首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some species are very difficult to observe in the wild, and some of these present an apparently incongruent distribution, as is the case of the spur-thighed tortoise Testudo graeca in the southern Iberian Peninsula. This species has a discontinuous distribution with two main reproductive areas: one in the contiguous provinces of Almeria and Murcia, and the other in Huelva province. Both populations are thought to maintain reproductive isolation. However, we present new records obtained from two areas (the provinces of Malaga and Cadiz) which are outside their previously known range. Malaga province and Cadiz province are located between the two traditional reproductive areas. The new records were based on 16 interviews with shepherds as well as information provided by three naturalists. The aim of this work was to analyze the spatial distribution of areas favourable to the spur-thighed tortoise in the southern Iberian Peninsula, using different models with the same group of variables but with a different number of records: known records, new records and a combination of them. We obtained a distribution model for the species in Andalusia consistent with all observations, which was related to climatic stability, climatic disturbances, and spatial situation. This model presented three main favourable areas: two are coincident with the two known nuclei, and the other is situated in the southern part of the region, in the contiguous provinces of Cadiz and Malaga. We conclude that it is important to consider all the observations in the distribution models because records outside the traditional reproductive areas can include other environmental characteristics appropriate for the species.  相似文献   

2.
A total of 1506 soil samples from different habitats in seven geographic regions of South Africa were evaluated for the presence of entomopathogenic nematodes (EPN). Nematodes were isolated from 5% of the samples. Among the steinernematids, four Steinernema sp. were recovered including Steinernema khoisanae and three new undescribed species. Although steinernematids were recovered from both humid subtropical and semiarid regions, this family accounted for 80% of EPN recovered from the semiarid climate zones characterised by sandy, acidic soils. Eight isolates of S. khoisanae were recovered from the Western Cape province. One of the new undescribed steinernematids (Steinernema sp. 1) was recovered only from the Free State and KwaZulu-Natal provinces where humid subtropical conditions prevail and soils are generally less acidic with higher clay content. A high level of adaptation, however, was noted with Steinernema sp. 2, which was recovered from a wide range of soil conditions and habitats ranging from semiarid (Western Cape province) to humid subtropical (KwaZulu-Natal province). A third undescribed steinernematid, Steinernema sp. 3, seemed better adapted to heavier soils with more than 80% of isolates recovered from fruit orchards in the Free State province. Heterorhabditis bacteriophora was the only heterorhabditid recovered during this survey. This species was particularly prevalent in four provinces ranging from humid subtropical to semiarid regions. Isolation of EPN directly from insect cadavers included Steinernema sp. 2 and one H. bacteriophora from an unidentified white grub (Scarabaeidae) cadaver (i.e., dual infection) and H. bacteriophora from the black vine weevil, Otiorhynchus sulcatus.  相似文献   

3.
ABSTRACT

The freshwater snail Pseudosuccinea columella was recorded for the first time in Argentina more than 60 years ago. Since then its distribution in the wild has been restricted to the northeastern provinces. Here we record the presence of P. columella in southern Pampas for the first time, extending its distribution more than 500?km southwards. The climatic suitability of this and other areas of South America for its establishment and spread was analysed using habitat modelling software. Hitherto its spread within and between watercourses in southern Pampas has been very limited, probably through a combination of low climatic suitability, recent introduction and low connectivity of the drainage basins. The suitability of other areas where it has been recently recorded indicates a moderate risk of further spread in central and northwestern Argentina and in coastal areas of the Pacific rim of South America (southern Perú and northern Chile). The recent spread of P. columella in the wild in Argentina may be the result of an increase in the trade in aquarium plants or of the evolution of a new lineage with different ecological capabilities.  相似文献   

4.
【目的】全球恶性杂草腺龙葵最早于20世纪80年代入侵我国辽宁,90年代以后在河南被发现,近年来在新疆和北京都有入侵记录。明确其潜在的适生区对制定防控措施具有重要意义。【方法】通过查找全球生物多样性信息数据库、标本记录、文献信息以及实地调查等途径获得了腺龙葵在全球的分布点,利用Maxent生态位模型模拟了其适应的气候生态位,并投影到中国预测了其潜在适生区。【结果】适生区预测结果显示,腺龙葵在我国存在广阔的适生区,除海南、广东、黑龙江、吉林外的27省区都存在其适生区。【结论】腺龙葵在我国进一步扩散蔓延的风险极高。建议对新入侵地采取早期监测预警和根除措施,并加大对适生区内进口货物接受区的监测力度,以预防其再次入侵。  相似文献   

5.
Fasciola spp. are responsible for over 3 billion US dollars of production loss annually in livestock and cause widespread zoonotic disease. Nevertheless, understating of the emergence and spread of the trematode species is poor. The multiplicity of F. gigantica infection and its spread is potentially influenced by multiple factors, including the abundance of suitable intermediate hosts, climatic conditions favouring the completion of the parasite's lifecycle, and translocation of infected animals, or free-living parasite stages between regions. Here we describe the development of a ‘tremabiome’ metabarcoding sequencing method to explore the numbers of F. gigantica genotypes per infection and patterns of parasite spread, based on genetic characteristics of the mitochondrial NADH dehydrogenase 1 (mt-ND-1) locus. We collected F. gigantica from three abattoirs in the Punjab and Balochistan provinces of Pakistan, and our results show a high level of genetic diversity in 20 F. gigantica populations derived from small and large ruminants consigned to slaughter in both provinces. This implies that F. gigantica can reproduce in its definitive hosts through meiosis involving cross- and self-breeding, as described in the closely related species, Fasciola hepatica. The genetic diversity between the 20 populations derived from different locations also illustrates the impact of animal movements on gene flow. Our results demonstrate the predominance of single haplotypes, consistent with a single introduction of F. gigantica infection in 85% of the hosts from which the parasite populations were derived. This is consistent with clonal reproduction in the intermediate snail hosts.  相似文献   

6.
Solenopsis invicta Buren, also known as the red imported fire ant (RIFA), has had a very negative effect on biological diversity, public safety, agriculture, and economics. Because of the growth in global trade, the RIFA threat to China will continue to increase. To better understand characteristics of newly observed distributions of RIFA, we studied the effects of three factors including provincial areas, landcover types, and climatic conditions on the 130 new occurrence records in 2021. (1) We found that RIFA preferred to invade Sichuan and Guangxi, and provinces that are large agricultural producers were more vulnerable to invasive RIFA. Guangdong was the most damaged province, and wealthy provinces, especially southeastern coastal provinces, were more at risk and suffered a bigger loss from the further RIFA threat. (2) Compared with other habitats, plantations received more significant damage from invasive RIFA. (3) Areas with an annual precipitation of 516.4 mm, annual average temperature of 18.6°C, or elevation of 569.9 m had a great abundance of invasive RIFA. Our study suggests that stringent inspection and quarantine measures are necessary in new occurrence areas to prevent further RIFA outbreak, and highlights the need for cross-provincial cooperation and national coordination to slow its spread.  相似文献   

7.
《Journal of Asia》2023,26(1):102011
Xylella fastidiosa is a pathogen that causes fatal plant diseases and damage to horticultural crops. Establishing the basic parameters is necessary to assess the risk of disease outbreaks as there are concerns about the spread of X. fastidiosa. This is done by analyzing the climatic characteristics and distribution patterns of X. fastidiosa and related insect vectors. In this study, we aimed to derive the common climatic characteristics of X. fastidiosa and three major insect vectors by using a statistical density function for four climatic factors. In addition, the distance between the occurrence areas was calculated spatiotemporally and classified into natural and anthropogenic spread. The optimal climatic conditions identified for X. fastidiosa and the insect vectors were similar, suggesting a high potential for X. fastidiosa spread when both occur in a neighborhood area. X. fastidiosa spread mostly depends on anthropogenic pathways, but natural spread by insect vectors could increase. This study provides necessary insights for the risk assessment of X. fastidiosa spread based on climate similarity and spread patterns.  相似文献   

8.
Aim The distribution range of Lactuca serriola, a species native to the summer‐dry mediterranean climate, has expanded northwards during the last 250 years. This paper assesses the influence of climate on the range expansion of this species and highlights the importance of anthropogenic disturbance to its spread. Location Central and Northern Europe. Methods Data on the geographic distribution of L. serriola were assembled through a literature search as well as through floristic and herbarium surveys. Maps of the spread of L. serriola in Central and Northern Europe were prepared based on herbarium data. The spread was assessed more precisely in Germany, Austria and Great Britain by pooling herbarium and literature data. We modelled the bioclimatic niche of the species using occurrence and climatic data covering the last century to generate projections of suitable habitats under the climatic conditions of five time periods. We tested whether the observed distribution of L. serriola could be explained for each time period, assuming that the climatic niche of the species was conserved across time. Results The species has spread northwards since the beginning of the 19th century. We show that climate warming in Europe increased the number of sites suitable for the species at northern latitudes. Until the late 1970s, the distribution of the species corresponded to the climatically suitable sites available. For the last two decades, however, we could not show any significant relationship between the increase in suitable sites and the distributional range change of L. serriola. However, we highlight potential areas the species could spread to in the future (Great Britain, southern Scandinavia and the Swedish coast). It is predominantly non‐climatic influences of global change that have contributed to its rapid spread. Main conclusions The observation that colonizing species are not filling their climatically suitable range might imply that, potentially, other ruderal species could expand far beyond their current range. Our work highlights the importance of historical floristic and herbarium data for understanding the expansion of a species. Such historical distributional data can provide valuable information for those planning the management of contemporary environmental problems, such as species responses to environmental change.  相似文献   

9.
Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae), one of the most serious pests of cassava worldwide, has recently reached Asia, raising significant concern over its potential spread throughout the region. To support management decisions, this article reports recent distribution records, and estimates the climatic suitability for its regional spread using a CLIMEX distribution model. The article also presents a taxonomic key that separates P. manihoti from all other mealybug species associated with the genus Manihot. Model predictions suggest P. manihoti imposes an important, yet differential, threat to cassava production in Asia. Predicted risk is most acute in the southern end of Karnataka in India, the eastern end of the Ninh Thuan province in Vietnam, and in most of West Timor in Indonesia. The model also suggests P. manihoti is likely to be limited by cold stress across Vietnam''s northern regions and in the entire Guangxi province in China, and by high rainfall across the wet tropics in Indonesia and the Philippines. Predictions should be particularly important to guide management decisions for high risk areas where P. manihoti is absent (e.g., India), or where it has established but populations remain small and localized (e.g., South Vietnam). Results from this article should help decision-makers assess site-specific risk of invasion, and develop proportional prevention and surveillance programs for early detection and rapid response.  相似文献   

10.
Invasions of alien species are considered among the least reversible human impacts, with diversified effects on aquatic ecosystems. Since prevention is the most cost-effective way to avoid biodiversity loss and ecosystem problems, one challenge in ecological research is to understand the limits of the fundamental niche of the species in order to estimate how far invasive species could spread. Trichocorixa verticalis verticalis (Tvv) is a corixid (Hemiptera) originally distributed in North America, but cited as an alien species in three continents. Its impact on native communities is under study, but it is already the dominant species in several saline wetlands and represents a rare example of an aquatic alien insect. This study aims: i) to estimate areas with suitable environmental conditions for Tvv at a global scale, thus identifying potential new zones of invasion; and ii) to test possible changes in this global potential distribution under a climate change scenario. Potential distributions were estimated by applying a multidimensional envelope procedure based on both climatic data, obtained from observed occurrences, and thermal physiological data. Our results suggest Tvv may expand well beyond its current range and find inhabitable conditions in temperate areas along a wide range of latitudes, with an emphasis on coastal areas of Europe, Northern Africa, Argentina, Uruguay, Australia, New Zealand, Myanmar, India, the western boundary between USA and Canada, and areas of the Arabian Peninsula. When considering a future climatic scenario, the suitability area of Tvv showed only limited changes compared with the current potential distribution. These results allow detection of potential contact zones among currently colonized areas and potential areas of invasion. We also identified zones with a high level of suitability that overlap with areas recognized as global hotspots of biodiversity. Finally, we present hypotheses about possible means of spread, focusing on different geographical scales.  相似文献   

11.
BW Price  X Liu  FC de Moor  MH Villet 《ZooKeys》2012,(201):27-41
The monotypic South African alderfly genus Leptosialis Esben-Petersen, 1920 is reviewed and Leptosialis africana Esben-Petersen, 1920 is redescribed. In the process a new species of alderfly Leptosialis necopinatasp. n. from the Eastern Cape and KwaZulu-Natal provinces of South Africa is recognised and described. Within Sialidae the new species most closely resembles Leptosialis africana. A key to the two species of Leptosialis using both adult and larval characters is provided.  相似文献   

12.
Aim The funnelweb spider Macrothele calpeiana is endemic to the southern half of the Iberian Peninsula, but recent occurrence records from localities in Spain, North Africa and other regions of Europe, which are distant from its native populations, suggest human‐mediated dispersal, probably associated with the commercial export of olive trees. The main goal of this study was to assess the environmental suitability of these new records and to discuss the spider’s potential to become an invasive species, mainly in new regions across Central Europe and the Mediterranean Basin. Location Central Europe, Mediterranean Basin. Methods Using presence points from the Iberian native populations of M. calpeiana and a set of climatic variables, four presence‐only algorithms (BIOCLIM, DOMAIN, GARP and Maxent) were applied to model the potential distribution of the spider. The models were transferred to Central Europe and the Mediterranean Basin, and the locations of the new records in both the occupied and potential environmental spaces were screened. Results The four models were generally congruent in predicting the existence of a suitable climate for the species across the Mediterranean Basin, although BIOCLIM and DOMAIN yielded more constrained predictions than GARP and Maxent. Whereas the new records from Central Europe were located far from the occupied and potential climatic spaces, those from the Iberian Peninsula were not. Main conclusions Climatic suitability together with propagule pressure owing to human activities will certainly enhance the opportunities for M. calpeiana to colonize new areas across the Mediterranean Basin. The species has invaded areas beyond its native range, and those new locations located in the Iberian Peninsula and North Africa show environmental suitability for the spider and deserve long‐term monitoring. Although the new locations in Central Europe were not predicted by the climate models and the persistence of the species seems improbable, the possibility of rapid evolution or phenotypic plasticity processes raises the need for caution over the possibility of a future spread of M. calpeiana across Europe. Stronger controls over the transport of trees must be applied, and further studies on the ecology of the spider are imperative to assess the possible impact on the invaded ecosystems.  相似文献   

13.
The main goal of this study was to predict, through the use of GIS tool as ecological niche modelling, potentially suitable ecological niche and defining the conditions of such niche for the representatives of the cosmopolitan genus Sirthenea. Among all known genera of the subfamily Peiratinae, only Sirthenea occurs on almost all continents and zoogeographical regions. Our research was based on 521 unique occurrence localities and a set of environmental variables covering the whole world. Based on occurrence localities, as well as climatic variables, digital elevation model, terrestrial ecoregions and biomes, information about the ecological preferences is given. Potentially useful ecological niches were modelled using Maxent software, which allowed for the creation of a map of the potential distribution and for determining climatic preferences. An analysis of climatic preferences suggested that the representatives of the genus were linked mainly to the tropical and temperate climates. An analysis of ecoregions also showed that they preferred areas with tree vegetation like tropical and subtropical moist broadleaf forests biomes as well as temperate broadleaf and mixed forest biomes. Therefore, on the basis of the museum data on the species occurrence and ecological niche modelling method, we provided new and valuable information on the potentially suitable habitat and the possible range of distribution of the genus Sirthenea along with its climatic preferences.  相似文献   

14.
【目的】刺萼龙葵是20世纪80年代入侵我国的检疫性外来植物,目前已在东北和西北地区广泛分布并对农牧业生产造成极大危害,急需明确其时空分布格局和潜在扩散动态,为其早期监测预警提供依据。【方法】首先,利用实地调查、标本和文献查询途径获得的地理分布信息重建刺萼龙葵在我国的扩散历史和分布格局;其次,通过物种分布模型预测其潜在的分布区;最后,融合时空动态和潜在的扩张趋势,利用空间分析模型划定早期监测预警的区域。【结果】刺萼龙葵最早于1980年在辽宁省朝阳市被发现,其后不断沿河流和公路等扩散蔓延。2000年以后相继在内蒙古、北京、河北、吉林以及新疆等省区发现其入侵种群。截至目前,已扩散到了7个省的54个县区。适生区预测结果表明,其在我国存在广阔的潜在分布区,目前还处在快速扩散阶段,没有达到饱和阶段。【结论】刺萼龙葵在我国还处在快速扩散阶段,远没有达到饱和,华北平原是其潜在扩散的高风险区,建议加强对其扩散前沿带包头、张家口、北京、秦皇岛一线的监测力度,以抑制其进一步扩散蔓延。  相似文献   

15.
Entomopathogenic nematode (EPN) Heterorhabditis indica is a promising biocontrol candidate. Despite the acknowledged importance of EPN in pest control, no extensive data sets or maps have been developed on their distribution at global level. This study is the first attempt to generate Ecological Niche Models (ENM) for H. indica and its global Habitat Suitability Map (HSM) for H. indica to generate biogeographical information and predicts its global geographical range and help identify of prospective areas for its exploration and to help identify the suitable release areas for biocontrol purpose. The aim of the modeling exercise was to access the influence of temperature and soil moisture on the biogeographical patterns of H. indica at the global level. Global Heterorhabditis indica ecosystems. CLIMEX software was used to model the distribution of H. indica and assess the influence of environmental variable on its global distribution. In total, 162 records of H. indica occurrence from 27 countries over 25 years were combined to generate the known distribution data. The model was further fine‐tuned using the direct experimental observations of the H. indica''s growth response to temperature and soil moisture. Model predicts that much of the tropics and subtropics have suitable climatic conditions for H. indica. It further predicts that H. indica distribution can extend into warmer temperate climates. Examination of the model output, predictions maps at a global level indicate that H. indica distribution may be limited by cold stress, heat stress, and dry stresses in different areas. However, cold stress appears to be the major limiting factor. This study highlighted an efficient way to construct HSM for EPN potentially useful in the search/release of target species in new locations. The study showed that H. indica which is known as warm adapted EPN generally found in tropics and subtropics can potentially establish itself in warmer temperate climates as well. The model can also be used to decide the release timing of EPN by adjusting with season for maximum growth. The model developed in this study clearly identified the value and potential of Habitat Suitability Map (HSM) in planning of future surveys and application of H. indica.  相似文献   

16.
The Islamic Republic of Iran reported its first COVID-19 cases by 19th February 2020, since then it has become one of the most affected countries, with more than 73,000 cases and 4,585 deaths to this date. Spatial modeling could be used to approach an understanding of structural and sociodemographic factors that have impacted COVID-19 spread at a province-level in Iran. Therefore, in the present paper, we developed a spatial statistical approach to describe how COVID-19 cases are spatially distributed and to identify significant spatial clusters of cases and how socioeconomic and climatic features of Iranian provinces might predict the number of cases. The analyses are applied to cumulative cases of the disease from February 19th to March 18th. They correspond to obtaining maps associated with quartiles for rates of COVID-19 cases smoothed through a Bayesian technique and relative risks, the calculation of global (Moran’s I) and local indicators of spatial autocorrelation (LISA), both univariate and bivariate, to derive significant clustering, and the fit of a multivariate spatial lag model considering a set of variables potentially affecting the presence of the disease. We identified a cluster of provinces with significantly higher rates of COVID-19 cases around Tehran (p-value< 0.05), indicating that the COVID-19 spread within Iran was spatially correlated. Urbanized, highly connected provinces with older population structures and higher average temperatures were the most susceptible to present a higher number of COVID-19 cases (p-value < 0.05). Interestingly, literacy is a factor that is associated with a decrease in the number of cases (p-value < 0.05), which might be directly related to health literacy and compliance with public health measures. These features indicate that social distancing, protecting older adults, and vulnerable populations, as well as promoting health literacy, might be useful to reduce SARS-CoV-2 spread in Iran. One limitation of our analysis is that the most updated information we found concerning socioeconomic and climatic features is not for 2020, or even for a same year, so that the obtained associations should be interpreted with caution. Our approach could be applied to model COVID-19 outbreaks in other countries with similar characteristics or in case of an upturn in COVID-19 within Iran.  相似文献   

17.

Background

Over the last 30 years, the Asian tiger mosquito, Aedes albopictus, has rapidly spread around the world. The European distribution comprises the Mediterranean basin with a first appearance in Switzerland in 2003. Early identification of the most suitable areas in Switzerland allowing progressive invasion by this species is considered crucial to suggest adequate surveillance and control plans.

Methodology/Principal Findings

We identified the most suitable areas for invasion and establishment of Ae. albopictus in Switzerland. The potential distribution areas linked to the current climatic suitability were assessed using remotely sensed land surface temperature data recorded by the MODIS satellite sensors. Suitable areas for adult survival and overwintering of diapausing eggs were also identified for future climatic conditions, considering two different climate change scenarios (A1B, A2) for the periods 2020–2049 and 2045–2074. At present, the areas around Lake Geneva in western Switzerland provide suitable climatic conditions for Ae. albopictus. In northern Switzerland, parts of the Rhine valley, around Lake Constance, as well as the surroundings of Lake Neuchâtel, appear to be suitable for the survival at least of adult Ae. albopictus. However, these areas are characterized by winters currently being too cold for survival and development of diapausing eggs. In southern Switzerland, Ae. albopictus is already well-established, especially in the Canton of Ticino. For the years 2020–2049, the predicted possible spread of the tiger mosquito does not differ significantly from its potential current distribution. However, important expansions are obtained if the period is extended to the years 2045–2074, when Ae. albopictus may invade large new areas.

Conclusions/Significance

Several parts of Switzerland provide suitable climatic conditions for invasion and establishment of Ae. albopictus. The current distribution and rapid spread in other European countries suggest that the tiger mosquito will colonize new areas in Switzerland in the near future.  相似文献   

18.
Primate rehabilitation is challenging but has become crucial as many species are threatened with extinction. Vervet monkeys (Chlorocebus aethiops) are a widespread primate species in Africa. Despite the release of comparatively large numbers of rehabilitated monkeys, the success rate is poor, with low survival. This is partly due to choosing substandard release sites. Here we use an environmental envelope model that combines species-specific environmental and spatial data (including environmental conditions such as temperature and rainfall, access to permanent water, and proximity to anthropogenic influence) to predict the best areas for release of rehabilitated vervet monkeys in KwaZulu-Natal, South Africa. Approximately 80% of the land in KwaZulu-Natal qualifies as general habitat. However, only 6225 km2 (6.7%) is classed as habitat desirable for release, as human occupation and limited water access render other areas unsuitable. Unsurprisingly, ideal release land is limited and may prove difficult to access. However, there are accessible land areas that may be viable despite human impact. This uncertainty highlights the need for site visits early in the selection process. Our model provides easily read maps that rehabilitators can use to assist with this process and potentially optimize release site selection. This method could be easily adapted to other primate species.  相似文献   

19.
Species distribution models (SDMs) that employ climatic variables are widely used to predict potential distribution of invasive species. However, climatic variables derived from climate datasets do not account for anthropogenic influences on microclimate. Irrigation is a major anthropogenic activity that influences microclimate conditions and alters the distribution of species in anthropogenic landuses. SDM-based studies appear to ignore the effects of irrigation on microclimatic conditions. This study incorporated irrigation as a correction to precipitation data, to improve the predictive capacity of SDM. As a case study, we examined a SDM of Wasmannia auropunctata, an invasive species that originates in South and Central America, which has invaded tropical and subtropical regions around the world. The potential distribution of W. auropunctata was predicted using Maxent. The model was built based on climatic variables and species records from non-irrigated sites in the native range and then projected on a global scale. Invasive species records were used to evaluate the performance of the model. Precipitation-related variables were modified to approximate actual water input in irrigated areas. Precipitation correction relied on an estimate of irrigation inputs. The model with irrigation correction performed better than the corresponding model without correction, on a global scale and when it was examined in five different geographical regions of the model. These results demonstrate the importance of irrigation correction for assessing the distribution of W. auropunctata in various geographical regions. Accounting for irrigation is expected to improve SDMs for a variety of species.  相似文献   

20.
包括紫茎泽兰在内的许多外来植物都能够与新入侵生境的丛枝菌根真菌( AMF)形成互利共生,因此菌根真菌如何调节外来植物种的入侵是当前亟待研究的问题。测定了紫茎泽兰入侵不同阶段(紫茎泽兰呈零星丛状分布于本地植物群落中[部分入侵生境]及紫茎泽兰单优群落形成期[入侵生境])的土壤化学性状,而后通过野外试验,采用杀真菌剂处理,研究了包括AMF在内的土壤真菌对紫茎泽兰入侵的反馈作用。紫茎泽兰入侵改变了土壤化学性状。施用杀真菌剂降低了紫茎泽兰叶面积、叶片碳、氮、磷、和δ13 C含量。综合分析发现,在紫茎泽兰与本地植物混生群落中,土壤真菌能够增加紫茎泽兰叶片碳和δ13 C含量,但是不能提高紫茎泽兰的光合作用,表明碳和δ13 C含量的提高,不是光合作用的结果,而是通过其他机制实现的。因此可以得出,在部分入侵生境中,碳从土壤或临近植物经由菌丝网向紫茎泽兰转移。紫茎泽兰入侵不同阶段土壤养分的变化利于紫茎泽兰种群建立,同时利于紫茎泽兰借助真菌(尤其是AMF)从土壤或临近植物转移碳,促进种群扩散,这可能是紫茎泽兰入侵的机制之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号