首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Responses of Atriplex portulacoides upon 40-day-long exposure to salinity (0?C1,000?mM NaCl) were investigated. Mother plants originated from a sabkha located in a semi-arid region of Tunisia. The plant relative growth rate and leaf expansion increased significantly at 200?mM NaCl but decreased at higher salinities. Interestingly, the plants survived salinity as high as 1,000?mM NaCl without displaying salt-induced toxicity symptoms. Despite significant increase in leaf Na+ and Cl? concentrations upon salt treatment, no significant effect on leaf relative water content was registered. Chlorophyll contents and the gas exchange parameters showed a significant stimulation at the optimal salinity (200?mM NaCl) followed by a decline at higher salinities. Extreme salinity hardly impacted the maximal efficiency of photosystem II photochemistry (F v/F m), but a marked decrease in the relative quantum yield of photosystem II (??PSII) was observed, along with a significant increase in non-photochemical quenching (NPQ). Leaf malondialdehyde and carotenoid contents were generally unaffected following salt exposure, whereas those of anthocyanins, polyphenols, and proline increased significantly, being maximal at 1,000?mM NaCl. Leaf superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), and glutathione reductase (EC 1.6.4.2) activities were significantly stimulated by salinity, whereas catalase (EC 1.11.1.6) activity was maximal in the 0?C400?mM NaCl range. As a whole, protecting the photosynthetic machinery from salt-induced photodamage together with the sustained antioxidant activity may account for the performance of A. portulacoides under high salinity.  相似文献   

2.
BACKGROUND AND AIMS: Atriplex (Halimione) portulacoides is a halophytic, C(3) shrub. It is virtually confined to coastal salt marshes, where it often dominates the vegetation. The aim of this study was to investigate its growth responses to salinity and the extent to which these could be explained by photosynthetic physiology. METHODS: The responses of young plants to salinity in the range 0-700 mol m(-3) NaCl were investigated in a glasshouse experiment. The performance of plants was examined using classical growth analysis, measurements of gas exchange (infrared gas analysis), determination of chlorophyll fluorescence characteristics (modulated fluorimeter) and photosynthetic pigment concentrations; total ash, sodium, potassium and nitrogen concentrations, and relative water content were also determined. KEY RESULTS: Plants accumulated Na(+) approximately in proportion to external salinity. Salt stimulated growth up to an external concentration of 200 mol m(-3) NaCl and some growth was maintained at higher salinities. The main determinant of growth response to salinity was unit leaf rate. This was itself reflected in rates of CO(2) assimilation, which were not affected by 200 mol m(-3) but were reduced at higher salinities. Reductions in net photosynthetic rate could be accounted for largely by lower stomatal conductance and intercellular CO(2) concentration. Apart from possible effects of osmotic shock at the beginning of the experiment, salinity did not have any adverse effect on photosystem II (PSII). Neither the quantum efficiency of PSII (Phi(PSII)) nor the chlorophyll fluorescence ratio (F(v)/F(m)) were reduced by salinity, and lower mid-day values recovered by dawn. Mid-day F(v)/F(m) was in fact depressed more at low external sodium concentration, by the end of the experiment. CONCLUSIONS: The growth responses of the hygro-halophyte A. portulacoides to salinity appear largely to depend on changes in its rate of photosynthetic gas exchange. Photosynthesis appears to be limited mainly through stomatal conductance and hence intercellular CO(2) concentration, rather than by effects on PSII; moderate salinity might stimulate carboxylation capacity. This is in contrast to more extreme halophytes, for which an ability to maintain leaf area can partially offset declining rates of carbon assimilation at high salinity.  相似文献   

3.
The effect of water stress on growth, Na+ and K+ accumulation and water utilization was investigated in plants of two populations of Atriplex halimus L. originating from Kairouan (Tunisia) and Tensift (Morocco). Water deficit was applied by withholding water for 22 days. All plants remained alive until the end of the treatment although growth was strongly reduced in both populations. Water stress decreased CO2 assimilation in saturating conditions, mainly in the population obtained from Kairouan, suggesting an impact of drought on the dark phase of photosynthesis, beside a decrease in stomatal conductance which was recorded mainly in the population obtained from Tensift. The two studied populations did not differ in their water consumption, as indicated by similar soil gravimetric water content and plant transpiration. However, water use efficiency increased under stress conditions in the population from Tensift but not in the population from Kairouan. Thelatter population displayed a larger capacity for osmotic adjustment. A drought-induced specific increase in Na+ concentration was also reported in both populations. It is concluded that in A. halimus, water stress resistance estimated in terms of biomass production, could be associated with higher WUE rather than with with a greater osmotic adjustment and that sodium may assume a specific physiological function in this xerohalophytic C4 species.  相似文献   

4.
Experiment was conducted to identify the impacts of the salinity acclimation process on the photosynthetic efficiency, osmotic adjustment, membrane integrity, and yield components in two wheat cultivars differing in their salinity tolerance. The design of the experiment was factorial randomized block, where genotype is factor 1 and acclimation treatments represent factor 2. Genotypes were grown from emergence to 30 days after sowing (DAS) by irrigating with tap water [electrical conductivity (EC) of 0.776 dS m?1]. Thereafter, both the genotypes were divided into two groups and exposed to either irrigation with sublethal level of salinity EC of 2.09 or 3.76 dS m?1 for 21 days. At booting stage (65 DAS), both groups were subjected to lethal level of salinity stress EC of 12 dS m?1 for 21 days, followed by irrigation with tap water till maturity. Non-acclimated plants were irrigated with tap water from emergence to 65 days, then directly irrigated with lethal level of salinity for 21 days, followed by irrigation with tap water till maturity. The control plants were continuously irrigated with tap water from emergence until maturity. The non-acclimated plants had decreased electron transport rates at the donor and acceptor side of PSII and PSI in Giza 168, and decreased electron transport rates at PSII acceptor side in Sakha 8 compared to control plants. In both genotypes, the non-acclimated plants had decreased chlorophyll a, b, carotenoid, proline and total soluble sugar concentration, relative water content, membrane stability index, yield and yield components compared with acclimated plants. While, osmotic potential and lipid peroxidation showed an opposite trend. Overall, acclimation treatment (EC of 2.09 dS m?1) during vegetative stage alleviated the inhibitory effects of lethal level of salinity stress at booting stage through enhanced photosynthetic efficiency and osmotic adjustment, resulting in increased membrane integrity, biomass production and grain yield than in non-acclimated plants.  相似文献   

5.
Cell cultures of chili pepper (Capsicum annuum L.) were established from callus tissue inoculated in MS liquid medium supplemented with 6.25 M 2,4-d and 0.44 M BA. Cell clones were isolated by plating the cell suspension on filter paper discs supported by polyurethane foam that were bathed with culture medium containing 15% PEG. The cell clones T6 and T7 were chosen based on their characteristics of growth and friability. These cell clones were established as cell suspensions in the presence of 15% PEG and subsequently subcultured in increasing concentrations of osmoticum. By this approach the cell clones T7 and T6 were capable of growing in the presence of 20 and 25% PEG, respectively. The cell clone T7 was found to grow better in the presence of 5–10% PEG after a period of subculturing in the absence of osmoticum indicating that the tolerance trait was stable. The tolerant cell clones exhibited a 3 to 3.5-fold decrease in the osmotic potentials in comparison with the nonselected cells suggesting that osmotic adjustment occurred. K+ was the major contributing solute to the osmotic potential in all the cell cultures among those tested and was found to be higher in concentration in the PEG-tolerant clones (1.3–3 times higher than nonselected cells). Proline and glycine betaine levels showed a positive correlation with the degree of tolerance to water deficit in the PEG-tolerant cell clones. The levels of proline in the cell clone T7 subcultured in the absence of PEG in the culture medium decreased to values similar to those of nonselected cells, whereas the contents of glycine betaine in the same conditions were maintained at high levels.Abbreviations BA benzyladenine - 2,4-d 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog medium - PEG polyethylene glycol  相似文献   

6.
Plant and Soil - Growth, gas exchange and water relations have been studied on hydroponically grown peach (cv. Armking) plants, grafted on GF677 (Arm/GF) and Mr.S.2/5 (Arm/MrS), exposed to 0, 40,...  相似文献   

7.
The physiological responses to hypoxic stress were studied in the common reed, Phragmites australis (Cav.) Trin. ex Steudel. Growth, leaf gas exchange, water (and ion) relations and osmotic adjustment were determined in hydroponically grown plants exposed to 10, 20 and 30 days of oxygen deficiency. The highest growth of reed seedlings was found in normoxic (aerobic) conditions. Treatment effects on biomass production were relatively consistent within each harvest. Leaf water potential and osmotic potential declined significantly as hypoxia periods increased. However, leaf turgor pressure showed a consistent pattern of increase, suggesting that reed plants adjusted their water status by osmotic adjustment in response to root hypoxia. After 20 and 30 days in the low oxygen treatment, net CO2 assimilation and stomatal conductance were positively associated and the former variable also had a strong positive relationship with transpiration. Short-term hypoxic stress had a slight effect on the ionic status (K+, Ca2+ and Mg2+) of reed plants. In contrast, soluble sugar concentrations increased more under hypoxic conditions as compared to normoxia. These findings indicate that hypoxia slightly affected the physiological behavior of reed plants.  相似文献   

8.
Leaf structure and water relations were studied in a temperate population of Avicennia marina subsp. australasica along a natural salinity gradient [28 to 49 parts per thousand (ppt)] and compared with two subspecies grown naturally in similar soil salinities to those of subsp. australasica but under different climates: subsp. eucalyptifolia (salinity 30 ppt, wet tropics) and subsp. marina (salinity 46 ppt, arid tropics). Leaf thickness, leaf dry mass per area and water content increased with salinity and aridity. Turgor loss point declined with increase in soil salinity, driven mainly by differences in osmotic potential at full turgor. Nevertheless, a high modulus of elasticity (ε) contributed to maintenance of high cell hydration at turgor loss point. Despite similarity among leaves in leaf water storage capacitance, total leaf water storage increased with increasing salinity and aridity. The time that stored water alone could sustain an evaporation rate of 1 mmol m?2 s?1 ranged from 77 to 126 min from subspecies eucalyptifolia to ssp. marina, respectively. Achieving full leaf hydration or turgor would require water from sources other than the roots, emphasizing the importance of multiple water sources to growth and survival of Avicennia marina across gradients in salinity and aridity.  相似文献   

9.
Summary A cell suspension culture of poplar (Populus deltoides (Marsh.) Bartr. var.occidentalis Rydb.), accumulating the anthocyanin pigment, cyanidin 3-glucoside, in the lag phase of culture growth, was subjected to osmotic stress with glucose and mannitol. Osmotic stress treatments resulted in growth suppression and higher anthocyanin accumulation compared with unstressed cells. Both an increase in the proportion of pigmented cells and an increase in the concentration of anthocyanin in the pigmented cells were responsible for high anthocyanin content of cultured cells subjected to osmotic stress. The osmotic stress induced by glucose suppressed growth more than that by mannitol and produced higher anthocyanin levels. Only small amounts of [U-14C]mannitol were taken up and metabolized by the cells. Stressed cells accumulated sugars and free amino acids to a different extent resulting in altered cell sugar-to-amino acid ratios. The accumulation of osmotically active solutes and cell growth suppression may both be responsible for the accumulation of anthocyanin in stressed cells.  相似文献   

10.

Background and aims

Salt is known to accumulate in the root-zone of Na+ excluding glycophytes under saline conditions. We examined the effect of soil salinity on Na+ and Cl? depletion or accumulation in the root-zone of the halophyte (Atriplex nummularia Lindl).

Methods

A pot experiment was conducted in soil to examine Na+ and Cl? concentrations adjacent to roots at four initial NaCl treatments (20, 50, 200 or 400 mM NaCl in the soil solution). Plant water use was manipulated by leaving plants with all leaves intact, removing approximately 50 % of leaves, or removing all leaves. Daily evapotranspiration was replaced by watering undrained pots to weight with deionised water. After 35-38 days, samples were taken of the bulk soil and of soil loosely- and closely-adhering to the roots.

Results

In plants with leaves intact grown with 200 and 400 mM NaCl, average Na+ and Cl? concentrations in the closely adhering soil were about twice the concentrations of the bulk soil. Ion accumulation increased with final leaf area and with cumulative transpiration over the duration of the trial. By contrast, in plants grown with the lowest salinity treatment (20 mM NaCl), Na+ and Cl? concentrations decreased in the closely adhering soil with increasing leaf area and increasing cumulative water use.

Conclusions

Our data show that Na+ and Cl? are depleted from the root-zone of A. nummularia at low salinity but accumulate in the root-zone at moderate to high salinity, and that the ions are drawn towards the plant in the transpiration stream.  相似文献   

11.
The effect of salinity on growth, ion accumulation and the roles of ions in osmotic adjustment of two populations of Suaeda salsa were investigated. Seeds were collected from an intertidal zone or a saline inland zone in the Yellow River Delta in Shandong province, China. Seedlings were exposed to 10, 100, 200, 400 or 600 mM NaCl for 18 days in a greenhouse. NO3 ? concentration in the soil where S. salsa grows in an intertidal zone was much lower than that for the second population, but leaf NO3 ? concentration was the same in the two populations under field conditions. When plants were cultured in a greenhouse under natural light conditions, S. salsa from the intertidal zone showed fewer main stem branches and lower relative shoot growth compared to S. salsa from saline inland. Leaf Cl? concentration of saline inland S. salsa was significantly higher than that of S. salsa from the intertidal zone, while the opposite was true for the concentration of NO3 ? in leaves of plants. For S. salsa from the intertidal zone NO3 ? contributed more than Cl? to the osmotic potential, whereas S. salsa from the saline inland exhibited a reverse relationship under saline conditions, indicating that NO3 ? plays an important osmotic role in S. salsa from the intertidal zone in high salinity. In conclusion, S. salsa from the intertidal zone may employ superior control of ion uptake and content than S. salsa from the saline inland zone. The two populations of Suaeda salsa presented different ability in chloride exclusion and nitrate accumulation. These characteristics may affect the distributions of S. salsa in natural highly saline environments.  相似文献   

12.
The physiological responses to hypoxic stress were studied in the common reed, Phragmites australis (Cav.) Trin. ex Steudel. Growth, leaf gas exchange, water (and ion) relations and osmotic adjustment were determined in hydroponically grown plants exposed to 10, 20 and 30 days of oxygen deficiency. The highest growth of reed seedlings was found in normoxic (aerobic) conditions. Treatment effects on biomass production were relatively consistent within each harvest. Leaf water potential and osmotic potential declined significantly as hypoxia periods increased. However, leaf turgor pressure showed a consistent pattern of increase, suggesting that reed plants adjusted their water status by osmotic adjustment in response to root hypoxia. After 20 and 30 days in the low oxygen treatment, net CO2 assimilation and stomatal conductance were positively associated and the former variable also had a strong positive relationship with transpiration. Short-term hypoxic stress had a slight effect on the ionic status (K+, Ca2+ and Mg2+) of reed plants. In contrast, soluble sugar concentrations increased more under hypoxic conditions as compared to normoxia. These findings indicate that hypoxia slightly affected the physiological behavior of reed plants.  相似文献   

13.
A selected Glycine max (L.) salt-tolerant calluscell line (R100) was significantly more tolerant to salt than a salt-sensitiveline (S100) during exposure to salt stress. Growth (Fresh and Dry weights) ofthe R100 cell line declined significantly at NaCl concentrations greater than 75mM, while growth of the S100 cell line was already impaired at 25mM NaCl. Levels of Na+ and Cl inthe callus were elevated as the salt concentration increased, whileK+, Ca2+ and Mg2+ levels weremarkedly reduced. The lower s reduction and Na+accumulation found in the S100 callus corresponded with the higher callusdehydration during salinity. Calli grown on Miller's basal medium weresupplied with 100 mM NaCl for 12 days and then supplied with mediumwithout NaCl to relieve salinity stress. The Na+ andCl content decreased in both R100 and S100 cell lines duringthe first 24 h and reached normal levels four days after transferto the normal medium. This lower concentration was maintained until the end ofthe experiment. Concurrently, the K+ content andK+/Na+ ratio increased sharply and reached theirhighest levels within 24 h in both salt-sensitive and salt-tolerantcell lines. These data suggest that the inhibitory effects of salinization ongrowth and accumulation of potentially toxic ions (Na+,Cl) can be readily reversed when salinity is relieved.  相似文献   

14.
Atriplex halimus is found in the Mediterranean Basin along the coastal areas of Sardinia, but few data are available on its adaptability to salinity. The effects of drought and salinity under controlled conditions on two clones of A. halimus, designated MOR2 and SOR4, originating from southern and northern Sardinia, respectively, were compared with those of seedlings of A. nummularia, an Australian species widely used in the restoration of arid areas. The effects of increasing NaCl salinity above seawater concentrations and of increasing the KCl concentration gradient were tested. Plants were harvested and analysed after 10 and 20 days of NaCl and KCl treatments. All plants remained alive until the end of treatment, although growth was strongly reduced, mainly for the A. halimus MOR2 clone, under increasing concentrations of KCl. The leaves and roots of both species responded positively to increasing NaCl concentrations up to 600 mM NaCl for A. halimus, whereas the optimal growth of A. nummularia was recorded at 300 mM NaCl. SOR4 was more sensitive to KCl toxicity. The Na+ concentration in the plants increased with increased salinity and was higher in A. halimus than in A. nummularia, suggesting that A. halimus is an ion accumulator and may be used for phytoremediation. The sodium accumulation in the roots of the A. halimus MOR2 clone was far greater than in its leaves. This suggests that MOR2 is an Na+ excluder, either by minimising the entry of salt into the plant or by an excretion mechanism via the vesiculated hairs that play a significant role in the removal of salt from the remainder of the leaf, thereby preventing its accumulation to toxic levels in the leaves, whereas SOR4 acted as an Na+ includer. Higher levels of proline were detected in the MOR2 clone under NaCl treatments, suggesting a more developed adaptative mechanism for the selection of this characteristic in the southern part of the island, which is more exposed to abiotic stresses, particularly water stress that is either generated by salinity or by other causes.  相似文献   

15.
Glycine betaine strongly stimulated the growth rate of five strains of Erwinia chrysanthemi when grown in a synthetic medium at 0·986, 0·983 and 0·980 a w (NaCl) whereas in four strains, little effect was observed compared with the control. Proline, dimethyl glycine, carnitine and pipecolic acid also actedas osmoprotectants. Glutamate and trehalose, commonly accumulated by enteric bacteria in response to osmotic stress, failed to act as osmoprotectants when supplied exogenously. Glycine betaine and pipecolic acid partially overcame the inhibition of pectate lyase release by NaCl in strain ECC. 13C NMR spectroscopy of two osmotically-stressed strains showed that glycine betaine was accumulated intracellularly from synthetic media containing the exogenous osmoprotectant. However, both strains also synthesized and accumulated trehalose in addition to glycine betaine in response to osmotic stress in complex media containing glycine betaine.  相似文献   

16.
Ramos  José  López  María Jesús  Benlloch  Manuel 《Plant and Soil》2004,259(1-2):163-168
Atriplex nummularia plants are able to grow well in the absence of significant amounts of Na+. Medium levels of salinity (100 mM NaCl or KCl) did not cause substantial inhibition of growth but increasing concentrations of salt induced a progressive decline in length and weight of the plants. This inhibition was significantly higher in KCl grown plants than in NaCl grown plants. In addition, although it has been proposed that both K+ and Na+ are involved in the osmotic adjustment of plants in response to high soil salinity, we show that Na+ ions contribute more efficiently than K+ ions to perform this function. Our results also indicate that most of the osmotic adjustment of the plant was due to the accumulation of inorganic ions. The strong inhibition of Rb+ transport caused by internal sodium suggests that this cation could be efficiently used by the plant and, as a consequence, the transport of other monovalent cations is down-regulated.  相似文献   

17.
In potato plants (Solanum tuberosum), a chimeric yeast-derived invertase gene fused to a 35S cauliflower mosaic virus promoter has been expressed. The protein was targeted to the cell wall by using the signal peptide of proteinase inhibitor II fused to the amino terminus of the yeast invertase. The transformed plants had crinkled leaves, showed a reduced growth rate, and produced fewer tubers. Although in the apoplast of the leaves of the transformed plants the content of glucose and fructose rose by a factor of 20, and that of sucrose declined 20-fold, 98% of the carbohydrate in the phloem sap consisted of sucrose, demonstrating the strong specificity of phloem loading. In the leaf cells of the transformed plants, glucose, fructose, and amino acids, especially proline, were accumulated. Consequently, the osmolality of the cell sap rose from 250 to 350 mosmol/kg. Our results show that the observed 75% decrease of photosynthesis is not caused by a feedback regulation of sucrose synthesis and is accompanied by an increase in the osmotic pressure in the leaf cells. In the transformed plants, not only the amino acid to sucrose ratio in the phloem sap, but also the amino acid and protein contents in the tubers were found to be elevated. In the tubers of the transformed plants, the protein to starch ratio increased.  相似文献   

18.
Salt-resistant rice cultivars Nona Bokra and IR 4630 exposed at the seedling stage during one or two weeks to 0, 20, 30, 40 or 50 mM NaCl accumulated less Na, Cl, Zn and proline and more K at root and shoot levels than salt-sensitive I Kong Pao and IR 31785. Aiwu, a moderately resistant genotype, exhibited an intermediate behaviour. P transport from root to shoot was inhibited in the most sensitive cultivar IR 31785. Accumulation of Na and Cl and decrease in K content at the shoot level were restricted to the oldest leaves in salt-resistant genotypes while proline accumulated in the youngest leaves in all cultivars. In the presence of NaCl, the osmotic potentials of the roots and of the oldest and youngest leaves were lower in the salt-resistant than in the salt-sensitive genotypes, differences among genotypes increasing with stress intensity. Proline did not appear to be involved in osmotic adjustment in salt-stressed rice plants and the significance of its accumulation is discussed in relation to salinity resistance.Abbreviations cv(s). cultivar(s) - EC electrical conductivity - IKP I Kong Pao - J rate of ion transport - MCW methanol-chloroform-water - PAR photon flux density - Pc partitioning coefficient - RGR mean relative growth rate - RI resistance index - s osmotic potential  相似文献   

19.
Potted plants of Asteriscus maritimus (L.) Less were submitted to water stress (during two consecutive cycles, irrigation water was withheld for 5 days followed by a recovery period of 25 days) and saline stress (150 days of exposure to 0, 70 and 140 mM NaCl daily irrigation) in order to assess the effect on leaf water relations and growth parameters. Plants under saline and water stress conditions showed lower biomass and an early reduction in leaf expansion growth. Both stresses promoted a substantial degree of stomatal regulation; but, in spite of this, the plants showed signs of leaf tissue dehydration, decreases in RWC and Ψpd values. However, salt-treated plants, developed a NaCl inclusion mechanisms, underwent osmotic adjustment, which was able to maintain leaf turgor. Under both stress conditions gl was independent to plant water status in the range between –0.8 and 1.0 MPa. Under water stress conditions, midday leaf water potential showed a threshold value (around −1.1 MPa), below which leaf conductance remained constant. In the salt-treated plants, the gradual closure of the stomata over a wide range of Ψmd may be important in maintaining some level of photosynthesis.  相似文献   

20.
We determined the cold (freezing) tolerance for field-grown plants of Atriplex halimus L. (Chenopodiaceae) in relation to plant ploidy level, leaf water relations and accumulation of osmolytes. Plants were grown at two sites in Murcia (Spain), having average minimum temperatures in the coldest month of 0.6 and 12.1 °C, respectively. LT50 values derived from laboratory freezing tests, using leaves taken from the plants in early winter and in spring, showed greater tolerance for winter-harvested leaves; the acclimation was more pronounced at the cold-winter site. Cold tolerance was related positively with leaf K and/or Na accumulation. Analysis of compatible organic solutes (soluble sugars, total amino acids and quaternary ammonium compounds) showed that cold tolerance (measured both as LT50 and as winter freezing damage in situ) was related most closely with leaf concentrations of soluble sugars. The leaf percentage dry matter content was related to both in vitro and in vivo tolerance, while tolerance in vitro was correlated also with the osmotic (potential ψs) and the relative water content. The two diploid (2n = 2x = 18) populations, from Spain, showed greater cold tolerance than the three tetraploid (2n = 4x = 36) populations, from North Africa and Syria, which may be related to the latter's greater cell size and consequent dilution of osmolytes. In this halophytic species, cold tolerance, like salinity and drought tolerance, seems to depend on osmotic adjustment, driven by vacuolar accumulation of K and Na and cytoplasmic accumulation of compatible solutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号