首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Process Biochemistry》2007,42(9):1312-1318
A combination of the enzymatic resolution and chemical racemization for the heterogeneous sequential kinetic resolution (SKR) was employed to resolve (R,S)-2-octanol under microwave irradiation. Mesoporous molecular sieves SBA-15, alumina and strong basic styrene anion exchange resin were screened and selected as the optimum supports to immobilize the lipase from Pseudomonas sp. (PSL), oxidant-Chromium trioxide (CrO3) and reductant-Sodium borohydride (NaBH4), respectively. The immobilized catalysts exhibited good reusability: it remained 90%, 72% and 80% of their initial activities after five reuses for the immobilized lipase, the immobilized oxidant and the immobilized reductant, respectively. Further, the E values of the immobilized PSL was increased from 23 under conventional heating to 40 under microwave irradiation in resolution of (R,S)-2-octanol. The immobilized catalysts were then used in SKR of (R,S)-2-octanol under microwave irradiation after optimizing the reaction media. Under the optimum conditions, (R)-2-octanol acetate was obtained at 99% enantiomeric excess with 84% yield in 2 h.  相似文献   

2.
《Process Biochemistry》2014,49(8):1304-1313
Pseudomonas cepacia lipase (PCL) was immobilized on ternary blend biodegradable polymer made up of polylactic acid (PLA), chitosan (CH), and polyvinyl alcohol (PVA). Immobilized biocatalyst was characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), % water content, protein and lipase activity assay. The lipase activity assay showed enhanced activity of immobilized lipase than crude lipase. Higher half life time (t1/2) and lower deactivation rate constant (Kd) was found for the n-hexane among various tested solvent. Influence of various reaction parameters on enzyme activity were studied in detail. When geraniol (1 mmol) and vinyl acetate (4 mmol) in toluene (3 mL) were reacted with 50 mg immobilized lipase at 55 °C; then 99% geraniol was converted to geranyl acetate after 3 h. Various kinetic parameters such as rmax, Ki(A), Km(A), Km(B) were determined using non-linear regression analysis for ternary-complex and Bi–Bi ping-pong mechanism. The kinetic study showed that reaction followed ternary-complex mechanism with inhibition by geraniol. Activation energy (Ea) was found to be lower for immobilized lipase (13.76 kCal/mol) than crude lipase (19.9 kCal/mol) indicating better catalytic efficiency of immobilized lipase. Immobilized biocatalyst demonstrated 4 fold increased catalytic activity than crude lipase and recycled five times.  相似文献   

3.
We have analyzed the effects of the buffer nature on the stability of immobilized lipases. Commercial phospholipase Lecitase Ultra (LU), lipase B from Candida antarctica (CALB) and lipase from Thermomyces lanuginosus (TLL) have been immobilized on octyl-glyoxyl agarose beads. The enzymes were readily inactivated using 4 M sodium phosphate but 6 M NaCl did not inactivate them. Using 2 M of sodium phosphate, the inactivation of the 3 immobilized enzymes still was very significant even at 25 °C but at lower rate than with higher phosphate concentration. Thermal stress inactivations of the immobilized enzymes revealed that even 100 mM sodium phosphate produced a significant decrease in enzyme stability; this effect was less pronounced for Lecitase but dramatic for CALB. While 6 M NaCl presented slightly positive (LU) or negative (TLL) effects on their thermal stabilities of, CALB was thermally stabilized under the same conditions. Results were very different using free enymes. Fluorescence spectroscopy revealed dramatic structural rearrangements of the immobilized enzymes in the presence of high phosphate concentration. From these results, the use of sodium phosphate does not seem to be recommended for studies on thermal stability of lipases, although this should be verified for each enzyme and immobilized preparation.  相似文献   

4.
《Process Biochemistry》2010,45(4):593-597
This paper reports a simple method for producing macroporous silica-monoliths with controllable porosity that can be used for the immobilization of lipases to generate an active and stable micro-reactor for biocatalysis. A range of commercially available lipases has been examined using the hydrolysis reactions of 4-nitrophenyl butyrate in water–decane media. The kinetic studies performed have identified that a similar value for kcat is obtained for the immobilized Candida antarctica lipase A (0.13 min−1) and the free lipase in solution (0.12 min−1) whilst the immobilized apparent Michaelis constant Km (3.1 mM) is 12 times lower than the free lipase in solution (38 mM). A 96% conversion was obtained for the immobilized C. antarctica lipase A compared to only 23% conversion for the free lipase. The significant higher conversions obtained with the immobilized lipases were mainly attributed to the formation of a favourable biphasic system in the continuous flowing micro-reactor system, where a significant increase in the interfacial activation occurred. The immobilized C. antarctica lipase A on the monolith also exhibited improved stability, showing 64% conversion at 80 °C and 70% conversion after continuous running for 480 h, compared to 40 and 20% conversions under the same temperature and reaction time for the free lipase.  相似文献   

5.
A biocatalyst with high activity retention of lipase was fabricated by the covalent immobilization of Candida rugosa lipase on a cellulose nanofiber membrane. This nanofiber membrane was composed of nonwoven fibers with 200 nm nominal fiber diameter. It was prepared by electrospinning of cellulose acetate (CA) and then modified with alkaline hydrolysis to convert the nanofiber surface into regenerated cellulose (RC). The nanofiber membrane was further oxidized by NaIO4. Aldehyde groups were simultaneously generated on the nanofiber surface for coupling with lipase. Response surface methodology (RSM) was applied to model and optimize the modification conditions, namely NaIO4 content (2–10 mg/mL), reaction time (2–10 h), reaction temperature (25–35 °C) and reaction pH (5.5–6.5). Well-correlating models were established for the residual activity of the immobilized enzyme (R2 = 0.9228 and 0.8950). We found an enzymatic activity of 29.6 U/g of the biocatalyst was obtained with optimum operational conditions. The immobilized lipase exhibited significantly higher thermal stability and durability than equivalent free enzyme.  相似文献   

6.
A large improvement in the thermostability of Candida antarctica lipase B (CALB) was achieved through double immobilization, i.e., physical adsorption and R1 silaffin-mediated biosilicification. The C-terminus of CALB was fused with the R1 silaffin peptide for biosilicification. The CALB-R1 fusion protein was adsorbed onto a macroporous polyacrylate carrier and then subsequently biosilicified with tetramethyl orthosilicate (TMOS). After R1 silaffin-mediated biosilicification, the double-immobilized CALB-R1 exhibited remarkable thermostability. The T5060 of the double-immobilized CALB-R1 increased dramatically from 45 to 72 °C and that was 27, 13.8, 9.8 and 9.9 °C higher than the T5060 values of free CALB-R1, CALB-R1 adsorbed onto a resin, commercial Novozym 435, and Novozym 435 treated with TMOS, respectively. In addition, the time required for the residual activity to be reduced to half (t1/2) of the double immobilized CALB-R1 elevated from 12.2 to 385 min, which is over 30 times longer life time compared free CALB-R1. The optimum pH for biosilicification was determined to be 5.0, and the double-immobilized enzyme showed much better reusability than the physically adsorbed enzyme even after 6 repeated reuses. This R1-mediated biosilicification approach for CALB thermostabilization is a good basis for the thermostabilization of industrial enzymes that are only minimally stabilized by protein engineering.  相似文献   

7.
Three different functionalized bentonites including acid activated bentonite (Ba), organically modified bentonite with cetyltrimethyl ammonium bromide (BCTMAB) and the composite by acid activation and organo-modification (Ba-CTMAB) were prepared, and used for immobilization of lipase from bovine pancreatic lipase by adsorption. The amount of lipase adsorbed on the functionalized bentonites was in the following sequence: Ba > BCTMAB > Ba-CTMAB, showing the strongest affinity of Ba for lipase among the three supports. However, the immobilized lipase on Ba-CTMAB showed the highest activity in the hydrolysis of olive oil by 1.67 times of activity of free lipase due to the hydrophobically interfacial activation and enlarged catalytic interface. While, the activity of immobilized lipase on Ba was lower than 20% of free lipase’s activity due to the absence of hydrophobic activation and negative impact of excessive hydrogen ions on the surface. The Km values for the immobilized lipase on Ba-CTMAB (0.054 g/mL) and BCTMAB (0.074 g/mL) were both lower than that of free lipase (0.115 g/mL), and the Vmax values were higher for the immobilized lipases, exhibiting a higher affinity of the immobilized lipase toward olive oil than free lipase. In comparison to free lipase, the better resistance to heating inactivation, storage stability and reusability of the immobilized lipases on Ba-CTMAB and BCTMAB were also obtained. The results show that the efficient and stable biocatalysts for industrial application can be prepared by using the low-cost bentonite mineral as the supports.  相似文献   

8.
With Candida antarctica lipase B (CALB)-catalyzed alcoholysis of (R,S)-naproxenyl 1,2,4-triazolide at the optimal conditions (i.e. anhydrous MTBE as the solvent, and methanol as the acyl acceptor at 45 °C) as the model system, the enzyme enantioselectivity in terms of VR/VS = 105.8 and specific activity for the fast-reacting (R)-azolide VR/(Et) = 0.979 mmol/(h g) were greatly improved in comparison with VR/VS = 8.0 and VR/(Et) = 0.113 mmol/(h g) of using (R,S)-naproxenyl 2,2,2-trifluoroethyl ester as the substrate. The resolution strategy was successfully extended to other (R,S)-profenyl 1,2,4-triazolides and lipases from Candida rugosa (Lipase MY) and Carica papaya (CPL) having opposite enantioselectivity to CALB. Moreover, the kinetic constants were estimated, compared with those obtained via hydrolysis, and employed for modeling time-course conversions of (R,S)-naproxenyl 1,2,4-triazolide in anhydrous MTBE. The advantages of easy substrate preparation, high enzyme reactivity and enantioselectivity, as well as easy product separation from the remaining substrate via reactive extraction demonstrate merits of using (R,S)-azolides but not the corresponding esters for the alcoholytic resolution.  相似文献   

9.
Mesoporous activated carbon (MAC) derived from rice husk is used for the immobilization of acidic lipase (ALIP) produced from Pseudomonas gessardii. The purified acidic lipase had the specific activity and molecular weight of 1473 U/mg and 94 kDa respectively. To determine the optimum conditions for the immobilization of lipase onto MAC, the experiments were carried out by varying the time (10–180 min), pH (2–8), temperature (10–50 °C) and the initial lipase activity (49 × 103, 98 × 103, 147 × 103 and 196 × 103 U/l in acetate buffer). The optimum conditions for immobilization of acidic lipase were found to be: time—120 min; pH 3.5; temperature—30 °C, which resulted in achieving a maximum immobilization of 1834 U/g. The thermal stability of the immobilized lipase was comparatively higher than that in its free form. The free and immobilized enzyme kinetic parameters (Km and Vmax) were found using Michaelis–Menten enzyme kinetics. The Km values for free enzyme and immobilized one were 0.655 and 0.243 mM respectively. The immobilization of acidic lipase onto MAC was confirmed using Fourier Transform-Infrared Spectroscopy, X-ray diffraction analysis and scanning electron microscopy.  相似文献   

10.
Immobilization of Saccharomyces cerevisiae lipase by physical adsorption on Mg–Al hydrotalcite with a Mg/Al molar ratio of 4.0 led to a markedly improved performance of the enzyme. The immobilized lipase retained activity over wider ranges of temperature and pH than those of the free lipase. The immobilized lipase retained more than 95% relative activity at 50 °C, while the free lipase retained about 88%. The kinetic constants of the immobilized and free lipases were also determined. The apparent activation energies (Ea) of the free and immobilized lipases were estimated to be 6.96 and 2.42 kJ mol?1, while the apparent inactivation energies (Ed) of free and immobilized lipases were 6.51 and 6.27 kJ mol?1, respectively. So the stability of the immobilized lipase was higher than that of free lipase. The water content of the oil must be kept below 2.0 wt% and free fatty acid content of the oil must be kept below 3.5 mg KOH g [oil]?1 in order to get the best conversion. This immobilization method was found to be satisfactory to produce a stable and functioning biocatalyst which could maintain high reactivity for repeating 10 batches with ester conversion above 81.3%.  相似文献   

11.
Pseudomonas sp. lipase was immobilized onto glutaraldehyde-activated Florisil® support via Schiff base formation and stabilized by reducing Schiff base with sodium cyanoborohydride. The immobilization performance was evaluated in terms of bound protein per gram of support (%) and recovered activity (%). A 4-factor and 3-level Box–Behnken design was applied for the acylation of (±)-2-(propylamino)-1-phenylethanol, a model substrate, with vinyl acetate and the asymmetric acylations of other (±)-2-amino-1-phenylethanols with different alkyl substituents onto nitrogen atom such as (±)-2-(methylamino)-1-phenylethanol, (±)-2-(ethylamino)-1-phenylethanol, (±)-2-(butylamino)-1-phenylethanol and (±)-2-(hexylamino)-1-phenylethanol were performed under the optimized conditions. The optimal conditions were bulk water content of 1.8%, reaction temperature of 51.5 °C, initial molar ratio of vinyl acetate to amino alcohol of 1.92, and immobilized lipase loading of 47 mg mL?1. (R)-enantiomers of tested amino alcohols were preferentially acylated and the reaction purely took place on the hydroxyl group of 2-amino-1-phenylethanols. The increase of alkyl chain length substituted onto nitrogen atom caused an increase in the acylation yield and ee values of (S)-enantiomers. Enantiomeric ratio values were >200 for all the reactions. Our results demonstrate that the immobilized lipase is a promising biocatalyst for the preparation of (S)-2-amino-1-phenylethanols and their corresponding (R)-esters via O-selective acylation of (±)-2-amino-1-phenylethanols with vinyl acetate.  相似文献   

12.
Enzyme stabilization via immobilization is one of the preferred processes as it provides the advantages of recovery and reusability. In this study, Thermomyces lanuginosus lipase has been immobilized through crosslinking using 2% glutaraldehyde and hen egg white, as an approach towards CLEA preparation. The immobilization efficiency and the properties of the immobilized enzyme in terms of stability to pH, temperature, and denaturants was studied and compared with the free enzyme. Immobilization efficiency of 56% was achieved with hen egg white. The immobilized enzyme displayed a shift in optimum pH towards the acidic side with an optimum at pH 4.0 whereas the pH optimum for free enzyme was at pH 6.0. The immobilized enzyme was stable at higher temperature retaining about 83% of its maximum activity as compared to the free enzyme retaining only 41% activity at 70 °C. The denaturation of lipase in free form was rapid with a half-life of 2 h at 60 °C and 58 min at 70 °C as compared to 12 h at 60 °C and 2 h at 70 °C for the immobilized enzyme. The effect of denaturants, urea and guanidine hydrochloride on the free and immobilized enzyme was studied and the immobilized enzyme was found to be more stable towards denaturants retaining 74% activity in 8 M urea and 98% in 6 M GndHCl as compared to 42% and 33% respectively in the case of free enzyme. The apparent Km (2.08 mM) and apparent Vmax (0.95 μmol/min) of immobilized enzyme was lower as compared to free enzyme; Km (8.0 mM) and Vmax (2.857 μmol/min). The immobilized enzyme was reused several times for the hydrolysis of olive oil.  相似文献   

13.
Uniform and monodispersed silica nanoparticles were synthesized with a mean diameter of 100 ± 20 nm as analyzed by Transmission Electron Microscopy (TEM). Glutaraldehyde was used as a coupling agent for efficient binding of the lipase onto the silica nanoparticles. For the hydrolysis of pNPP at pH 7.2, the activation energy within 25–40 °C for free and immobilized lipase was 7.8 and 1.25 KJ/mol, respectively. The Vmax and Km of immobilized lipase at 25 °C for pNPP hydrolysis were found to be 212 μmol/min/mg and 0.3 mM, whereas those for free lipase were 26.17 μmol/min and 1.427 mM, respectively. The lower activation energy of immobilized lipase in comparison to free lipase suggests a change in conformation of the enzyme leading to a requirement for lower energy on the surface of the nanoparticles. A better yield (7 fold higher) of ethyl isovalerate was observed using lipase immobilized onto silica nanoparticles in comparison to free lipase.  相似文献   

14.
To date, there have been reports mostly about research results of the peony root in comparison to the aerial parts. According to our study, the aerial parts of P.lactiflora showed superior anti-oxidative and pancreatic lipase inhibitory activities than its root. Especially, the water extract and the ethyl acetate fraction of the ethanol extract exhibited potent pancreatic lipase inhibitory activity by 53.11 ± 1.22% and 46.16 ± 1.55% at the same dose of orlistat (62.5 ± 1.27%). The ethanol extract exhibited the best anti-oxidative activity with IC50 of 17.08 ± 0.9 μg/mL, and the ethyl acetate fraction 19.75 ± 0.02 μg/mL, respectively, comparing to the positive control rutin (IC50, 22.66 ± 0.29 μg/mL). From the anti-oxidative and pancreatic lipase inhibitory active fractions three new compounds, monplacphloroside (1), monplachydroxyquinoside (2) and herbacetin-7-O-β-d-sophoroside (3) were isolated along with 19 (4-22) known ones.Compounds, PGG (14), 1-O-methyl-2,3,4,6-tetra-O-galloyl-β-d-glucopyranose (17) and ethylgallate (9) were found to be the strongest antioxidants and pancreatic lipase inhibitors. Monoterpenes, albiflorin R2 (19) and albiflorin (20) were determined for the first time as strong pancreatic lipase inhibitors. The presence of the esterified galloyl moiety, with its increasing numbers or the β-lactone cycle within the molecular structure plays an essential role for the enhancement of the pancreatic lipase enzyme inhibitory activity.  相似文献   

15.
Sugar esters of fatty acids have many applications as biocompatible and biodegradable emulsifiers, which are determined by their degrees of esterification (DE). Direct esterification of fructose with lauric acid in organic media used commercial immobilized Candida antarctica lipase B (CALB) was investigated for DE. Significant difference of DE was observed between 2-methyl-2-butanol (2M2B) and methyl ethyl ketone (MEK), as di-ester/mono-ester molar ratio of 1.05:1 in 2M2B and 2.79:1 in MEK. Fourier transform infrared (FTIR) spectra showed that the secondary structure of the enzyme binding mono-ester presented distinct difference in 2M2B and MEK. Contents of β-turn and antiparallel β-sheet of CALB in 2M2B were 26.9% and 16.2%, respectively, but 19.1% and 13.2% in MEK. To understand the relationship between the conformational changes and differences of DE, mono-ester and fatty acid were directly employed for synthesis of di-ester. The maximum initial velocity of di-ester synthesis in MEK was 0.59 mmol g (enzyme)−1 h−1, which was 2.19-fold as greater as that in 2M2B, indicating that CALB conformation in MEK was preferred for the synthesis of di-ester. These results demonstrated that the conformation of CALB binding mono-ester affected by organic solvents essentially determined DE.  相似文献   

16.
The acylation of isoamyl alcohol with acetic anhydride catalyzed by immobilized Candida antarctica lipase B was studied in ionic liquids (ILs) based on quaternary imidazolium cations with alkyl, alkenyl, alkynyl, benzyl, alkoxyl or N-aminopropyl side chains. Among the tested ILs, the highest enzyme activity together with the highest isoamyl acetate yield were obtained in [C7mmim][Tf2N]. No loss of lipase B activity was observed during one-month incubation in this hydrophobic IL without the presence of substrates. Isoamyl acetate synthesis using [C7mmim][Tf2N] as solvent was further studied in a continuously operated miniaturized enzymatic packed bed reactor at various flow rates and temperatures. Up to 92% isoamyl acetate yield could be obtained within 15 min by using 0.5 M acetic anhydride and 1.5 M isoamyl alcohol inlet concentrations at 55 °C, corresponding to the volumetric productivity of 61 mmol l?1 min?1, which to the best of our knowledge is the highest reported so far for this reaction. No decrease in productivity was experienced during the subsequent runs of continuous microbioreactor operation performed within 14 consecutive days. The benefits of reactor miniaturization along with the green solvent application were therefore successfully exploited for the development of a sustainable flavour ester production.  相似文献   

17.
Lipase (E.C.3.1.1.3) from Thermomyces lanuginosus (TL) was directly bonded, through multiple physical interactions, on citric acid functionalized monodispersed Fe3O4 nanoparticles (NPs) in presence of a small amount of hydrophobic functionalities. A very promising scalable synthetic approach ensuring high control and reproducibility of the results, and an easy and green immobilization procedure was chosen for NPs synthesis and lipase anchoring. The size and structure of magnetic nanoparticles were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The samples at different degree of functionalization were analysed through thermogravimetric measurements. Lipase immobilization was further confirmed by enzymatic assay and Fourier transform infrared (FT-IR) spectra. Immobilized lipase showed a very high activity recovery up to 144% at pH = 7 and 323% at pH = 7.5 (activity of the immobilized enzyme compared to that of its free form). The enzyme, anchored to the Fe3O4 nanoparticles, to be easy recovered and reused, resulted more stable than the native counterpart and useful to produce banana flavour. The immobilized lipase results less sensitive to the temperature and pH, with the optimum temperature higher of 5 °C and optimum pH up shifted to 7.5 (free lipase optimum pH = 7.0). After 120 days, free and immobilized lipases retained 64% and 51% of their initial activity, respectively. Ester yield at 40 °C for immobilized lipase reached 88% and 100% selectivity.  相似文献   

18.
《Process Biochemistry》2014,49(4):637-646
In this study, Purolite® A109, polystyrenic macroporous resin, was used as immobilization support due to its good mechanical properties and high particle diameter (400 μm), which enables efficient application in enzyme reactors due to lower pressure drops. The surface of support had been modified with epichlorhydrine and was tested in lipase immobilization. Optimized procedure for support modification proved to be more efficient than conventional procedure for hydroxy groups (at 22 °C for 18 h), since duration of procedure was shortened to 40 min by performing modification at 52 °C resulting with almost doubled concentration of epoxy groups (563 μmol g−1). Lipase immobilized on epoxy-modified support showed significantly improved thermal stability comparing to both, free form and commercial immobilized preparation (Novozym® 435). The highest activity (47.5 IU g−1) and thermal stability (2.5 times higher half-life than at low ionic strength) were obtained with lipase immobilized in high ionic strength. Thermal stability of immobilized lipase was further improved by blocking unreacted epoxy groups on supports surface with amino acids. The most efficient was treatment with phenylalanine, since in such a way blocked immobilized enzyme retained 65% of initial activity after 8 h incubation at 65 °C, while non-blocked derivative retained 12%.  相似文献   

19.
Microbial nuclease P1 from Penicllium citrinum was immobilized on macroporous absorbent resins: strong polar poly (styrene-co-DVB) resin (SPPSD), polymethacrylic ester resin and poly (styrene-co-DVB)-Br resin. The results showed that SPPSD was the best carrier. Three methods of glutaraldehyde cross-linking were used and simultaneous immobilization and cross-linking (CIS) was demonstrated to be the best method. The functional properties of immobilized nuclease P1 were studied and compared to those of the free enzyme. The highest enzyme activities of free and immobilized nuclease P1 were obtained in 0.2 M acetate buffer at pH 4.5 and a temperature of 70 °C. An increase in Km (from 3.165 to 18.125 mg mL?1) and a decrease in Vmax (from 1667.18 to 443.95 U min?1 mL?1) were recorded after immobilization. SPPSD-glutaraldehyde-nuclease P1 exhibited better thermal stability than the free enzyme. The apparent activation energy (Ea) of the free and immobilized nuclease P1 was 137.04 kJ mol?1 and 98.43 kJ mol?1, respectively, implying that the catalytic efficiency of the immobilized enzyme was restricted by mass-transfer rather than kinetic limit.  相似文献   

20.
In this study, polyurethane foam (PUF) was used for immobilization of Yarrowia lipolytica lipase Lip2 via polyethyleneimine (PEI) coating and glutaraldehyde (GA) coupling. The activity of immobilized lipases was found to depend upon the size of the PEI polymers and the way of GA treatment, with best results obtained for covalent-bind enzyme on glutaraldehyde activated PEI-PUF (MW 70,000 Da), which was 1.7 time greater activity compared to the same enzyme immobilized without PEI and GA. Kinetic analysis shows the hydrolytic activity of both free and immobilized lipases on triolein substrate can be described by Michaelis–Menten model. The Km for the immobilized and free lipases on PEI-coated PUF was 58.9 and 9.73 mM, respectively. The Vmax values of free and immobilized enzymes on PEI-coated PUF were calculated as 102 and 48.6 U/mg enzyme, respectively. Thermal stability for the immobilization preparations was enhanced compared with that for free preparations. At 50 °C, the free enzyme lost most of its initial activity after a 30 min of heat treatment, while the immobilized enzymes showed significant resistance to thermal inactivation (retaining about 70% of its initial activity). Finally, the immobilized lipase was used for the production of lauryl laurate in hexane medium. Lipase immobilization on the PEI support exhibited a significantly improved operational stability in esterification system. After re-use in 30 successive batches, a high ester yield (88%) was maintained. These results indicate that PEI, a polymeric bed, could not only bridge support and immobilized enzymes but also create a favorable micro-environment for lipase. This study provides a simple, efficient protocol for the immobilization of Y. lipolytica lipase Lip2 using PUF as a cheap and effective material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号