首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Irisin was first identified in skeletal muscle cells. It is an exercise protein that is secreted into the circulation; it causes conversion of white adipose tissue to brown adipose tissue. We investigated irisin immunoreactivity in mole rat (Spalax leucodon) tissues. We examined cerebellum, pituitary, heart, liver, pancreas, spleen, uterus, kidney and striated muscle in female adult mole rats. Tissues were processed, embedded in paraffin, sectioned at 5 μm and stained immunohistochemically for irisin. Irisin immunostaining was detected in the cytoplasm of stained cells; the cytoplasm of Purkinje cells was unstained. We found that irisin may be synthesized in many tissues. The function of locally synthesized irisin currently is unknown.  相似文献   

2.
Irisin was first identified in muscle cells. We detected irisin immunoreactivity in various organs of the crested porcupine (Hystrix cristata). In the epidermis, irisin immunoreactivity was localized mainly in stratum basale, stratum spinosum and stratum granulosum layers; immunoreactivity was not observed in the stratum corneum. In the dermis, irisin was found in the external and internal root sheath, cortex and medulla of hair follicles, and in sebaceous glands. Irisin immunoreactivity was found in the neural retina and skeletal muscle fibers associated with the eye. The pineal and thyroid glands also exhibited irisin immunoreactivity.  相似文献   

3.
BackgroundAs a newly discovered muscle factor secreted by skeletal muscle cells, irisin is a polypeptide fragment formed from hydrolysis of fibronectin type Ⅲ domain-containing protein 5 (FNDC5). Irisin can promote beigeing of white adipose tissue (WAT) and regulate glucose and lipid metabolisms. However, the functions of irisin in skeletal muscle development remain largely unknown. In order to characterize the expression of irisin, this study investigated the expression of irisin precursor FNDC5 in myoblasts and skeletal muscles during different developmental stages of SPF mice.ResultsThe Western blot, quantitative real-time PCR (qRT-PCR), and immunofluorescence assay results showed that FNDC5 was expressed in all the developmental stages of myoblasts and gastrocnemius, but its expression differed at different stages. FNDC5 protein exhibited the highest expression in gastrocnemius of sexually mature mice, followed by elderly mice and adolescent mice, and it displayed the lowest expression in pups. Additionally, FNDC5 protein was mainly expressed in cytoplasm, and it had the highest expression in primary myoblasts, followed by the myotubes with the lowest expression in C2C12 myogenic cells.ConclusionsOverall, FNDC5 was mainly expressed in cytoplasm and extracellular matrix with different expression levels at different developmental stages of skeletal muscle cells and tissues in mice. This study will provide new strategies for promoting skeletal muscle development and treating muscle- and metabolism-related disease by using irisin.  相似文献   

4.
ABSTRACT

We investigated the expression of irisin in renal cancers using immunocytochemistry. Irisin has been reported to exhibit anticancer properties. The study groups consisted of 22 cases each of control renal tissue, oncocytoma, chromophobe renal cell carcinoma (RCC), clear cell RCC (Fuhrman nuclear grades 1, 2, 3 and 4) and papillary RCC. We evaluated 10 slides for each of 176 cases. Slides were immunostained for irisin and histoscores were calculated for the prevalence and strength of immunostaining. Fuhrman nuclear grade 1, 2, 3 clear cell RCC and papillary RCC exhibited no irisin immunoreactivity. Irisin immunoreactivity was observed in some Fuhrman nuclear grade 4 RCCs. We found a significant decrease in irisin staining in chromophobe RCC compared to the control. Immunoreactivity in the oncocytoma tissue was comparable to the control group. Irisin immunoreactivity in chromophobe RCC decreased and no immunoreactivity was observed in Fuhrman nuclear grade 1, 2, 3 clear cell RCC and papillary RCC. Immunistochemical screening of irisin in renal oncocytomas and renal cancers may be useful for differential diagnosis.  相似文献   

5.

Background

Irisin is a hormone released mainly from skeletal muscle after exercise which increases adipose tissue energy expenditure. Adipocytes can also release irisin after exercise, acting as a local adipokine to induce white adipose tissue to take on a brown adipose tissue-like phenotype, suggesting that irisin and its receptor may represent a novel molecular target for the treatment of obesity and obesity-related diabetes. Previous reports provide conflicting evidence regarding circulating irisin levels in patients with type 2 diabetes (T2DM).

Methods

This study investigated plasma irisin concentrations in 79 T2DM individuals, assessing potential associations with measures of segmental body composition, markers of endothelial dysfunction and peripheral blood mononuclear cell telomere length (TL).

Results

Resting, overnight-fasted plasma irisin levels were significantly higher in this group of T2DM patients compared with levels we previously reported in healthy volunteers (p < 0.001). Moreover, plasma irisin displayed a positive correlation with body mass index (p = 0.04), body fat percentage (p = 0.03), HbA1c (p = 0.03) and soluble E-selectin (p < 0.001). A significant negative association was observed between plasma irisin and visceral adiposity (p = 0.006) in T2DM patients. Multiple regression analysis revealed that circulating soluble E-selectin levels could be predicted by plasma irisin (p = 0.004). Additionally, cultured human umbilical vein endothelial cells (HUVEC) exposed to 200 ng/ml irisin for 4 h showed a significant fourfold increase in E-selectin and 2.5-fold increase in ICAM-1 gene expression (p = 0.001 and p = 0.015 respectively), and there was a 1.8-fold increase in soluble E-selectin in conditioned media (p < 0.05).

Conclusion

These data suggest that elevated plasma irisin in T2DM is associated with indices of adiposity, and that irisin may be involved in pro-atherogenic endothelial disturbances that accompany obesity and T2DM. Accordingly, irisin may constitute a potentially novel therapeutic opportunity in the field of obesity and cardiovascular diabetology.
  相似文献   

6.
We hypothesized that estrogen administration would attenuate skeletal muscle neutrophil infiltration, indices of muscle membrane disruption, and muscle calpain activity shortly after the termination of exercise. Ovariectomized female rats were implanted with either an estogen pellet (25 mg beta-estradiol) or a placebo pellet. Two weeks postimplant, animals were killed either at rest or 1 h after running exercise (60 min at 21 m x min(-1), 12% grade). The 4 experimental groups (n = 12) used were: unexercised placebo (UP), unexercised estrogen (UE), exercised placebo (EP), and exercised estrogen (EE). Blood samples were analyzed for creatine kinase (CK) activity and estradiol content. Plantaris and gastrocnemius muscles were removed and histochemical determination of neutrophil content or biochemical determination of myeloperoxidase (MPO), glucose-6-phosphate dehydrogenase (G6PD), and calpain-like activity determined. Estrogen supplemented animals had 10-20-fold higher circulating estradiol levels than placebo animals. EP animals had significantly higher (P < 0.05) circulating CK activities than EE or unexercised animals. Muscle neutrophil concentrations were significantly (P < 0.01) elevated in EP and EE groups compared with unexercised controls, with EP muscle neutrophil levels also being over 60% greater (P < 0.05) than in EE animals. EP animals also had higher (P < 0.05) muscle MPO activities than unexercised or EE animals. Muscle G6PD activities were not significantly different between any groups. Muscle caplain-like activities were 80% higher (P < 0.01) in EP animals than EE animals with calpain-like activities in EE animals similar to unexercised groups. These results indicate that estrogen supplementation in ovariectomized rats attenuated 1-h post-exercise serum CK activities, muscle neutrophil infiltration, MPO activities, and calpain-like activities when compared with exercised, unsupplemented animals. This supports the possibility of a relationship between estrogen, calpain dependent production of neutrophil chemo-attractant peptides, and 1-h post-exercise skeletal muscle neutrophil infiltration.  相似文献   

7.
Reactive oxygen species (ROS) are implicated in the mechanism of biological aging and exercise-induced oxidative damage. The present study examined the effect of an acute bout of exercise on intracellular ROS production, lipid and protein peroxidation, and GSH status in the skeletal muscle of young adult (8 mo, n = 24) and old (24 mo, n = 24) female Fischer 344 rats. Young rats ran on a treadmill at 25 m/min and 5% grade until exhaustion (55.4 +/- 2.7 min), whereas old rats ran at 15 m/min and 5% grade until exhaustion (58.0 +/- 2.7 min). Rate of dichlorofluorescin (DCFH) oxidation, an indication of ROS and other intracellular oxidants production in the homogenate of deep vastus lateralis, was 77% (P < 0.01) higher in rested old vs. young rats. Exercise increased DCFH oxidation by 38% (P < 0.09) and 50% (P < 0.01) in the young and old rats, respectively. DCFH oxidation in isolated deep vastus lateralis mitochondria with site 1 substrates was elevated by 57% (P < 0.01) in old vs. young rats but was unaltered with exercise. Significantly higher DCFH oxidation rate was also found in aged-muscle mitochondria (P < 0.01), but not in homogenates, when ADP, NADPH, and Fe(3+) were included in the assay medium without substrates. Lipid peroxidation in muscle measured by malondialdehyde content showed no age effect, but was increased by 20% (P < 0.05) with exercise in both young and old rats. Muscle protein carbonyl formation was unaffected by either age or exercise. Mitochondrial GSH/ GSSG ratio was significantly higher in aged vs. young rats (P < 0.05), whereas exercise increased GSSG content and decreased GSH/GSSG in both age groups (P < 0.05). These data provided direct evidence that oxidant production in skeletal muscle is increased in old age and during prolonged exercise, with both mitochondrial respiratory chain and NADPH oxidase as potential sources. The alterations of muscle lipid peroxidation and mitochondrial GSH status were consistent with these conclusions.  相似文献   

8.
BackgroundAdipose tissue plays a pivotal role in the development and progression of the metabolic syndrome which along with its complications is an epidemic of the 21st century. Irisin is an adipo-myokine secreted mainly by skeletal muscle and targeting, among others, adipose tissue. In brown adipose tissue it upregulates uncoupling protein-1 (UCP1) which is responsible for mitochondrial non-shivering thermogenesis.MethodsHere we analyzed the effects of irisin on the metabolic activity of 3T3-L1 derived adipocytes through a mitochondrial flux assay. We also assessed the effects of irisin on the intracellular signaling through Western Blot. Finally, the gene expression of ucp1 and lipolytic genes was examined through RT-qPCR.ResultsIrisin affects mitochondrial respiration and lipolysis in a time-dependent manner through the regulation of PI3K-AKT pathway. Irisin also induces the expression of UCP1 and the regulation of NF-κB, and CREB and ERK pathways.ConclusionOur data supports the role of irisin in the induction of non-shivering thermogenesis, the regulation of energy expenditure and lipolysis in adipocytes.General significanceIrisin may be an attractive therapeutic target in the treatment of obesity and related metabolic disorders.  相似文献   

9.
Taurine, a sulfur-containing β-amino acid, is highly contained in heart and skeletal muscle. Taurine has a variety of biological actions, such as ion movement, calcium handling and cytoprotection in the cardiac and skeletal muscles. Meanwhile, taurine deficiency leads various pathologies, including dilated cardiomyopathy, in cat and fox. However, the essential role of taurine depletion on pathogenesis has not been fully clarified. To address the physiological role of taurine in mammalian tissues, taurine transporter-(TauT-) knockout models were recently generated. TauTKO mice exhibited loss of body weight, abnormal cardiac function and the reduced exercise capacity with tissue taurine depletion. In this chapter, we summarize pathological profile and histological feature of heart and skeletal muscle in TauTKO mice.  相似文献   

10.
The main objective of the study has been to show whether carnosine has positive effects on liver and lung tissues of rats exposed to a range of formaldehyde concentrations, and to explore how irisin expression and antioxidant capacity are altered in these tissues by carnosine supplementation. Sprague-Dawley type male rats were divided into 8 groups with 6 animals in each: (I) Control; no chemical supplementation); (II) sham (100 mg/kg/day carnosine); (III) low dose formaldehyde (LDFA) for 5 days/week; (IV) LDFA for 5 days/week and carnosine); (V) moderate dose formaldehyde (MDFA) for 5 days/week); (VI) MDFA for 5 days/week and carnosine; (VII) high dose formaldehyde (HDFA) for 5 days/week; (VIII) and HDFA for 5 days/week and carnosine. Sham and control groups were exposed to normal air. Irisin levels of the serum, liver and lung tissue supernatants were analyzed by ELISA, while the REL method was used to determine total oxidant/antioxidant capacity. Irisin production by the tissues was detected immunohistochemically. Increasing doses of FA decreased serum/tissue irisin and total antioxidant levels relative to the controls, as also to increases in TUNEL expressions, total oxidant level, oxidant and apoptosis index. Irisin expression was detected in hepatocyte and sinusoidal cells of the liver and parenchymal cells of the lung. In conclusion, while FA exposure reduces irisin and total oxidant in the serum, liver and lung tissues in a dose-dependent manner and increases the total antioxidant capacity, carnosine supplementation reduces the oxidative stress and restores the histopathological and biochemical signs.  相似文献   

11.
12.
Total tRNA extracted from liver as well as from skeletal muscle of young, adult and old female albino rats showed quantitative variation with age. The amount of liver total tRNA was maximum in adult rats when compared to that in young and old ones, whose levels were almost the same. Transfer RNA from skeletal muscle showed a different pattern with age. It was maximum in young rats and showed a gradual decline with age. Transfer RNAs were aminoacylated using homologous synthetase preparations to study their qualitative variation during aging, which followed the trend of quantitative variation in both the tissues. Arginyl and glutamyl-tRNAs were fractionated from both the tissues at the three ages. Isoacceptor profile of glutamyl-tRNAs showed neither tissue specificity nor age-related change, whereas a definite change was found in the case of arginyl-tRNA isoacceptors in the two tissues during aging.  相似文献   

13.
The quantification, localization, production, function, and regulation of irisin/FNDC5 in camel species have not been previously studied. The objective of this study was to detect the irisin content in Arabian camel blood and tissues and study the gene expression of FNDC5 and PGC-1α in camel skeletal muscles and white adipose tissue depots under basal conditions. To monitor if exercise influences blood and tissue irisin protein levels as well as FNDC5 and PGC-1α gene expression levels, we analyzed irisin concentrations in the serum, skeletal muscles (soleus and gastrocnemius), and white adipose tissues (hump, subcutaneous, visceral, epididymal, and perirenal) in both control (n = 6) and exercised group (n = 6) using ELISA and determined the cellular localization of irisin/FNDC5 and the mRNA levels of FNDC5 and PGC-1α in skeletal muscles and adipose tissues via immunohistochemistry and real-time PCR, respectively. The possible regulatory roles of exercise on some hormones and metabolites as well as the detection of links between serum irisin and other circulating hormones (insulin, leptin, and cortisol) and metabolites (glucose, free fatty acids, triglycerides, and ATP) were explored for the first time in camels. Our results indicated that exercise induces tissue-specific regulation of the camel irisin, FNDC5, and PGC-1α levels, which subsequently regulates the circulating irisin level. Significant associations were detected between the levels of irisin/FNDC5/PGC-1α in camels and the metabolic and hormonal responses to exercise. Our study suggested that irisin regulates, or is regulated by, glucose, FFA, insulin, leptin, and cortisol in camels. The novel results of the present study will serve as baseline data for camels.  相似文献   

14.
Beige adipose cells are a distinct and inducible type of thermogenic fat cell that express the mitochondrial uncoupling protein-1 and thus represent a powerful target for treating obesity. Mice lacking the TGF-β effector protein SMAD3 are protected against diet-induced obesity because of browning of their white adipose tissue (WAT), leading to increased whole body energy expenditure. However, the role SMAD3 plays in WAT browning is not clearly understood. Irisin is an exercise-induced skeletal muscle hormone that induces WAT browning similar to that observed in SMAD3-deficient mice. Together, these observations suggested that SMAD3 may negatively regulate irisin production and/or secretion from skeletal muscle. To address this question, we used wild-type and SMAD3 knock-out (Smad3−/−) mice subjected to an exercise regime and C2C12 myotubes treated with TGF-β, a TGF-β receptor 1 pharmacological inhibitor, adenovirus expressing constitutively active SMAD3, or siRNA against SMAD3. We find that in Smad3−/− mice, exercise increases serum irisin and skeletal muscle FNDC5 (irisin precursor) and its upstream activator peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) to a greater extent than in wild-type mice. In C2C12 myotubes, TGF-β suppresses FNDC5 and PGC-1α mRNA and protein levels via SMAD3 and promotes SMAD3 binding to the FNDC5 and PGC-1α promoters. These data establish that SMAD3 suppresses FNDC5 and PGC-1α in skeletal muscle cells. These findings shed light on the poorly understood regulation of irisin/FNDC5 by demonstrating a novel association between irisin and SMAD3 signaling in skeletal muscle.  相似文献   

15.
BackgroundThe aim of the study was to determine the effects of different and regularly applied exercise programs on irisin, heat shock protein 70 and some biochemical parameters.Methods120 male university students participated in the study. Participants were divided into 4 equal groups as control (C), resistance exercise group (RE), high intensity interval (HIIT) and aerobic exercise group (AE). While the control group did not perform any exercise, the pre-determined exercise programs were applied to the other groups for 8 weeks and 3 days in a week. Blood samples were taken from all participants before and after the exercise program. Cholesterol, High-density Lipoprotein (HDL) and Low-density Lipoprotein (LDL) cholesterol, triglyceride (TG), Creatine kinase (CK), Lactate dehydrogenase (LDH), Irisin and Heat shock protein 70 (HSP70) levels were analyzed in blood samples.ResultsIt is determined that there are significant differences in pre-posttest values of the AE group''s LDH, cholesterol, HDL-cholesterol, TG and HSP 70 levels, HIIT group''s CK, LDH, Cholesterol, HDL-cholesterol, TG, Irisin and HSP70 levels and RE group''s CK, LDH, Cholesterol, LDL-cholesterol, TG and Irisin levels (p<0.05).ConclusionsIt can be said that exercise can provide improvements in lipid profile, changes in HSP70 levels may vary depending on muscle damage, the increase of irisin due to exercise.  相似文献   

16.
Impairment of adipose tissue and skeletal muscles accrued following type 1 diabetes is associated with protein misfolding and loss of adipose mass and skeletal muscle atrophy. Resistance training can maintain muscle mass by changing both inflammatory cytokines and stress factors in adipose tissue and skeletal muscle. The purpose of this study was to determine the effects of a 5-week ladder climbing resistance training program on the expression of Hsp70 and inflammatory cytokines in adipose tissue and fast-twitch flexor hallucis longus (FHL) and slow-twitch soleus muscles in healthy and streptozotocin-induced diabetic rats. Induction of diabetes reduced body mass, while resistance training preserved FHL muscle weight in diabetic rats without any changes in body mass. Diabetes increased Hsp70 protein content in skeletal muscles, adipose tissue, and serum. Hsp70 protein levels were decreased in normal and diabetic rats by resistance training in the FHL, but not soleus muscle. Furthermore, resistance training decreased inflammatory cytokines in FHL skeletal muscle. On the other hand, Hsp70 and inflammatory cytokine protein levels were increased by training in adipose tissue. Also, significant positive correlations between inflammatory cytokines in adipose tissue and skeletal muscles with Hsp70 protein levels were observed. In conclusion, we found that in diabetic rats, resistance training decreased inflammatory cytokines and Hsp70 protein levels in fast skeletal muscle, increased adipose tissue inflammatory cytokines and Hsp70, and preserved FHL muscle mass. These results suggest that resistance training can maintain skeletal muscle mass in diabetes by changing inflammatory cytokines and stress factors such as Hsp70 in skeletal muscle and adipose tissue.  相似文献   

17.
Both exercise and insulin-like growth factor I (IGF-I) are known to have major hypertrophic effects in skeletal muscle; however, the interactive effect of exogenous IGF-I and exercise on muscle protein turnover or the ubiquitin-proteasome pathway has not been reported. In the present study, we have examined the interaction between endurance exercise training and IGF-I treatment on muscle protein turnover and the ubiquitin-proteasome pathway in the postexercise period. Adult male rats (270-280 g) were randomized to receive 5 consecutive days of progressive treadmill exercise and/or IGF-I treatment (1 mg. kg body wt(-1). day(-1)). Twenty-four hours after the last bout of exercise, the rate of protein breakdown in incubated muscles was significantly reduced compared with that in unexercised rats. This was associated with a significant reduction in the chymotrypsin-like activity of the proteasome and the rate of ubiquitin-proteasome-dependent casein hydrolysis in muscle extracts from exercised compared with unexercised rats. In contrast, the muscle expression of the 20S proteasome subunit beta-1, ubiquitin, and the 14-kDa E2 ubiquitin-conjugating enzyme was not altered by exercise or IGF-I treatment 24 h postexercise. Exercise had no effect on the rates of total mixed muscle protein synthesis in incubated muscles 24 h postexercise. IGF-I treatment had no effect on muscle weights or the rates of protein turnover 24 h after endurance exercise. These results suggest that a suppression of the ubiquitin-proteasome proteolytic pathway after endurance exercise may contribute to the acute postexercise net protein gain.  相似文献   

18.
Irisin, a myokine released from skeletal muscle, has recently been found to act as a ligand for the integrins αVβ5, αVβ1, and α5β1 expressed on mesenchymal cells, thereby playing an important role in the metabolic remodeling of the bone, skeletal muscle and adipose tissues. Although the immune-modulatory effects of irisin in chronic inflammation have been documented, its interactions with lymphocytic integrins have yet to be elucidated. Here, we show that irisin supports the cell adhesion of human and mouse lymphocytes. Cell adhesion assays using a panel of inhibitory antibodies to integrins have shown that irisin-mediated lymphocyte adhesion involves multiple integrins including not only α4β1 and α5β1, but also leukocyte-specific αLβ2 and α4β7. Importantly, mouse lymphocytic TK-1 cells that lack the expression of β1 integrins have exhibited αLβ2- and α4β7-mediated cell adhesion to irisin. Irisin has also been demonstrated to bind to purified recombinant integrin αLβ2 and α4β7 proteins. Thus, irisin represents a novel ligand for integrin αLβ2 and α4β7, capable of supporting lymphocyte cell adhesion independently of β1 integrins. These results suggest that irisin may play an important role in regulating lymphocyte adhesion and migration in the inflamed vasculature.  相似文献   

19.
This study investigated the regulation of thermogenic capacity in classical brown adipose tissue (BAT) and subcutaneous inguinal (SC Ing) white adipose tissue (WAT) and how it affects whole-body energy expenditure in sedentary and endurance-trained rats fed ad libitum either low fat or high fat (HF) diets. Analysis of tissue mass, PGC-1α and UCP-1 content, the presence of multilocular adipocytes, and palmitate oxidation revealed that a HF diet increased the thermogenic capacity of the interscapular and aortic brown adipose tissues, whereas exercise markedly suppressed it. Conversely, exercise induced browning of the SC Ing WAT. This effect was attenuated by a HF diet. Endurance training neither affected skeletal muscle FNDC5 content nor circulating irisin, but it increased FNDC5 content in SC Ing WAT. This suggests that locally produced FNDC5 rather than circulating irisin mediated the exercise-induced browning effect on this fat tissue. Importantly, despite reducing the thermogenic capacity of classical BAT, exercise increased whole-body energy expenditure during the dark cycle. Therefore, browning of subcutaneous WAT likely exerted a compensatory effect and raised whole-body energy expenditure in endurance-trained rats. Based on these novel findings, we propose that exercise-induced browning of the subcutaneous WAT provides an alternative mechanism that reduces thermogenic capacity in core areas and increases it in peripheral body regions. This could allow the organism to adjust its metabolic rate to accommodate diet-induced thermogenesis while simultaneously coping with the stress of chronically increased heat production through exercise.  相似文献   

20.
Hormone-sensitive lipase (HSL) is important for the degradation of triacylglycerol in adipose and muscle tissue, but the tissue-specific regulation of this enzyme is not fully understood. We investigated the effects of adrenergic stimulation and AMPK activation in vitro and in circumstances where AMPK activity and catecholamines are physiologically elevated in humans in vivo (during physical exercise) on HSL activity and phosphorylation at Ser(563) and Ser(660), the PKA regulatory sites, and Ser(565), the AMPK regulatory site. In human experiments, skeletal muscle, subcutaneous adipose and venous blood samples were obtained before, at 15 and 90 min during, and 120 min after exercise. Skeletal muscle HSL activity was increased by approximately 80% at 15 min compared with rest and returned to resting rates at the cessation of and 120 min after exercise. Consistent with changes in plasma epinephrine, skeletal muscle HSL Ser(563) and Ser(660) phosphorylation were increased by 27% at 15 min (P < 0.05), remained elevated at 90 min, and returned to preexercise values postexercise. Skeletal muscle HSL Ser(565) phosphorylation and AMPK signaling were increased at 90 min during, and after, exercise. Phosphorylation of adipose tissue HSL paralleled changes in skeletal muscle in vivo, except HSL Ser(660) was elevated 80% in adipose compared with 35% in skeletal muscle during exercise. Studies in L6 myotubes and 3T3-L1 adipocytes revealed important tissue differences in the regulation of HSL. AMPK inhibited epinephrine-induced HSL activity in L6 myotubes and was associated with reduced HSL Ser(660) but not Ser(563) phosphorylation. HSL activity was reduced in L6 myotubes expressing constitutively active AMPK, confirming the inhibitory effects of AMPK on HSL activity. Conversely, in 3T3-L1 adipocytes, AMPK activation after epinephrine stimulation did not prevent HSL activity or glycerol release, which coincided with maintenance of HSL Ser(660) phosphorylation. Taken together, these data indicate that HSL activity is maintained in the face of AMPK activation as a result of elevated HSL Ser(660) phosphorylation in adipose tissue but not skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号