首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
乳链菌肽自身免疫基因nisI的表达对乳链菌肽产量的影响   总被引:1,自引:0,他引:1  
【目的】通过基因工程手段增加乳链菌肽(nisin)自身免疫基因nisI在nisin产生菌Lactococcus lactisNZ9800/pHJ201中的表达水平,增强该菌对nisin的抗性,从而达到提高nisin产量的目的。【方法】将带有强组成型启动子P59的免疫基因nisI克隆到nisin表达质粒pHJ201上,将重组质粒引入L.lactis NZ9800中,使nisI基因过量表达,得到重组菌株L.lactis NZ9800/pHMI,并比较该重组菌株与对照菌株L.lactis NZ9800/pHJ201的生长曲线、对nisin的抗性水平、抑菌活性及nisin产量的差异。【结果】nisI的表达对重组菌的生长速度没有明显的影响,却能促使重组菌株对nisin的抗性水平提高25%、在发酵6h和8h时,nisin的产量分别提高32%和25%。【结论】增加乳链菌肽自身免疫基因nisI的表达可以提高产生菌对nisin的抗性,从而提高乳链菌肽产量。  相似文献   

2.
3.
Honey is a nutrient rich natural product and has been utilized as traditional and complementary medicine since ancient times. In this study, antibacterial activity of Sider (Ziziphus spina-christi), Dharm (Lavandula dentata), and Majra (Hypoestes forskaolii) honey samples collected from Asir region of Saudi Arabia was in vitro evaluated at 80% and 50% w/v concentrations against five pathogenic bacteria i.e. Escherichia coli, Proteus mirabilis, Staphylococcus aureus, Shigella flexneri, and Staphylococcus epidermidis. Well diffusion assays to measure the average zone of inhibition (ZOI) and minimum inhibitory concentration (MIC) values were employed in the experiments. All the tested honey samples showed antibacterial activity in a dose-dependent manner. Sider and Dharm exhibited a good antibacterial activity at high concentrations while, Majra honey of Apis mellifera jemenitica and of Apis florea showed comparatively low antibacterial activity. The average MIC values of Sider, Dhram from Rijal Alma, Dharm from Al-Souda, Majra (A.m. jemenitica), and Majra (A. florea) honey against all tested bacteria were 22%, 16%, 18%, 32%, and 28% (v/v) respectively. Dharm and Sider honeys showed better antibacterial activity than Majra honey. Saudi honey can be considered as a promising future antimicrobial agent and should be further investigated as an alternative candidate in the management of resistant bacterial pathogens.  相似文献   

4.
The sensitivity of nisin to proteolytical breakdown in intestinal environment was studied in an ex vivo model using jejunal chyme from fistulated dogs. Sixty six percentage of the added nisin retained induction activity after 30 min incubation in jejunal chyme, indicating that nisin has potential to be used as an inducing agent in in situ delivery systems of bioactive peptides and proteins by genetically modified bacteria in the intestine.  相似文献   

5.
6.
Abstract The biosynthesis, immunity and regulation of nisin, a lanthionine-containing antimicrobial peptide produced by Lactococcus lactis , is encoded by two gene clusters, nisAIZBTCIPRK and nisFEG . The mutant strain LAC46 with a deletion in the translocator gene nisT could not secrete nisin but nisin activity was detected from cell lysates. The nisT mutation was complemented by a NisT-expression plasmid resulting in restored capacity to secrete nisin. These results demonstrate that NisT is the transport protein dedicated to translocate nisin and that dehydration and lanthionine formation in nisin maturation can occur independently of transport.  相似文献   

7.
To study the antimicrobial activity of honey, 60 samples of various botanical origin were evaluated for their antimicrobial activities against 16 clinical pathogens and their respective reference strains. The microbiological quality of honeys and the antibiotic susceptibility of the various isolates were also examined. The bioassay applied for determining the antimicrobial effect employs the well-agar diffusion method and the estimation of minimum active dilution which produces a 1 mm diameter inhibition zone. All honey samples, despite their origin (coniferous, citrus, thyme or polyfloral), showed antibacterial activity against the pathogenic and their respective reference strains at variable levels. Coniferous and thyme honeys showed the highest activity with an average minimum dilution of 17.4 and 19.2% (w/v) followed by citrus and polyfloral honeys with 20.8 and 23.8% respectively. Clinical isolates of Staphylococcus aureus subsp. aureus, Escherichia coli, Salmonella enterica subsp. Enterica, Streptococcus pyogenes, Bacillus cereus and Bacillus subtilis were proven to be up to 60% more resistant than their equal reference strains thus emphasizing the variability in the antibacterial effect of honey and the need for further research.  相似文献   

8.
A mutant of the peptide antibiotic nisin in which the dehydroalanine residue at position 5 has been replaced by an alanine has been produced and structurally characterized. It is shown to have activity very similar to that of wild-type nisin in inhibiting growth of Lactococcus lactis and Micrococcus luteus but is very much less active than nisin as an inhibitor of the outgrowth of spores of Bacillus subtilis. These observations, which parallel those of W. Liu and J. N. Hansen (Appl. Environ. Microbiol. 59:648-651, 1993) on the corresponding mutant of the related antibiotic subtilin, are discussed in terms of the mechanism(s) of action of these antibiotics.  相似文献   

9.
An online removal of nisin by silicic acid coupled with a micro-filter module was proposed as an alternative to reduce detrimental effects caused by adsorption of nisin onto producer, enzymatic degradation by protease, and product inhibition during fermentation. In this study, silicic acid was successfully used to recover nisin from the fermentation broth of Lactococcus lactis subsp. lactis NIZO 22186. The effect of pH (at 6.8 and 3.0) during adsorption process and several eluents (deionized water, 20% ethanol, 1 M NaCl, and 1 M NaCl + 20% ethanol) for desorption were evaluated in a small batch scale. Higher nisin adsorption onto silicic acid was achieved when the adsorption was carried out at pH 6.8 (67% adsorption) than at pH 3.0 (54% adsorption). The maximum recovery was achieved (47% of nisin was harvested) when the adsorption was carried out at pH 6.8 and 1 M NaCl + 20% ethanol was used as an eluent for desorption. Most importantly, nisin production was significantly enhanced (7,445 IU/ml) when compared with the batch fermentation without the online recovery (1,897 IU/ml). This may possibly be attributed to preventing the loss of nisin due the detrimental effects and a higher biomass density achieved during online recovery process, which stimulated production of nisin during fermentation.  相似文献   

10.
Lactic acid bacteria (LAB) have been used successfully to express a wide variety of recombinant proteins, ranging from flavor-active proteins to antibiotic peptides and oral vaccines. The nisin-controlled expression (NICE) system is the most prevalent of the systems for production of heterologous proteins in LAB. Previous optimization of the NICE system has revealed a strong limit on the concentration of the inducer nisin that can be tolerated by the culture of host cells. In this work, the nisin immunity gene, nisI, has been inserted into the recently reported pMSP3535H2 vector that contains the complete NICE system on a high-copy Escherichia coli-LAB shuttle vector. Fed-batch fermentation data show that Lactococcus lactis IL1403 cells transformed with the new vector, pMSP3535H3, tolerate a 5-fold increase in the concentration of the inducer nisin, and, at this elevated concentration, produce a 1.8-fold increased level of green fluorescent protein (GFP), a model recombinant protein. Therefore, the incorporation of nisI in the pMSP3535H3 NICE system described here unveils new ranges of induction parameters to be studied in the course of optimizing recombinant protein expression in LAB.  相似文献   

11.
AIMS: To evaluate the sensitivity of 21 common intestinal bacteria to six antibiotics and three broad-spectrum bacteriocins (nisins Z and A and pediocin PA-1). METHODS AND RESULTS: Neutralized cell-free culture supernatants containing active bacteriocins, and antibiotics were tested with the agar diffusion test and the disc-diffusion method, respectively. The tested intestinal strains showed high sensitivity to most antibiotics except for streptomycin and oxacillin. Nisins A and Z (8 mug per well) had similar activity spectra and inhibited all Gram-positive intestinal bacteria at different levels (except Streptococcus salivarius), with bifidobacteria (except Bifidobacterium breve and Bif. catenulatum), Collinsella aerofaciens and Eubacterium biforme being the most sensitive strains, but they were not active against Gram-negative bacteria. Surprisingly, none of the tested strains were inhibited by pediocin PA-1 (16 mug per well). CONCLUSION: Pediocin PA-1 which is very active against Listeria spp. and other food pathogens did not inhibit major intestinal species in the human intestine in contrast to both nisins A and Z. SIGNIFICANCE AND IMPACT OF THE STUDY: Our data suggest that pediocin PA-1 has potential to inhibit Listeria within the intestinal microbiota without altering commensal bacteria.  相似文献   

12.
13.
The present study was designed to evaluate in vitro antibacterial activity of herbal extracts against five plant pathogenic bacteria (viz. Xanthomonas campestris, Xanthomonas axonopodis pv. punicae, Erwinia spp., Pseudomonas syringae and Xanthomonas citri). Herbal extracts of leaves and rinds of Garcinia indica, rhizomes of Curcuma aromatica, roots of Glyccyrrhiza glabra, leaves of Nyctanthes arbor-tristis and seeds of Vernonia anthelmintica were used for screening. Screening was done using agar well diffusion method. Relatively potent extracts were shortlisted from this study and were further studied to find out their minimum bactericidal concentration (MBC). From the studies, it was observed that extracts of C. aromatica, G. indica and G. glabra have shown lowest MBC values among other tested plant extracts. This study indicates the potential of these potent plant extracts in the management of diseases caused by plant pathogenic bacteria.  相似文献   

14.
The data processing method of the turbidimetric bioassay of nisin was modified to facilitate its industrial application. The influence of the initial indicator concentration was minimized by a redefined specific dose of the bacteriocin as the quotient between the titer of the added bacteriocin and the initial population density of the indicator in the suspension. It was found that d c = 0.125 μg ml−1 was the critical dose of nisin that can cause a complete inhibition of the indicator, Pediococcus acidilactici UL5, with an initial OD of 0.135. To eliminate the interference of the cell debris, an equation, , exploiting d c, was formulated to obtain the intrinsic survival proportion. The use of the specific dose of the bacteriocin and the intrinsic survival proportion as parameters of the dose/response curve greatly enhanced its repeatability and feasibility. A dual-dosage approach was developed to further simplify the conventional standard dose/response curve method.  相似文献   

15.
Of the 122 human oral bacterial strains tested from 11 genera, only streptococci and a few actinomyces exhibited coaggregation among the strains within their respective genera. Eight of the ten streptococci showed multiple intrageneric coaggregations, all of which were inhibited by galactosides. The widespread intrageneric coaggregation among the streptococci and the less extensive coaggregation among the actinomyces offers an explanation for their accretion on cleaned tooth surfaces and their dominance as primary colonizers.  相似文献   

16.
This study determines the inhibitory effect of Stevia rebaudiana leaf extracts and its purified bioactive compound ‘stevioside’ against food‐related pathogens. The S. rebaudiana solvent extracts (1000 μg/mL) displayed antibacterial activity to Serratia marcescens, Klebsiella pneumoniae, Bacillus cereus, Pseudomonas aeruginosa, B. subtilis, Alcaligenes denitrificans and Salmonella typhimurium. Of the six solvents, ethanol and acetone extracts displayed the highest zone of inhibition. The bioactive compound from S. rebaudiana was purified by solvent extraction, thin‐layer chromatography followed by structural characterization by spectroscopy evidence. Purified stevioside prevented the growth of tested bacterial species, i.e. B. subtilis, K. pneumoniae and S. typhimurium. Significant zone of inhibition (12 mm) was observed against B. cereus which proposes potential application of stevioside in foods to increase their shelf life.  相似文献   

17.
Nisin production of three bioengineered strains, (LAC338, LAC339 and LAC340) with immunity (nisFEG) and/or regulation (nisRK) genes of nisin biosynthesis on plasmids in the Lactococcus lactis LL27 nisin producer, was evaluated under pH-controlled and pH-uncontrolled batch fermentations. Optimization studies showed that fructose and yeast extract yielded the highest nisin activity. The strains LAC338, LAC339, and LAC340 produced 24, 45, and 44% more nisin, respectively, than wild-type L. lactis LL27 after 12-h incubation. However, sharp decreases in the yield of nisin were observed at the late phase of fermentation with LAC339 and LL27 in contrast to LAC340 and LAC338 strains for which the high level of nisin could be maintained longer. Obviously, increasing the copy number of the regulation genes together with immunity genes in the nisin producers retarded the loss of nisin in the late phase of the fermentation.  相似文献   

18.
A Genomic Target Database (GTD) has been developed having putative genomic drug targets for human bacterial pathogens. The selected pathogens are either drug resistant or vaccines are yet to be developed against them. The drug targets have been identified using subtractive genomics approaches and these are subsequently classified into
  1. Drug targets in pathogen specific unique metabolic pathways,
  2. Drug targets in host-pathogen common metabolic pathways, and
  3. Membrane localized drug targets.
HTML code is used to link each target to its various properties and other available public resources. Essential resources and tools for subtractive genomic analysis, sub-cellular localization, vaccine and drug designing are also mentioned. To the best of authors knowledge, no such database (DB) is presently available that has listed metabolic pathways and membrane specific genomic drug targets based on subtractive genomics. Listed targets in GTD are readily available resource in developing drug and vaccine against the respective pathogen, its subtypes, and other family members. Currently GTD contains 58 drug targets for four pathogens. Shortly, drug targets for six more pathogens will be listed.

Availability

GTD is available at IIOAB website http://www.iioab.webs.com/GTD.htm. It can also be accessed at http://www.iioabdgd.webs.com.GTD is free for academic research and non-commercial use only. Commercial use is strictly prohibited without prior permission from IIOAB.  相似文献   

19.
Lantibiotics are antimicrobial peptides produced by Gram-positive bacteria and active in the nanomolar range. Nisin is the most intensely studied and used lantibiotic, with applications as food preservative and recognized potential for clinical usage. However, different bacteria that are pathogenic for humans and do not produce nisin, including Streptococcus agalactiae, show an innate resistance that has been related to the nisin resistance protein (NSR), a membrane-associated protease. Here, we report the first-in-class small-molecule inhibitors of SaNSR identified by virtual screening based on a previously derived structural model of the nisin/NSR complex. The inhibitors belong to three different chemotypes, of which the halogenated phenyl-urea derivative NPG9 is the most potent one. Co-administration of NPG9 with nisin yields increased potency compared to nisin alone in SaNSR-expressing bacteria. The binding mode of NPG9, predicted with molecular docking and validated by extensive molecular dynamics simulations, confirms a structure-activity relationship derived from the in vivo data. Saturation transfer difference-NMR experiments demonstrate direct binding of NPG9 to SaNSR and agree with the predicted binding mode. Our results demonstrate the potential to overcome SaNSR-related lantibiotic resistance by small molecules.  相似文献   

20.
Of the 122 human oral bacterial strains tested from 11 genera, only streptococci and a few actinomyces exhibited coaggregation among the strains within their respective genera. Eight of the ten streptococci showed multiple intrageneric coaggregations, all of which were inhibited by galactosides. The widespread intrageneric coaggregation among the streptococci and the less extensive coaggregation among the actinomyces offers an explanation for their accretion on cleaned tooth surfaces and their dominance as primary colonizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号