共查询到20条相似文献,搜索用时 15 毫秒
1.
Reduction of nitroaromatic compounds by anaerobic bacteria isolated from the human gastrointestinal tract 总被引:3,自引:0,他引:3
F Rafil W Franklin R H Heflich C E Cerniglia 《Applied and environmental microbiology》1991,57(4):962-968
Human intestinal microbial flora were screened for their abilities to reduce nitroaromatic compounds by growing them on brain heart infusion agar plates containing 1-nitropyrene. Bacteria metabolizing 1-nitropyrene, detected by the appearance of clear zones around the colonies, were identified as Clostridium leptum, Clostridium paraputrificum, Clostridium clostridiiforme, another Clostridium sp., and a Eubacterium sp. These bacteria produced aromatic amines from nitroaromatic compounds, as shown by thin-layer chromatography, high-pressure liquid chromatography, and biochemical tests. Incubation of three of these bacteria with 1-nitropyrene, 1,3-dinitropyrene, and 1,6-dinitropyrene inactivated the direct-acting mutagenicity associated with these compounds. Menadione and o-iodosobenzoic acid inhibited nitroreductase activity in all of the isolates, indicating the involvement of sulfhydryl groups in the active site of the enzyme. The optimum pH for nitroreductase activity was 8.0. Only the Clostridium sp. required added flavin adenine dinucleotide for nitroreductase activity. The nitroreductases were constitutive and extracellular. An activity stain for the detection of nitroreductase on anaerobic native polyacrylamide gels was developed. This activity stain revealed only one isozyme in each bacterium but showed that the nitroreductases from different bacteria had distinct electrophoretic mobilities. 相似文献
2.
Reduction of nitroaromatic compounds by anaerobic bacteria isolated from the human gastrointestinal tract. 总被引:2,自引:6,他引:2 下载免费PDF全文
Human intestinal microbial flora were screened for their abilities to reduce nitroaromatic compounds by growing them on brain heart infusion agar plates containing 1-nitropyrene. Bacteria metabolizing 1-nitropyrene, detected by the appearance of clear zones around the colonies, were identified as Clostridium leptum, Clostridium paraputrificum, Clostridium clostridiiforme, another Clostridium sp., and a Eubacterium sp. These bacteria produced aromatic amines from nitroaromatic compounds, as shown by thin-layer chromatography, high-pressure liquid chromatography, and biochemical tests. Incubation of three of these bacteria with 1-nitropyrene, 1,3-dinitropyrene, and 1,6-dinitropyrene inactivated the direct-acting mutagenicity associated with these compounds. Menadione and o-iodosobenzoic acid inhibited nitroreductase activity in all of the isolates, indicating the involvement of sulfhydryl groups in the active site of the enzyme. The optimum pH for nitroreductase activity was 8.0. Only the Clostridium sp. required added flavin adenine dinucleotide for nitroreductase activity. The nitroreductases were constitutive and extracellular. An activity stain for the detection of nitroreductase on anaerobic native polyacrylamide gels was developed. This activity stain revealed only one isozyme in each bacterium but showed that the nitroreductases from different bacteria had distinct electrophoretic mobilities. 相似文献
3.
4.
Plant extracts obtained from Feronia limonia (leaves) Xanthium strumarium (flowering twigs) and Glossocardia bosvellia (leaves) were tested for their antimicrobial properties against certain bacterial species. Feronia leaf extract was ineffective on Bacillus pumilus and X. campestris, Vibrio cholerae was found quite sensitive to this extract. The extract of X. strumarium showed an abnormality with V. cholerae, where the inhibition exceeded the control with established antibiotics. Similarly, G. bosvellia caused maximum inhibition in Bacillus mycoides. 相似文献
5.
The present study was designed to evaluate in vitro antibacterial activity of herbal extracts against five plant pathogenic bacteria (viz. Xanthomonas campestris, Xanthomonas axonopodis pv. punicae, Erwinia spp., Pseudomonas syringae and Xanthomonas citri). Herbal extracts of leaves and rinds of Garcinia indica, rhizomes of Curcuma aromatica, roots of Glyccyrrhiza glabra, leaves of Nyctanthes arbor-tristis and seeds of Vernonia anthelmintica were used for screening. Screening was done using agar well diffusion method. Relatively potent extracts were shortlisted from this study and were further studied to find out their minimum bactericidal concentration (MBC). From the studies, it was observed that extracts of C. aromatica, G. indica and G. glabra have shown lowest MBC values among other tested plant extracts. This study indicates the potential of these potent plant extracts in the management of diseases caused by plant pathogenic bacteria. 相似文献
6.
Aerobic organisms degrade hydroaromatic compounds via the hydroaromatic pathway yielding protocatechuic acid which is further metabolized by oxygenase-mediated ring fission in the 3-oxoadipate pathway. No information exists on anaerobic degradation of hydroaromatics so far. We enriched and isolated from various sources of anoxic sediments several strains of rapidly growing gram-negative bacteria fermenting quinic (1,3,4,5-tetrahydroxy-cyclohexane-1-carboxylic acid) and shikimic acid (3,4,5-trihydroxy-1-cyclohexene-1-carboxylic acid) in the absence of external electron acceptors. Quinic and shikimic acid were the only ones utilized of more than 30 substrates tested. The marine isolates formed acetate, butyrate, and H2, whereas all freshwater strains formed acetate and propionate as typical fermentation products. Aromatic intermediates were not involved in this degradation. Characterization of the isolates, fermentation balances for both hydroaromatic compounds, and enzyme activities involved in one degradation pathway are presented.Abbreviations BV
benzyl viologen (1,1-dibenzyl-4,4-bipyridinium dichloride)
- CoA
coenzyme A
- CTAB
cetyltrimethylammonium bronide
- DCPIP
2,4-dichlorophenolindophenol
- DTT
1,4-dithiotheriol
- MV
methyl viologen (1,1-dimethyl-4,4-bipyridinium dichloride)
- Tricine
N-[tris-(hydroxymethyl)-methyl]-glycine
- Tris
tris-(hydroxymethyl)-aminomethane 相似文献
7.
Sílvia Cristina de Aguiar Lúcia Maria Zeoula Selma Lucy Franco Lucimar Pontara Peres Pedro Braga Arcuri Evelyne Forano 《World journal of microbiology & biotechnology》2013,29(10):1951-1959
The antimicrobial activity of three Brazilian propolis extracts was evaluated on bacterial strains representing major rumen functional groups. The extracts were prepared using different concentrations of propolis and alcohol, resulting in different phenolic compositions. The propolis extracts inhibited the growth of Fibrobacter succinogenes S85, Ruminococcus flavefaciens FD-1, Ruminococcus albus 7, Butyrivibrio fibrisolvens D1, Prevotella albensis M384, Peptostreptococcus sp. D1, Clostridium aminophilum F and Streptococcus bovis Pearl11, while R. albus 20, Prevotella bryantii B14 and Ruminobacter amylophilus H18 were resistant to all the extracts. The inhibited strains showed also different sensitivity to propolis; the hyper-ammonia-producing bacteria (C. aminophilum F and Peptostreptococcus sp. D1) being the most sensitive. Inhibition of hyper-ammonia-producing bacteria by propolis would be beneficial to the animal. The extract containing the lowest amount of phenolic compounds (LLOS C3) showed the lowest antimicrobial activity against all the bacteria. The major phenolic compounds identified in the propolis extracts (naringenin, chrysin, caffeic acid, p-coumaric acid and Artepillin C) were also evaluated on four sensitive strains. Only naringenin showed inhibitory effect against all strains, suggesting that naringenin is one of the components participating to the antibacterial activity of propolis. 相似文献
8.
Bhattacharjee I Chatterjee SK Chatterjee S Chandra G 《Memórias do Instituto Oswaldo Cruz》2006,101(6):645-648
The sensitivity of two Gram positive (Staphylococcus aureus and Bacillus subtilis) and two Gram negative (Escherichia coli and Pseudomonas aeruginosa) pathogenic multi-drug resistant bacteria was tested against the crude extracts (cold aqueous, hot aqueous, and methanol extracts) of leaves and seeds of Argemone mexicana L. (Papaveraceae) by agar well diffusion method. Though all the extracts were found effective, yet the methanol extract showed maximum inhibition against the test microorganisms followed by hot aqueous extract and cold aqueous extract. 相似文献
9.
Sofyane Andjouh 《Biofouling》2016,32(8):871-881
Rapid and efficient synthesis of 23 analogues inspired by bromotyramine derivatives, marine natural products, by means of CuSO4-catalysed [3+2] alkyne–azide cycloaddition is described. The final target was then assayed for anti-biofilm activity against three Gram-negative marine bacteria, Pseudoalteromonas ulvae (TC14), Pseudoalteromonas lipolytica (TC8) and Paracoccus sp. (4M6). Most of the synthesised bromotyramine/triazole derivatives are more active than the parent natural products Moloka’iamine (A) and 3,5-dibromo-4-methoxy-β-phenethylamine (B) against biofilm formation by the three bacterial strains. Some of these compounds were shown to act as non-toxic inhibitors of biofilm development with EC50 < 200 μM without any effect on bacterial growth even at high concentrations (200 μM). 相似文献
10.
H. Musikasang A. Tani A. H-kittikun S. Maneerat 《World journal of microbiology & biotechnology》2009,25(8):1337-1345
This study was conducted in order to evaluate the probiotic properties of lactic acid bacteria (LAB) isolated from intestinal tract of broilers and Thai indigenous chickens. The major properties, including the gastric juice and bile salts tolerance, starch, protein and lipid digesting capabilities, and the inhibition on certain pathogenic bacteria were investigated. Three-hundred and twenty-two and 226 LAB strains were isolated from ten broilers and eight Thai indigenous chickens, respectively. The gastrointestinal transit tolerance of these 548 isolates was determined by exposing washed cell suspension at 41°C to simulated gastric juice (pH 2.5) containing pepsin (3 mg ml−1), and to simulated small intestinal juice (pH 8.0) in the presence of pancreatin (1 mg ml−1) and 7% fresh chicken bile, mimicking the gastrointestinal environment. The survival of 20 isolates was found after passing through the gastrointestinal conditions. The survival rates of six strains; KT3L20, KT2CR5, KT10L22, KT5S19, KT4S13 and PM1L12 from the sequential study were 43.68, 37.56, 33.84, 32.89, 31.37 and 27.19%, respectively. Twelve isolates exhibited protein digestion on agar plate but no isolates showed the ability to digest starch and lipid. All 20 LAB showed the antimicrobial activity against Salmonella sp., Staphylococcus aureus and Escherichia coli except one strain which did not show the inhibitory activity toward E. coli. Accordingly, five isolates of selected LAB (KT2L24, KT3L20, KT4S13, KT3CE27 and KT8S16) can be classified as the best probiotics and were identified as Enterococcus faecalis, Enterococcus durans, Enterococcus faecium, Pediococcus pentosaceus, and Enterococcus faecium, respectively. The survival rate of microencapsulation of E. durans KT3L20 under simulated small intestine juice after sequential of simulated gastric juice was also investigated. An extrusion technique exhibited a higher survival rate than emulsion technique and free cell, respectively. 相似文献
11.
Cueva C Mingo S Muñoz-González I Bustos I Requena T del Campo R Martín-Álvarez PJ Bartolomé B Moreno-Arribas MV 《Letters in applied microbiology》2012,54(6):557-563
Aims: To investigate the effect of seven wine phenolic compounds and six oenological phenolic extracts on the growth of pathogenic bacteria associated with respiratory diseases (Pseudomonas aeruginosa, Staphylococcus aureus, Moraxella catarrhalis, Enterococcus faecalis, Streptococcus sp Group F, Streptococcus agalactiae and Streptococcus pneumoniae). Methods and Results: Antimicrobial activity was determined using a microdilution method and quantified as IC50. Mor. catarrhalis was the most susceptible specie to phenolic compounds and extracts. Gallic acid and ethyl gallate were the compounds that showed the greatest antimicrobial activity. Regarding phenolic extracts, GSE (grape seed extract) and GSE‐O (oligomeric‐rich fraction from GSE) were the ones that displayed the strongest antimicrobial effects. Conclusions: Results highlight the antimicrobial properties of wine phenolic compounds and oenological extracts against potential respiratory pathogens. The antimicrobial activity of wine phenolic compounds was influenced by the type of phenolic compounds. Gram‐negative bacteria were more susceptible than Gram‐positive bacteria to the action of phenolic compounds and extracts; however, the effect was species‐dependent. Significance and Impact of Study: The ability to inhibit the growth of respiratory pathogenic bacteria as shown by several wine phenolic compounds and oenological extracts warrants further investigations to explore the use of grape and wine preparations in oral hygiene. 相似文献
12.
Lyman Ngiam Mark A. Schembri Karen Weynberg Jianhua Guo 《Environmental microbiology》2021,23(9):5569-5586
Antibiotic resistance represents a global health challenge. The emergence of multidrug-resistant (MDR) bacteria such as uropathogenic Escherichia coli (UPEC) has attracted significant attention due to increased MDR properties, even against the last line of antibiotics. Bacteriophage, or simply phage, represents an alternative treatment to antibiotics. However, phage applications still face some challenges, such as host range specificity and development of phage resistant mutants. In this study, using both UPEC and non-UPEC hosts, five different phages were isolated from wastewater. We found that the inclusion of commensal Escherichia coli as target hosts during screening improved the capacity to select phage with desirable characteristics for phage therapy. Whole-genome sequencing revealed that four out of five phages adopt strictly lytic lifestyles and are taxonomically related to different phage families belonging to the Myoviridae and Podoviridae. In comparison to single phage treatment, the application of phage cocktails targeting different cell surface receptors significantly enhanced the suppression of UPEC hosts. The emergence of phage-resistant mutants after single phage treatment was attributed to mutational changes in outer membrane protein components, suggesting the potential receptors recognized by these phages. The findings highlight the use of commensal E. coli as target hosts to isolate broad host range phage with infectivity against MDR bacteria. 相似文献
13.
AIM: To screen rumen bacterial cultures and fresh ruminal isolates for indole and skatole production. METHODS AND RESULTS: Culture collection strains and fresh bacterial isolates from rumen contents of sheep and dairy cows were screened for the production of indolic compounds. Clostridium aminophilum FT, Peptostreptococcus ssp. S1, Fusobacterium necrophorum D4 produced indole and Clostridium sticklandii SR produced indoleacetic acid. Fresh isolates from sheep (TrE9262 and TrE7262) and dairy cows (152R-1a, 152R-1b, 152R-3 and 152R-4) produced indole, indolepropionic acid, tryptophol and skatole from the fermentation of tryptophan and indoleacetic acid. Glucose altered the indolic compounds produced in some, but not all, isolates. TrE7262 and 152R-4 were identified as Clostridium sporogenes and 152R-1b as a new Cl. aminophilum strain. Isolates TrE9262, 152R-1a and 152R-3 were not closely related to any described species but belong to Megasphaera, Prevotella and Actinomyces genera, respectively. CONCLUSIONS: Rumen bacteria that produced a range of indolic compounds were identified. Some isolates are distinct from the previously described bacteria and may represent novel species. SIGNIFICANCE AND IMPACT OF THE STUDY: These observations will contribute to understanding skatole and indole formation in the rumen and will lead to methods that control the formation of indolic compounds in pasture-grazed ruminants. 相似文献
14.
15.
黑粉虫与黄粉虫幼虫肠道细菌的比较 总被引:9,自引:0,他引:9
在黑粉虫和黄粉虫肠道中分别分离获得5株细菌,对其菌体形态、培养性状、染色反应、生理生化反应等进行了系统研究。鉴定结果表明,黑粉虫的5个细菌菌株分别属于金杆菌属(Aureobacterium)、李斯特氏菌属(Listeria)、微杆菌属(M i-crobacterium)、莫拉氏菌属(M oraxella)、短小杆菌属(Curtobacterium);黄粉虫的5个细菌菌株分别属于金杆菌属(Aureobacte-rium)、球形芽孢杆菌(Bacillus sphaericus)、微杆菌属(M icrobacterium)、巨大芽孢杆菌(B.m egaterium)、短小杆菌属(Curtobac-terium)。金杆菌属(Aureobacterium)、微杆菌属(M icrobacterium)和短小杆菌属(Curtobacterium)均在2种昆虫肠道中出现。 相似文献
16.
S. Weckesser K. Engel B. Simon-Haarhaus A. Wittmer K. Pelz C.M. Schempp 《Phytomedicine》2007,14(7-8):508-516
There is cumulative resistance against antibiotics of many bacteria. Therefore, the development of new antiseptics and antimicrobial agents for the treatment of skin infections is of increasing interest. We have screened six plant extracts and isolated compounds for antimicrobial effects on bacteria and yeasts with dermatological relevance. The following plant extracts have been tested: Gentiana lutea, Harpagophytum procumbens, Boswellia serrata (dry extracts), Usnea barbata, Rosmarinus officinalis and Salvia officinalis (supercritical carbon dioxide [CO2] extracts). Additionally, the following characteristic plant substances were tested: usnic acid, carnosol, carnosic acid, ursolic acid, oleanolic acid, harpagoside, boswellic acid and gentiopicroside. The extracts and compounds were tested against 29 aerobic and anaerobic bacteria and yeasts in the agar dilution test. U. barbata-extract and usnic acid were the most active compounds, especially in anaerobic bacteria. Usnea CO2-extract effectively inhibited the growth of several Gram-positive bacteria like Staphylococcus aureus (including methicillin-resistant strains - MRSA), Propionibacterium acnes and Corynebacterium species. Growth of the dimorphic yeast Malassezia furfur was also inhibited by Usnea-extract. Besides the Usnea-extract, Rosmarinus-, Salvia-, Boswellia- and Harpagophytum-extracts proved to be effective against a panel of bacteria. It is concluded that due to their antimicrobial effects some of the plant extracts may be used for the topical treatment of skin disorders like acne vulgaris and seborrhoic eczema. 相似文献
17.
Herein we examined two flavanones (persicogenin and homoeriodictyol) isolated from Rhus retinorrhoea to elucidate the mechanism of their anticancer effects in MCF-7, HeLa, and HT-29 cells. Based on the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)] (MTT) cytotoxicity data of persicogenin (500 μg/ml) caused a 58.1 % reduction in HT-29 survival while homoeriodictyol (500 μg/ml) caused a 51.9 %, 66.7 % and 76.2 % reductions in MCF-7, HeLa and HT-29 cell survival, respectively. The neutral red uptake (NRU) assay revealed 53.6 %, 53.9 %, 58.8 % and 83.0 %, 87.7 %, 66.7 % reductions in MCF-7, HeLa, and HT-29 cell survival following persicogenin and homoeriodictyol (500 μg/ml) treatment, respectively. Moreover, the intracellular reactive oxygen species (ROS) was significantly enhanced and dysfunction of mitochondrial membrane potential (ΔΨm) confirmed the mitochondrial injury in all cell types by the flavanones. MCF-7, HeLa, and HT-29 cells exposed to persicogenin and homoeriodictyol (500 μg/ml) had showed 42.5 %, 63.1 %, 62.3 % and 30.7 %, 30.2 %, 23.8 % cells in the sub G1 apoptotic phase. The persicogenin- and homoeriodictyol-treated cell lines had upregulated expressions of p53, caspase-3, caspase-9, bax, and superoxide dismutase 1 (SOD1) genes. Such findings provide novel insight into the comparative anti-cancer efficacy of persicogenin and homoeriodictyol, signifying their promising clinical applications as cancer treatments and their application as bioactive therapeutic agents. 相似文献
18.
19.
20.
Isolation and enumeration of phytase-producing bacteria in the proximal intestine (PI) and distal intestine (DI) of four freshwater teleosts, Nile tilapia (Oreochromis niloticus), murrel (Channa punctatus), climbing perch (Anabas testudineus), and stinging catfish (Heteropneustes fossilis) have been carried out following enrichment culture technique. The bacterial isolates were screened on the basis of their phytase-producing ability. In modified phytase screening medium (MPSM), phytase-producing strains were recorded at higher densities in the PI of Nile tilapia and climbing perch and at a minimum in the DI of catfish. Out of 32 isolates, 20 phytase-producing strains (9 from the DI and 11 from the PI) were primarily selected on the basis of qualitative assay on MPSM plates. Among these isolates, 3 strains (2 from the PI and 1 from the DI) were selected as potent phytase producers according to quantitative enzyme assay. Maximum phytase activity was detected in the bacterial strain ONF2 isolated from the PI of O. niloticus followed by CPF6 and CPH6, isolated from the PI and DI, respectively of C. punctatus. All the three selected phytase-producing strains were Gram-positive rods, capable of forming endospores, and could tolerate a wide range of temperature (25–42 °C) and pH (6–10). The strain CPF6 was able to grow at temperatures up to 55 °C. On the basis of 16S rDNA sequence analysis, isolates ONF2, CPF6 and CPH6 were identified as Bacillus licheniformis. The strain ONF2 showed 100 % similarity to B. licheniformis strain LCR32 (Accession no. FJ976541.1) whereas CPF6 and CPH6 showed 99 % similarity to B. licheniformis strain LCR32 (Accession no. FJ976541.1). 相似文献