than the free hCA I (0.48 mM). After 40 days incubation at 4 °C and 25 °C, the immobilized hCA I sustained 89% and 85% of its activity, respectively. Also, it sustained 61% of its initial activity after 13 cycles. Such results revealed good potential of immobilized enzyme for various applications.  相似文献   

5.
《Process Biochemistry》2007,42(3):429-433
Porous silicon layers fabricated by the reaction-induced vapor phase stain etch method were coated with 5% polyethylenimine. Urease from Canavalia brasiliensis beans was immobilized on this support through covalent linking with 2.5% glutaraldehyde. The pH and temperature profile of the immobilized and free urease exhibited higher activity at pH 6.5 and 37 °C. After being stored for 30 days at 4 °C, the immobilized enzyme had 75% of the initial activity. The maximum apparent Michaelis constant for free urease (Km) was 94.33 mM whereas for immobilized urease was 53.04 mM. The maximum reaction velocity (Vmax) for free urease was 3.51 mmol/min and for immobilized urease was 1.57 mmol/min.  相似文献   

6.
Enzyme stabilization via immobilization is one of the preferred processes as it provides the advantages of recovery and reusability. In this study, Thermomyces lanuginosus lipase has been immobilized through crosslinking using 2% glutaraldehyde and hen egg white, as an approach towards CLEA preparation. The immobilization efficiency and the properties of the immobilized enzyme in terms of stability to pH, temperature, and denaturants was studied and compared with the free enzyme. Immobilization efficiency of 56% was achieved with hen egg white. The immobilized enzyme displayed a shift in optimum pH towards the acidic side with an optimum at pH 4.0 whereas the pH optimum for free enzyme was at pH 6.0. The immobilized enzyme was stable at higher temperature retaining about 83% of its maximum activity as compared to the free enzyme retaining only 41% activity at 70 °C. The denaturation of lipase in free form was rapid with a half-life of 2 h at 60 °C and 58 min at 70 °C as compared to 12 h at 60 °C and 2 h at 70 °C for the immobilized enzyme. The effect of denaturants, urea and guanidine hydrochloride on the free and immobilized enzyme was studied and the immobilized enzyme was found to be more stable towards denaturants retaining 74% activity in 8 M urea and 98% in 6 M GndHCl as compared to 42% and 33% respectively in the case of free enzyme. The apparent Km (2.08 mM) and apparent Vmax (0.95 μmol/min) of immobilized enzyme was lower as compared to free enzyme; Km (8.0 mM) and Vmax (2.857 μmol/min). The immobilized enzyme was reused several times for the hydrolysis of olive oil.  相似文献   

7.
In this work, an active phytase concentrated extract from soybean sprout was immobilized on a polymethacrylate-based polymer Sepabead EC-EP which is activated with epoxy groups. The immobilized enzyme exhibited an activity of 0.1 U/g of carrier and activity yield of 64.7%. The optimum temperature and pH for the activity of both free and immobilized enzymes were found as 60 °C and pH 5.0, respectively. The immobilized enzyme was more stable than free enzyme in the range of pH 3.0–8.0 and more than 70% of the original activity was recovered. Both the enzymes completely retained nearly about 84% of their original activity at 65 °C. The Km and Vmax values were measured as 5 mM and 0.63 U/mg for free enzyme and 12.5 mM and 0.71 U/mg for immobilized enzyme, respectively. Free and immobilized soybean sprout phytase enzymes were also used in the biodegradation of soymilk phytate. The immobilized enzyme hydrolysed 92.5% of soymilk phytate in 7 h at 60 °C, as compared with 98% hydrolysis observed for the native enzyme over the same period of time. The immobilization procedure on Sepabead EC-EP is very cheap and also easy to carry out, and the features of the immobilized enzyme are very attractive that the potential for practical application is considerable.  相似文献   

8.
《Process Biochemistry》2014,49(10):1682-1690
Double enzymes (alcalase and trypsin) were effectively immobilized in a composite carrier (calcium alginate–chitosan) to produce immobilized enzyme beads referred to as ATCC. The immobilization conditions for ATCC were optimized, and the immobilized enzyme beads were characterized. The optimal immobilization conditions were 2.5% of sodium alginate, 10:4 sodium alginate to the double enzymes, 3:7 chitosan solution to CaCl2 and 2.5 h immobilization time. The ATCC beads had greatly enhanced stability and good usability compared with the free form. The ATCC residual activity was retained at 88.9% of DH (degree of hydrolysis) after 35 days of storage, and 36.0% of residual activity was retained after three cycles of use. The beads showed a higher zein DH (65.8%) compared with a single enzyme immobilized in the calcium alginate beads (45.5%) or free enzyme (49.3%). The ATCC kinetic parameters Vmax and apparent Km were 32.3 mL/min and 456.62 g−1, respectively. Active corn peptides (CPs) with good antioxidant activity were obtained from zein in the ethanol phase. The ATCC might be valuable for preparing CPs and industrial applications.  相似文献   

9.
A novel method was developed for the immobilization of glucoamylase from Aspergillus niger. The enzyme was immobilized onto polyglutaraldehyde-activated gelatin particles in the presence of polyethylene glycol and soluble gelatin, resulting in 85% immobilization yield. The immobilized enzyme has been fully active for 30 days. In addition, the immobilized enzyme retained 90 and 75% of its activity in 60 and 90 days, respectively. The enzyme optimum conditions were not affected by immobilization and the optimum pH and temperature for free and immobilized enzyme were 4 and 65 °C, respectively. The kinetic parameters for the hydrolysis of maltodextrin by free and immobilized glucoamylase were also determined. The Km values for free and immobilized enzyme were 7.5 and 10.1 g maltodextrin/l, respectively. The Vmax values for free and immobilized enzyme were estimated as 20 and 16 μmol glucose/(min μl enzyme), respectively. The newly developed method is simple yet effective and could be used for the immobilization of some other enzymes.  相似文献   

10.
Activation of enzymes by low concentrations of denaturants has been reported for a limited number of enzymes including lipocalin-type prostaglandin D synthase (L-PGDS) and adenylate kinase. During unfolding studies on human biliverdin-IXα reductase it was discovered that the enzyme is activated at low concentrations of urea. Under standard assay conditions the native enzyme displays pronounced substrate inhibition with biliverdin as variable substrate; however in the presence of 3 M urea, the substrate inhibition is abolished and the enzyme exhibits Michaelian kinetics. When the initial rate kinetics with NADPH as variable substrate are conducted in 3 M urea, the Vmax is increased 11-fold to 1.8 μmol/min/mg and the apparent Km for biliverdin increases from 1 to 3 μM. We report the existence of two kinetically distinct folded intermediates between the native and unfolded forms. When the period of incubation with urea was varied prior to measuring enzyme activity, the apparent Vmax was shown to decay to half that seen at zero time with a half life of 5.8 minutes, while the apparent Km for NADPH remains constant at approximately 5 μM. With NADH as cofactor the half life of the activated (A) form was 2.9 minutes, and this form decays in 3 M urea to a less active (LA) form. The apparent Km for NADH increases from 0.33 mM to 2 mM for the A and LA forms. These kinetically distinct species are reminiscent of the activity-enhanced and inactive forms of L-PGDS observed in the presence of urea and guanidine hydrochloride.  相似文献   

11.
《Process Biochemistry》2014,49(12):2107-2113
Chitosanase-coated silica-gels were prepared via cross-linking of the chitosanase onto silica-gels for the efficient production of multisize chitooligosaccharides (MCOs) in a continuous process. The kinetic aspects of immobilized chitosanase (IMMCTase) were investigated based on the reaction time, production of MCOs, and MALDI-TOF mass analyses to achieve maximum bioconversion of high molecular weight chitosan (HMWC) to MCOs. IMMCTase revealed a negligible loss of chitosanase activity after multi uses in continuous digestion of HMWC. The optimal temperature of IMMCTase was 37 °C, and kinetic parameters toward HMWC were determined to be Km = 1.45 mM and Vmax = 360 μmole/μg/min, respectively. Under optimal conditions, the recovery of enzyme activity of IMMCTase was determined to be 82.3%, thus indicating that it can still be reused few more times. In conclusion, use of IMMCTase resulted in rapid and efficient digestions of HMWC with consistent results to produce MCOs.  相似文献   

12.
β-Galactosidase is an important enzyme catalyzing not only the hydrolysis of lactose to the monosaccharides glucose and galactose but also the transgalactosylation reaction to produce galacto-oligosaccharides (GOS). In this study, β-galactosidase was immobilized by adsorption on a mixed-matrix membrane containing zirconium dioxide. The maximum β-galactosidase adsorbed on these membranes was 1.6 g/m2, however, maximal activity was achieved at an enzyme concentration of around 0.5 g/m2. The tests conducted to investigate the optimal immobilization parameters suggested that higher immobilization can be achieved under extreme parameters (pH and temperature) but the activity was not retained at such extreme operational parameters. The investigations on immobilized enzymes indicated that no real shift occurred in its optimal temperature after immobilization though the activity in case of immobilized enzyme was better retained at lower temperature (5 °C). A shift of 0.5 unit was observed in optimal pH after immobilization (pH 6.5 to 7). Perhaps the most striking results are the kinetic parameters of the immobilized enzyme; while the Michaelis constant (Km) value increased almost eight times compared to the free enzyme, the maximum enzyme velocity (Vmax) remained almost constant.  相似文献   

13.
Maltase from Bacillus licheniformis KIBGE-IB4 was immobilized within calcium alginate beads using entrapment technique. Immobilized maltase showed maximum immobilization yield with 4% sodium alginate and 0.2 M calcium chloride within 90.0 min of curing time. Entrapment increases the enzyme–substrate reaction time and temperature from 5.0 to 10.0 min and 45 °C to 50 °C, respectively as compared to its free counterpart. However, pH optima remained same for maltose hydrolysis. Diffusional limitation of substrate (maltose) caused a declined in Vmax of immobilized enzyme from 8411.0 to 4919.0 U ml?1 min?1 whereas, Km apparently increased from 1.71 to 3.17 mM ml?1. Immobilization also increased the stability of free maltase against a broad temperature range and enzyme retained 45% and 32% activity at 55 °C and 60 °C, respectively after 90.0 min. Immobilized enzyme also exhibited recycling efficiency more than six cycles and retained 17% of its initial activity even after 6th cycles. Immobilized enzyme showed relatively better storage stability at 4 °C and 30 °C after 60.0 days as compared to free enzyme.  相似文献   

14.
Laccase from Trametes versicolor was immobilized on Amberlite IR-120 H beads. Maximum immobilization obtained was 78.7% at pH = 4.5 and temperature T = 45 °C. Kinetic parameters, Km and Vmax values, were determined respectively as 0.051 mM and 2.77 × 10?2 mM/s for free and 4.70 mM and 5.27 × 10?3 mM/s for immobilized laccase. The Amberlite–laccase system showed a 30% residual activity after 7 cycles. On the other hand, the loss of activity for free laccase after 7 days of storage at 4 °C was 18.5% in comparison to Amberlite–laccase system with a loss of 1.4%, during the same period. Improved operational, thermal and storage stabilities of the immobilized laccase were obtained compared to the free counterpart. Therefore, the use of low-cost matrices, like Amberlite for enzyme immobilization represents a promising product for enzymatic industrial applications.  相似文献   

15.
An investigation was conducted on the production of β-galactosidase (β-gal) by different strains of Kluyveromyces, using lactose as a carbon source. The maximum enzymatic activity of 3.8 ± 0.2 U/mL was achieved by using Kluyveromyces lactis strain NRRL Y1564 after 28 h of fermentation at 180 rpm and 30 °C. β-gal was then immobilized onto chitosan and characterized based on its optimal operation pH and temperature, its thermal stability and its kinetic parameters (Km and Vmax) using o-nitrophenyl β-d-galactopyranoside as substrate. The optimal pH for soluble β-gal activity was found to be 6.5 while the optimal pH for immobilized β-gal activity was found to be 7.0, while the optimal operating temperatures were 50 °C and 37 °C, respectively. At 50 °C, the immobilized enzyme showed an increased thermal stability, being 8 times more stable than the soluble enzyme. The immobilized enzyme was reused for 10 cycles, showing stability since it retained more than 70% of its initial activity. The immobilized enzyme retained 100% of its initial activity when it was stored at 4 °C and pH 7.0 for 93 days. The soluble β-gal lost 9.4% of its initial activity when it was stored at the same conditions.  相似文献   

16.
Industrial application of α-galactosidase requires efficient methods to immobilize the enzyme, yielding a biocatalyst with high activity and stability compared to free enzyme. An α-galactosidase from tomato fruit was immobilized on galactose-containing polymeric beads. The immobilized enzyme exhibited an activity of 0.62 U/g of support and activity yield of 46%. The optimum pH and temperature for the activity of both free and immobilized enzymes were found as pH 4.0 and 37 °C, respectively. Immobilized α-galactosidase was more stable than free enzyme in the range of pH 4.0–6.0 and more than 85% of the initial activity was recovered. The decrease in reaction rate of the immobilized enzyme at temperatures above 37 °C was much slower than that of the free counterpart. The immobilized enzyme shows 53% activity at 60 °C while free enzyme decreases 33% at the same temperature. The immobilized enzyme retained 50% of its initial activity after 17 cycles of reuse at 37 °C. Under same storage conditions, the free enzyme lost about 71% of its initial activity over a period of 7 months, whereas the immobilized enzyme lost about only 47% of its initial activity over the same period. Operational stability of the immobilized enzyme was also studied and the operational half-life (t1/2 was determined as 6.72 h for p-nitrophenyl α-d-galactopyranoside (PNPG) as substrate. The kinetic parameters were determined by using PNPG as substrate. The Km and Vmax values were measured as 1.07 mM and 0.01 U/mg for free enzyme and 0.89 mM and 0.1 U/mg for immobilized enzyme, respectively. The synthesis of the galactose-containing polymeric beads and the enzyme immobilization procedure are very simple and also easy to carry out.  相似文献   

17.
Polyvinyl alcohol (PVA)–silica nanohybrids have been synthesized in a modified Stöber process. The bioactivities of the enzyme loaded hybrids were monitored and the optimum activity sample (H) was calcined at 300 °C in N2 to obtain hybrid gel (H3) with improved performance. The synthesized hybrids have been characterized by Fourier Transform Infra Red spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis and BET surface area analysis. Under the optimized conditions, the bioactivity of the enzyme impregnated H3 (H3-Enz) was 21.823 U/mg. On recycling, H3-Enz retained 88% of its initial bioactivity in the sixth cycle. The kinetic parameters of soluble starch hydrolysis for the immobilized (KM = 4.137 mg mL?1; Vmax = 5.95 mg mL?1 min?1) and free enzyme (KM = 10.667 mg mL?1; Vmax = 6.0557 mg mL?1 min?1) indicated that the immobilization has nearly doubled the enzyme's affinity for the substrate, while the maximum rate of the enzymatic reaction at the saturation point was not much affected. The immobilized enzyme showed greater shelf life in comparison to the free enzyme.  相似文献   

18.
Various immobilized metal ions affinity membranes (IMAMs) were prepared from the regenerated cellulose membrane (RC membrane) and chelated with various metal ions such as Co2+, Ni2+, Cu2+ and Zn2+. The D-hydantoin-hydrolyzing enzyme (DHTase) harboring a poly-His tagged residue was used as a model protein to be immobilized on the prepared IMAMs through the direct metal–protein interaction forces. The adsorption isotherm and the kinetic parameters Vmax, Km,app of DHTase on IMAMs were studied. The cobalt ions chelated IMAM (Co-IMAM) was found to yield the highest specific activity of DHTase. Under the immobilization condition, the cobalt ion chelated amount was 161.4 ± 4.7 μmol/disk with a DHTase activity of 4.1 ± 0.1 U/disk. As compared to the free DHTase, the immobilized DHTase membrane could achieve a broader pH tolerance and higher thermal stability. In addition, 98% of the residual activity could be retained for 7-times repeated use. Only little activity loss was observed within 36-day storage at 4 °C. This is the first report concerning about using cobalt ion as the effective chelated metal ion for simultaneous purification and immobilization operation.  相似文献   

19.
20.
Tannase production by Bacillus subtilis PAB2, was investigated under solid state fermentation using tamarind seed as sole carbon source and it was found as the highest titer (73.44 U/gds). The enzyme was purified to homogeneity, which showed the molecular mass around 52 kDa (Km = 0.445 mM, Vmax = 125.8 mM/mg/min and Kcat = 2.88 min–1). The enzyme was found stable in a range of pH (3.0–8.0) and temperature (30–70 °C) with an optimal activity at pH 5.0, pI of 4.4 and at 40 °C temperature. It exhibited half-life (t1/2) of 4.5 h at 60 °C. The enzyme comprised a typical secondary structure containing α-helix (9.3%), β-pleated sheet (33.6%) and β-turn (17.2%). The native conformation of the enzyme was alike a 44 nm spherical nanoparticle upon aggregation. Thermodynamic parameters of tannase revealed that it was stable at 40 °C and showed Q10, ΔGd and ΔSd values of 2.08, 99.37 KJ/mol and 252.38 J mol−1 K−1, respectively. Organic solvents were stimulatory with regard to enzyme activity. Moreover, the altered enzyme activity was determined to be correlated with the changes in structural conformation in presence of inducer and inhibitor. Tannase was explored to have no cytotoxicity on Vero cell line as well as rat model study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号