首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Super‐resolution imaging has revealed that key synaptic proteins are dynamically organized within sub‐synaptic domains (SSDs). To examine how different inhibitory receptors are regulated, we carried out dual‐color direct stochastic optical reconstruction microscopy (dSTORM) of GlyRs and GABAARs at mixed inhibitory synapses in spinal cord neurons. We show that endogenous GlyRs and GABAARs as well as their common scaffold protein gephyrin form SSDs that align with pre‐synaptic RIM1/2, thus creating trans‐synaptic nanocolumns. Strikingly, GlyRs and GABAARs occupy different sub‐synaptic spaces, exhibiting only a partial overlap at mixed inhibitory synapses. When network activity is increased by 4‐aminopyridine treatment, the GABAAR copy numbers and the number of GABAAR SSDs are reduced, while GlyRs remain largely unchanged. This differential regulation is likely the result of changes in gephyrin phosphorylation that preferentially occurs outside of SSDs. The activity‐dependent regulation of GABAARs versus GlyRs suggests that different signaling pathways control the receptors'' sub‐synaptic clustering. Taken together, our data reinforce the notion that the precise sub‐synaptic organization of GlyRs, GABAARs, and gephyrin has functional consequences for the plasticity of mixed inhibitory synapses.  相似文献   

2.
GABAA receptor subunit composition is a critical determinant of receptor localization and physiology, with synaptic receptors generating phasic inhibition and extrasynaptic receptors producing tonic inhibition. Extrasynaptically localized α5 GABAA receptors are largely responsible for tonic inhibition in hippocampal neurons. However, we show here that inhibitory synapses also contain a constant level of α5 GABAA receptors throughout neuronal development, as measured by its colocalization with gephyrin, the inhibitory postsynaptic scaffolding protein. Immunoprecipitation of the α5 subunit from both cultured neurons and adult rat brain coimmunoprecipitated gephyrin, confirming this interaction in vivo. Furthermore, the α5 subunit can interact with gephyrin independent of other synaptically localized alpha subunits, as shown by immunoprecipitation experiments in HEK cells. By replacing the α5 predicted gephyrin binding domain (Residues 370–385) with either the high affinity gephyrin binding domain of the α2 subunit or homologous residues from the extrasynaptic α4 subunit that does not interact with gephyrin, α5 GABAA receptor localization shifted into or out of the synapse, respectively. These shifts in the ratio of synaptic/extrasynaptic α5 localization disrupted dendritic outgrowth and spine maturation. In contrast to the predominant view of α5 GABAA receptors being extrasynaptic and modulating tonic inhibition, we identify an intimate association of the α5 subunit with gephyrin, resulting in constant synaptic levels of α5 GABAAR throughout circuit formation that regulates neuronal development. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1241–1251, 2015  相似文献   

3.
Gephyrin and collybistin are key components of GABAA receptor (GABAAR) clustering. Nonetheless, resolving the molecular interactions between the plethora of GABAAR subunits and these clustering proteins is a significant challenge. We report a direct interaction of GABAAR α2 and α3 subunit intracellular M3–M4 domain (but not α1, α4, α5, α6, β1–3, or γ1–3) with gephyrin. Curiously, GABAAR α2, but not α3, binds to both gephyrin and collybistin using overlapping sites. The reciprocal binding sites on gephyrin for collybistin and GABAAR α2 also overlap at the start of the gephyrin E domain. This suggests that although GABAAR α3 interacts with gephyrin, GABAAR α2, collybistin, and gephyrin form a trimeric complex. In support of this proposal, tri-hybrid interactions between GABAAR α2 and collybistin or GABAAR α2 and gephyrin are strengthened in the presence of gephyrin or collybistin, respectively. Collybistin and gephyrin also compete for binding to GABAAR α2 in co-immunoprecipitation experiments and co-localize in transfected cells in both intracellular and submembrane aggregates. Interestingly, GABAAR α2 is capable of “activating ” collybistin isoforms harboring the regulatory SH3 domain, enabling targeting of gephyrin to the submembrane aggregates. The GABAAR α2-collybistin interaction was disrupted by a pathogenic mutation in the collybistin SH3 domain (p.G55A) that causes X-linked intellectual disability and seizures by disrupting GABAAR and gephyrin clustering. Because immunohistochemistry in retina revealed a preferential co-localization of collybistin with α2 subunit containing GABAARs, but not GlyRs or other GABAAR subtypes, we propose that the collybistin-gephyrin complex has an intimate role in the clustering of GABAARs containing the α2 subunit.  相似文献   

4.
Growth-associated protein 43 (GAP43) is known to regulate axon growth, but whether it also plays a role in synaptogenesis remains unclear. Here, we found that GAP43 regulates the aggregation of gephyrin, a pivotal protein for clustering postsynaptic GABAA receptors (GABAARs), in developing cortical neurons. Pharmacological blockade of either protein kinase C (PKC) or neuronal activity increased both GAP43-gephyrin association and gephyrin misfolding-induced aggregation, suggesting the importance of PKC-dependent regulation of GABAergic synapses. Furthermore, we found that PKC phosphorylation-resistant GAP43S41A, but not PKC phosphorylation-mimicking GAP43S41D, interacted with cytosolic gephyrin to trigger gephyrin misfolding and its sequestration into aggresomes. In contrast, GAP43S41D, but not GAP43S41A, inhibited the physiological aggregation/clustering of gephyrin, reduced surface GABAARs under physiological conditions, and attenuated gephyrin misfolding under transient oxygen-glucose deprivation (tOGD) that mimics pathological neonatal hypoxia. Calcineurin-mediated GAP43 dephosphorylation that accompanied tOGD also led to GAP43-gephyrin association and gephyrin misfolding. Thus, PKC-dependent phosphorylation of GAP43 plays a critical role in regulating postsynaptic gephyrin aggregation in developing GABAergic synapses.  相似文献   

5.
CDK5 has been implicated in neural functions including growth, neuronal migration, synaptic transmission and plasticity of excitatory chemical synapses. Here we report robust effects of CDK5 on phosphorylation of the postsynaptic scaffold protein gephyrin and clustering of inhibitory GABAA receptors in hippocampal neurons. shRNA-mediated knockdown of CDK5 and pharmacological inhibition of cyclin-dependent kinases reduced phosphorylated gephyrin clusters and postsynaptic γ2-containing GABAA receptors. Phosphorylation of S270 is antagonized by PP1/PP2a phosphatase and site-directed mutagenesis and in vitro phosphorylation experiments indicate that S270 is a putative CDK5 phosphorylation site of gephyrin. Our data suggest that CDK5 plays an essential role for the stability of gephyrin-dependent GABAA receptor clusters in hippocampal neurons.  相似文献   

6.
γ-Aminobutyric acid type A (GABAA) receptors are pentameric ligand-gated ion channels that mediate fast inhibition in the central nervous system. Depending on their subunit composition, these receptors exhibit distinct pharmacological properties and differ in their ability to interact with proteins involved in receptor anchoring at synaptic or extra-synaptic sites. Whereas GABAA receptors containing α1, α2, or α3 subunits are mainly located synaptically where they interact with the submembranous scaffolding protein gephyrin, receptors containing α5 subunits are predominantly found extra-synaptically and seem to interact with radixin for anchorage. Neuroplastin is a cell adhesion molecule of the immunoglobulin superfamily that is involved in hippocampal synaptic plasticity. Our results reveal that neuroplastin and GABAA receptors can be co-purified from rat brain and exhibit a direct physical interaction as demonstrated by co-precipitation and Förster resonance energy transfer (FRET) analysis in a heterologous expression system. The brain-specific isoform neuroplastin-65 co-localizes with GABAA receptors as shown in brain sections as well as in neuronal cultures, and such complexes can either contain gephyrin or be devoid of gephyrin. Neuroplastin-65 specifically co-localizes with α1 or α2 but not with α3 subunits at GABAergic synapses. In addition, neuroplastin-65 also co-localizes with GABAA receptor α5 subunits at extra-synaptic sites. Down-regulation of neuroplastin-65 by shRNA causes a loss of GABAA receptor α2 subunits at GABAergic synapses. These results suggest that neuroplastin-65 can co-localize with a subset of GABAA receptor subtypes and might contribute to anchoring and/or confining GABAA receptors to particular synaptic or extra-synaptic sites, thus affecting receptor mobility and synaptic strength.  相似文献   

7.
Inhibitory synapses are also known as symmetric synapses due to their lack of prominent postsynaptic densities (PSDs) under a conventional electron microscope (EM). Recent cryo-EM tomography studies indicated that inhibitory synapses also contain PSDs, albeit with a rather thin sheet-like structure. It is not known how such inhibitory PSD (iPSD) sheet might form. Here, we demonstrate that the key inhibitory synapse scaffold protein gephyrin, when in complex with either glycine or GABAA receptors, spontaneously forms highly condensed molecular assemblies via phase separation both in solution and on supported membrane bilayers. Multivalent and specific interactions between the dimeric E-domain of gephyrin and the glycine/GABAA receptor multimer are essential for the iPSD condensate formation. Gephyrin alone does not form condensates. The linker between the G- and E-domains of gephyrin inhibits the iPSD condensate formation via autoinhibition. Phosphorylation of specific residues in the linker or binding of target proteins such as dynein light chain to the linker domain regulates gephyrin-mediated glycine/GABAA receptor clustering. Thus, analogous to excitatory PSDs, iPSDs are also formed by phase separation-mediated condensation of scaffold protein/neurotransmitter receptor complexes.Subject terms: Cell biology, Molecular biology  相似文献   

8.
Synaptic adhesion molecules regulate diverse aspects of synapse formation and maintenance. Many known synaptic adhesion molecules localize at excitatory synapses, whereas relatively little is known about inhibitory synaptic adhesion molecules. Here we report that IgSF9b is a novel, brain-specific, homophilic adhesion molecule that is strongly expressed in GABAergic interneurons. IgSF9b was preferentially localized at inhibitory synapses in cultured rat hippocampal and cortical interneurons and was required for the development of inhibitory synapses onto interneurons. IgSF9b formed a subsynaptic domain distinct from the GABAA receptor– and gephyrin-containing domain, as indicated by super-resolution imaging. IgSF9b was linked to neuroligin 2, an inhibitory synaptic adhesion molecule coupled to gephyrin, via the multi-PDZ protein S-SCAM. IgSF9b and neuroligin 2 could reciprocally cluster each other. These results suggest a novel mode of inhibitory synaptic organization in which two subsynaptic domains, one containing IgSF9b for synaptic adhesion and the other containing gephyrin and GABAA receptors for synaptic transmission, are interconnected through S-SCAM and neuroligin 2.  相似文献   

9.
In the present study, an optimized Transmission Electron Microscopy Color Imaging (TEMCI) procedure was used to map and quantify the pathways involved in the trafficking and subcellular targeting of gephyrin in identified abducens motoneurons. Gephyrin is a scaffolding protein, which plays a crucial role in the clustering of the GABAA and glycine receptors to the cytoskeleton. TEMCI associated several accurate tools: (i) nanogold immunodetection of gephyrin in motoneurons identified on the basis of their immunoreactivity to Choline Acetyl Transferase, (ii) low magnification color scale coding of gephyrin densities on series of ultrathin sections of motoneurons, which gave a map of the cytoplasmic distribution of the protein, (iii) statistical analysis of the subcellular distribution of the immunolabeling. The color map of gephyrin densities in the cell bodies reflected the distribution of inhibitory synapses over the membrane. The TEMCI analysis of motoneurons with various patterns of synaptic covering made it possible to visualize for the first time the cytoplasmic transport pathway of gephyrin towards its target at synaptic contact. A high magnification quantitative analysis, including the study of 109 inhibitory synapses, showed that most gephyrin-associated immunogold particles (67%) were located in the subsynaptic regions facing the active zones, and the second most densely occupied regions were the perisynaptic regions (19.5% of immunogold particles). A consistent proportion of the gephyrin (11.5%), significantly higher than densities present in the rest of the cytoplasm (2%), was detected in the extrasynaptic submembrane region.  相似文献   

10.
Association studies have suggested that Disrupted-in-Schizophrenia 1 (DISC1) confers a genetic risk at the level of endophenotypes that underlies many major mental disorders. Despite the progress in understanding the significance of DISC1 at neural development, the mechanisms underlying DISC1 regulation of synaptic functions remain elusive. Because alterations in the cortical GABA system have been strongly linked to the pathophysiology of schizophrenia, one potential target of DISC1 that is critically involved in the regulation of cognition and emotion is the GABAA receptor (GABAAR). We found that cellular knockdown of DISC1 significantly reduced GABAAR-mediated synaptic and whole-cell current, whereas overexpression of wild-type DISC1, but not the C-terminal-truncated DISC1 (a schizophrenia-related mutant), significantly increased GABAAR currents in pyramidal neurons of the prefrontal cortex. These effects were accompanied by DISC1-induced changes in surface GABAAR expression. Moreover, the regulation of GABAARs by DISC1 knockdown or overexpression depends on the microtubule motor protein kinesin 1 (KIF5). Our results suggest that DISC1 exerts an important effect on GABAergic inhibitory transmission by regulating KIF5/microtubule-based GABAAR trafficking in the cortex. The knowledge gained from this study would shed light on how DISC1 and the GABA system are linked mechanistically and how their interactions are critical for maintaining a normal mental state.  相似文献   

11.
Exposure of female rats to estradiol during the perinatal period has profound effects on GABAergic neurotransmission that are crucial to establish sexually dimorphic brain characteristics. We previously showed that neonatal β-estradiol 3-benzoate (EB) treatment decreases brain concentrations of the neurosteroid allopregnanolone, a potent positive modulator of extrasynaptic GABAA receptors (GABAAR). We thus evaluated whether neonatal EB treatment affects GABAAR expression and function in the hippocampus of adult female rats. Neonatal EB administration increased the expression of extrasynaptic α4/δ subunit-containing GABAARs and the modulatory action of THIP on tonic currents mediated by these receptors. The same treatment decreased the expression of synaptic α1/α4/γ2 subunit-containing receptors, as well as phasic currents. These effects of neonatal EB treatment are not related to ambient allopregnanolone concentrations per se, given that vehicle-treated rats in diestrus, which have opposite neurosteroid levels than EB-treated rats, show similar changes in GABAARs. Rather, these changes may represent a compensatory mechanism to counteract the long-term reduction in allopregnanolone concentrations, induced by neonatal EB. Given that both α4/δ receptors and allopregnanolone are involved in memory consolidation, we evaluated whether neonatal EB treatment alters performance in the Morris water maze test during adulthood. Neonatal EB treatment decreased the latency and the cumulative search error to reach the platform, as well as thigmotaxis, suggesting improved learning, and also enhanced memory performance during the probe trial. These enduring changes in GABAAR plasticity may be relevant for the regulation of neuronal excitability in the hippocampus and for the etiology of psychiatric disorders that originate in development and show sex differences.  相似文献   

12.
Synaptic scaling represents a process whereby the distribution of a cell''s synaptic strengths are altered by a multiplicative scaling factor. Scaling is thought to be a compensatory response that homeostatically controls spiking activity levels in the cell or network. Previously, we observed GABAergic synaptic scaling in embryonic spinal motoneurons following in vivo blockade of either spiking activity or GABAA receptors (GABAARs). We had determined that activity blockade triggered upward GABAergic scaling through chloride accumulation, thus increasing the driving force for these currents. To determine whether chloride accumulation also underlies GABAergic scaling following GABAAR blockade we have developed a new technique. We expressed a genetically encoded chloride-indicator, Clomeleon, in the embryonic chick spinal cord, which provides a non-invasive fast measure of intracellular chloride. Using this technique we now show that chloride accumulation underlies GABAergic scaling following blockade of either spiking activity or the GABAAR. The finding that GABAAR blockade and activity blockade trigger scaling via a common mechanism supports our hypothesis that activity blockade reduces GABAAR activation, which triggers synaptic scaling. In addition, Clomeleon imaging demonstrated the time course and widespread nature of GABAergic scaling through chloride accumulation, as it was also observed in spinal interneurons. This suggests that homeostatic scaling via chloride accumulation is a common feature in many neuronal classes within the embryonic spinal cord and opens the possibility that this process may occur throughout the nervous system at early stages of development.  相似文献   

13.
Alzheimer’s disease (AD) is the leading progressive neurodegenerative disorder afflicting 35.6 million people worldwide. There is no therapeutic agent that can slow or stop the progression of AD. Human studies show that besides loss of cognition/learning ability, neuropsychological symptoms such as anxiety and seizures are seen as high as 70 and 17 % respectively in AD patients, suggesting dysfunction of GABAergic neurotransmission contributes to pathogenesis of AD. Dihydromyricetin (DHM) is a plant flavonoid and a positive allosteric modulator of GABAARs we developed recently (Shen et al. in J Neurosci 32(1):390–401, 2012 [1]). In this study, transgenic (TG2576) and Swedish transgenic (TG-SwDI) mice with AD-like pathology were treated with DHM (2 mg/kg) for 3 months. Behaviorally, DHM-treated mice show improved cognition, reduced anxiety level and seizure susceptibility. Pathologically, DHM has high efficacy to reduce amyloid-β (Aβ) peptides in TG-SwDI brain. Further, patch-clamp recordings from dentate gyrus neurons in hippocampal slices from TG-SwDI mice showed reduced frequency and amplitude of GABAAR-mediated miniature inhibitory postsynaptic currents, and decreased extrasynaptic tonic inhibitory current, while DHM restored these GABAAR-mediated currents in TG-SwDI. We found that gephyrin, a postsynaptic GABAAR anchor protein that regulates the formation and plasticity of GABAergic synapses, decreased in hippocampus and cortex in TG-SwDI. DHM treatment restored gephyrin levels. These results suggest that DHM treatment not only improves symptoms, but also reverses progressive neuropathology of mouse models of AD including reducing Aβ peptides, while restoring gephyrin levels, GABAergic transmission and functional synapses. Therefore DHM is a promising candidate medication for AD. We propose a novel target, gephyrin, for treatment of AD.  相似文献   

14.
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, enhances synaptic transmission and regulates neuronal proliferation and survival. Functional interactions between adenosine A2A receptors (A2ARs) and BDNF have been recently reported. In this article, we report some recent findings from our group showing that A2ARs regulate both BDNF functions and levels in the brain. Whereas BDNF (10 ng/ml) increased the slope of excitatory postsynaptic field potentials (fEPSPs) in hippocampal slices from wild-type (WT) mice, it was completely ineffective in slices taken from A2AR knock-out (KO) mice. Furthermore, enzyme immunoassay studies showed a significant reduction in hippocampal BDNF levels in A2AR KO vs. WT mice. Having found an even marked reduction in the striatum of A2AR KO mice, and as both BDNF and A2ARs have been implicated in the pathogenesis of Huntington’s disease (HD), an inherited striatal neurodegenerative disease, we then evaluated whether the pharmacological blockade of A2ARs could influence striatal levels of BDNF in an experimental model of HD-like striatal degeneration (quinolinic acid-lesioned rats) and in a transgenic mice model of HD (R6/2 mice). In both QA-lesioned rats and early symptomatic R6/2 mice (8 weeks), the systemic administration of the A2AR antagonist SCH58261 significantly reduced striatal BDNF levels. These results indicate that the presence and the tonic activation of A2ARs are necessary to allow BDNF-induced potentiation of synaptic transmission and to sustain a normal BDNF tone. The possible functional consequences of reducing striatal BDNF levels in HD models need further investigation.  相似文献   

15.
γ-Aminobutyric acid type A receptors (GABAARs) are the major sites of fast inhibitory neurotransmission in the brain, and the numbers of these receptors at the cell surface can determine the strength of GABAergic neurotransmission. Chronic changes in neuronal activity lead to an adaptive modulation in the efficacy of GABAergic synaptic inhibition, brought about in part by changes in the number of synaptic GABAARs, a mechanism known as homeostatic synaptic plasticity. Reduction in the number of GABAARs in response to prolonged neuronal activity blockade is dependent on the ubiquitin-proteasome system. The underlying biochemical pathways linking chronic activity blockade to proteasome-dependent degradation of GABAARs are unknown. Here, we show that chronic blockade of L-type voltage-gated calcium channels (VGCCs) with nifedipine decreases the number of GABAARs at synaptic sites but not the overall number of inhibitory synapses. In parallel, blockade of L-type VGCCs decreases the amplitude but not the frequency of miniature inhibitory postsynaptic currents or expression of the glutamic acid decarboxylase GAD65. We further reveal that the activation of L-type VGCCs regulates the turnover of newly translated GABAAR subunits in a mechanism dependent upon the activity of the proteasome and thus regulates GABAAR insertion into the plasma membrane. Together, these observations suggest that activation of L-type VGCCs can regulate the abundance of synaptic GABAARs and the efficacy of synaptic inhibition, revealing a potential mechanism underlying the homeostatic adaptation of fast GABAergic inhibition to prolonged changes in activity.  相似文献   

16.
Downregulation of GABAergic synaptic transmission contributes to the increase in overall excitatory activity in the ischemic brain. A reduction of GABAA receptor (GABAAR) surface expression partly accounts for this decrease in inhibitory activity, but the mechanisms involved are not fully elucidated. In this work, we investigated the alterations in GABAAR trafficking in cultured rat hippocampal neurons subjected to oxygen/glucose deprivation (OGD), an in vitro model of global brain ischemia, and their impact in neuronal death. The traffic of GABAAR was evaluated after transfection of hippocampal neurons with myc-tagged GABAAR β3 subunits. OGD decreased the rate of GABAAR β3 subunit recycling and reduced the interaction of the receptors with HAP1, a protein involved in the recycling of the receptors. Furthermore, OGD induced a calpain-mediated cleavage of HAP1. Transfection of hippocampal neurons with HAP1A or HAP1B isoforms reduced the OGD-induced decrease in surface expression of GABAAR β3 subunits, and HAP1A maintained the rate of receptor recycling. Furthermore, transfection of hippocampal neurons with HAP1 significantly decreased OGD-induced cell death. These results show a key role for HAP1 protein in the downmodulation of GABAergic neurotransmission during cerebral ischemia, which contributes to neuronal demise.  相似文献   

17.
We have found that the large intracellular loop of the γ2 GABAA receptor (R) subunit (γ2IL) interacts with RNF34 (an E3 ubiquitin ligase), as shown by yeast two-hybrid and in vitro pulldown assays. In brain extracts, RNF34 co-immunoprecipitates with assembled GABAARs. In co-transfected HEK293 cells, RNF34 reduces the expression of the γ2 GABAAR subunit by increasing the ratio of ubiquitinated/nonubiquitinated γ2. Mutating several lysines of the γ2IL into arginines makes the γ2 subunit resistant to RNF34-induced degradation. RNF34 also reduces the expression of the γ2 subunit when α1 and β3 subunits are co-assembled with γ2. This effect is partially reversed by leupeptin or MG132, indicating that both the lysosomal and proteasomal degradation pathways are involved. Immunofluorescence of cultured hippocampal neurons shows that RNF34 forms clusters and that a subset of these clusters is associated with GABAergic synapses. This association is also observed in the intact rat brain by electron microscopy immunocytochemistry. RNF34 is not expressed until the 2nd postnatal week of rat brain development, being highly expressed in some interneurons. Overexpression of RNF34 in hippocampal neurons decreases the density of γ2 GABAAR clusters and the number of GABAergic contacts that these neurons receive. Knocking down endogenous RNF34 with shRNA leads to increased γ2 GABAAR cluster density and GABAergic innervation. The results indicate that RNF34 regulates postsynaptic γ2-GABAAR clustering and GABAergic synaptic innervation by interacting with and ubiquitinating the γ2-GABAAR subunit promoting GABAAR degradation.  相似文献   

18.
We have recently shown that disrupting the expression and post-synaptic clustering of gephyrin in cultured hippocampal pyramidal cells, by either gephyrin RNAi (RNA interference) or over-expression of a dominant negative gephyrin-enhanced green fluorescent protein (EGFP) fusion protein, leads to decreased number of post-synaptic gephyrin and GABAA receptor clusters and to reduced GABAergic innervation of these cells. On the other hand, increasing gephyrin expression led to a small increase in the number of gephyrin and GABAA receptor clusters and to little or no effect on GABAergic innervation. We are now reporting that altering gephyrin expression and clustering affects the size but not the density of glutamatergic synaptic contacts. Knocking down gephyrin with gephyrin RNAi, or preventing gephyrin clustering by over-expression of the dominant negative gephyrin-enhanced green fluorescent protein fusion protein, leads to larger post-synaptic PSD-95 clusters and larger pre-synaptic glutamatergic terminals. On the other hand, over-expression of gephyrin leads to slightly smaller PSD-95 clusters and pre-synaptic glutamatergic terminals. The change in size of PSD-95 clusters were accompanied by a parallel change in the size of NR2-NMDA receptor clusters. It is concluded that the levels of expression and clustering of gephyrin, a protein that concentrates at the post-synaptic complex of the inhibitory synapses, not only has homotypic effects on GABAergic synaptic contacts, but also has heterotypic effects on glutamatergic synaptic contacts. We are proposing that gephyrin is a counterpart of the post-synaptic glutamatergic scaffold protein PSD-95 in regulating the number and/or size of the excitatory and inhibitory synaptic contacts.  相似文献   

19.
GABAA receptors (GABAARs) mediate the majority of fast synaptic inhibition. Trafficking regulation and protein–protein interactions that maintain the appropriate number of GABAARs at the cell surface are considered to be important mechanisms for controlling the strength of synaptic inhibition. Here, we report that BIG1, a brefeldin A (BFA)-inhibited guanine nucleotide-exchange factor (GEF) which has a known role in vesicle trafficking, is a new binding partner of GABAARs. Treatment of neurons with BFA, an uncompetitive inhibitor of BIG1 GEF activity, or depletion of BIG1 by small RNA interference (siRNA) significantly decreased GABAARs at the neuronal surface and suppressed GABA-gated influx of chloride ions. Over-expression of HA-tagged BIG1-E793K, a dominant-negative mutant, also significantly decreased GABAARs at the neuronal surface, but had no effect on the total amount of GABAARs. Inhibition of GABAAR endocytosis by muscimol increased both GABAARs and BIG1 at the neuronal surface in a time-dependent fashion, and this increase could be abolished by bicuculline. Finally, depletion of BIG1 by siRNA inhibited the muscimol-stimulated increase of GABAARs. Those data suggest an important function of BIG1 in trafficking of GABAARs to the cell surface through its GEF activity. Thus, we identify an important role of BIG1 in modulating GABA-gated Cl? influx through the regulation of cell surface expression of GABAARs.  相似文献   

20.
Ethanol causes pathological changes in GABAA receptor trafficking and function. These changes are mediated in part by ethanol activation of protein kinase A (PKA). The current study investigated the expression of the GABAA α1 and α4 subunits and the kinase anchoring protein AKAP150, as well as bicuculline-induced seizure threshold, at baseline and following acute injection of ethanol (3.5 g/kg IP) in a mouse line lacking the regulatory RIIβ subunit of PKA. Whole cerebral cortices were harvested at baseline, 1 h, or 46 h following injection of ethanol or saline and subjected to fractionation and western blot analysis. Knockout (RIIβ?/?) mice had similar baseline levels of PKA RIIα and GABAA α1 and α4 subunits compared to wild type (RIIβ+/+) littermates, but had deficits in AKAP150. GABAA α1 subunit levels were decreased in the P2 fraction of RIIβ?/?, but not RIIβ+/+, mice following 1 h ethanol, an effect that was driven by decreased α1 expression in the synaptic fraction. GABAA α4 subunits in the P2 fraction were not affected by 1 h ethanol; however, synaptic α4 subunit expression was increased in RIIβ+/+, but not RIIβ?/? mice, while extrasynaptic α4 and δ subunit expression were decreased in RIIβ?/?, but not RIIβ+/+ mice. Finally, RIIβ knockout was protective against bicuculline-induced seizure susceptibility. Overall, the results suggest that PKA has differential roles in regulating GABAA receptor subunits. PKA may protect against ethanol-induced deficits in synaptic α1 and extrasynaptic α4 receptors, but may facilitate the increase of synaptic α4 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号