首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Urocortins (Ucns) injected peripherally decrease food intake and gastric emptying through peripheral CRF2 receptors in rodents. However, whether Ucns influence circulating levels of the orexigenic and prokinetic hormone, ghrelin has been little investigated. We examined plasma levels of ghrelin and blood glucose after intravenous (iv) injection of Ucn 1, the CRF receptor subtype involved and underlying mechanisms in ad libitum fed rats equipped with a chronic iv cannula. Ucn 1 (10 μg/kg, iv) induced a rapid onset and long lasting increase in ghrelin levels reaching 68% and 219% at 0.5 and 3 h post injection respectively and a 5-h hyperglycemic response. The selective CRF2 agonist, Ucn 2 (3 μg/kg, iv) increased fasting acyl (3 h: 49%) and des-acyl ghrelin levels (3 h: 30%) compared to vehicle while the preferential CRF1 agonist, CRF (3 μg/kg, iv) had no effect. <!-- no-mfc -->Ucn 1's<!-- /no-mfc --> stimulatory actions were blocked by the selective CRF2 antagonist, astressin2-B (100 μg/kg, iv). Hexamethonium (10 mg/kg, sc) prevented Ucn 1-induced rise in total ghrelin levels while not altering the hyperglycemic response. These data indicate that systemic injection of Ucns induces a CRF2-mediated increase in circulating ghrelin levels likely via indirect actions on gastric ghrelin cells that involves a nicotinic pathway independently from the hyperglycemic response.  相似文献   

2.
Urocortins (UCNs) and their receptors are potent immunoregulators in the gastrointestinal (GI) tract, where they can exert both pro- and anti-inflammatory effects. We examined the contribution of Ucn1 and its receptors to the pathogenesis, progression, and resolution of colitis. Trinitrobenzene sulfonic acid was used to induce colitis in rats. Ucn1 mRNA and immunoreactivity (IR) were ubiquitously expressed throughout the GI tract under basal conditions. During colitis, Ucn1 mRNA levels fell below basal levels on day 1 then increased again by day 6, in association with an increase in the number of Ucn1-IR inflammatory cells. Ucn1-IR cells were also numerous in proliferating granulation tissue. In contrast to Ucn1 expression, average phosphorylated ERK1/2 (pERK1/2) expression rose above controls levels on day 1 and was very low on day 6 of colitis. Knockdown of corticotropin-releasing factor 2 (CRF(2)) but not CRF(1) by RNA interference during colitis significantly decreased the macroscopic lateral spread of ulceration compared with uninjected controls or animals with CRF(1) knockdown. After knockdown of CRF(2), but not of CRF(1) during colitis, edema resolution assessed microscopically was slowed, and myeloperoxidase activity remained elevated even at day 6. Ucn1 and TNF-α mRNA peaked earlier, whereas pERK1/2 activation was attenuated after CRF(2) knockdown. Thus we conclude that local CRF(2) and pERK1/2 activation is pivotal for macroscopic spread of colitis and resolution of edema. Elimination of CRF(2), but not CRF(1), results in uncoordinated immune and pERK1/2 signaling responses.  相似文献   

3.
《Peptides》2012,33(12):2384-2393
Corticotropin-releasing factor (CRF) plays an important role in stress responses through activation of its receptor subtypes, CRF1 receptor (CRF1) and CRF2 receptor (CRF2). The parvocellular paraventricular nucleus of the hypothalamus (PVNp), the central nucleus of the amygdala (CeA), and the oval nucleus of the bed nucleus of the stria terminalis (BNSTov), which are rich in CRF neurons with equivocal expression of CRF1 and CRF2, are involved in stress-related responses. In these areas, Fos expression is induced by various stimuli, although the functions of CRF receptor subtypes in stimuli-induced Fos expression are unknown. To elucidate this issue and to examine whether Fos is expressed in CRF or non-CRF neurons in these areas, the effects of antalarmin and antisauvagine-30 (AS-30), CRF1- and CRF2-specific antagonists, respectively, on intracerebroventricular (ICV) CRF- or 60 min-restraint-induced Fos expression were examined in rats. ICV CRF increased the number of Fos-positive CRF and non-CRF neurons in the PVNp, with the increases being inhibited by antalarmin in CRF and non-CRF neurons and by AS-30 in CRF neurons. Restraint also increased Fos-positive CRF and non-CRF neurons in the PVNp, with the increases being inhibited by antalarmin in the CRF neurons. ICV CRF also increased Fos-positive non-CRF neurons in the CeA and the BNSTov, which was inhibited by AS-30 in both areas, and inhibited by antalarmin in the BNSTov only. Restraint increased Fos-positive non-CRF neurons in the CeA and BNSTov, with the increases being almost completely inhibited by either antagonist. These results indicate that both ICV CRF and restraint activate both CRF and non-CRF neurons in the PVNp and non-CRF neurons in the CeA and BNSTov, and that the activation is mediated by CRF1 and/or CRF2. However, the manner of involvement for CRF1 and CRF2 in ICV CRF- and restraint-induced activation of neurons differs with respect to the stimuli and brain areas; being roughly equivalent in the CeA and BNSTov, but different in the PVNp. Furthermore, the non-CRF1&2-mediated signals seem to primarily play a role in restraint-induced activation of non-CRF neurons in the PVNp since the activation was not inhibited by CRF receptor antagonists.  相似文献   

4.
The aim of this study was to investigate peripheral and central roles of corticotropin-releasing factor (CRF) in endocrinological and behavioral changes. Plasma adrenocorticotropin (ACTH) concentration was measured as an activity of hypothalamic-pituitary-adrenal (HPA) axis. As behavioral changes, locomotion and anxiety behavior were measured after CRF challenge intravenously (i.v.) for the peripheral administration or intracerebroventricularly (i.c.v.) for the central administration. Plasma ACTH concentration was significantly increased by both administration routes of CRF; however, hyperlocomotion and anxiety behavior were induced only by the i.c.v. administration. In the drug discovery of CRF1 receptor antagonists, we identified two types of compounds, Compound A and Compound B, which antagonized peripheral CRF-induced HPA axis activation to the same extent, but showed different effects on the central CRF signal. These had similar in vitro CRF1 receptor binding affinities (15 and 10 nM) and functional activities in reporter gene assay (15 and 9.5 nM). In the ex vivo binding assays using tissues of the pituitary, oral treatment with Compound A and Compound B at 10 mg/kg inhibited [125I]-CRF binding, whereas in the assay using tissues of the frontal cortex, treatment of Compound A but not Compound B inhibited [125I]-CRF binding, indicating that only Compound A inhibited central [125I]-CRF binding. In the peripheral CRF challenge, increase in plasma ACTH concentration was significantly suppressed by both Compound A and Compound B. In contrast, Compound A inhibited the increase in locomotion induced by the central CRF challenge while Compound B did not. Compound A also reduced central CRF challenge-induced anxiety behavior and c-fos immunoreactivity in the cortex and the hypothalamic paraventricular nucleus. These results indicate that the central CRF signal, rather than the peripheral CRF signal would be related to anxiety and other behavioral changes, and CRF1 receptor antagonism in the central nervous system may be critical for identifying drug candidates for anxiety and mood disorders.  相似文献   

5.
The orexigenic effect of urocortins (Ucns), namely Ucn 1, Ucn 2 and Ucn 3 through activation of corticotropin-releasing factor (CRF) receptors, has been well characterized after injection into the brain but not in the periphery. We examined the role of CRF receptor subtype 2 (CRF2) in the regulation of food intake using intraperitoneal (ip) injection of Ucns and the selective CRF2 antagonist, astressin2-B, and CRF2 knockout (−/−) mice. Meal structures were monitored using an automated episodic solid food intake monitoring system. Ucn 2 (3, 10 or 30 μg/kg, ip) induced a rapid in onset, long lasting and dose-dependent decrease (38%, 66% and 86%, respectively at 4 h) of cumulative food intake after an overnight fast in mice. Ucn 3 anorexic effect was 10-times less potent. Astressin2-B (30 or 100 μg/kg) injected ip, but not intracerebroventricularly, blocked the inhibitory effect of ip Ucn 1 and Ucn 2 (10 μg/kg). Fasted CRF2−/− mice did not respond to ip Ucn 1 (10 μg/kg). Meal microstructure analysis of the 4-h re-feeding response to an overnight fast showed that Ucn 2 (10 μg/kg, ip) decreased meal size and duration, but increased meal frequency. In mice fed ad libitum, Ucn 2 (30 μg/kg) injected ip before the dark phase decreased the 4-h nocturnal meal size and duration without influencing meal frequency while the 10 μg/kg dose had no effect. These data indicate that Ucns, through peripheral CRF2 receptor-mediated induction of satiation, inhibit the eating response to a fast more potently than the physiological nocturnal feeding in mice.  相似文献   

6.
A promising lead compound 1 of a benzimidazole series has been identified as a corticotropin-releasing factor 1 (CRF1) receptor antagonist. In this study, we focused on replacement of a 7-alkylamino group of 1, predicted to occupy a large lipophilic pocket of a CRF1 receptor, with an aryl group. During the course of this examination, we established new synthetic approaches to 2,7-diarylaminobenzimidazoles. The novel synthesis of 7-arylaminobenzimidazoles culminated in the identification of compounds exhibiting inhibitory activities comparable to the alkyl analog 1. A representative compound, p-methoxyanilino analog 16g, showed potent CRF binding inhibitory activity against a human CRF1 receptor and human CRF1 receptor antagonistic activity (IC50 = 27 nM, 56 nM, respectively). This compound exhibited ex vivo 125I-Tyr0 (125I-CRF) binding inhibitory activity in mouse frontal cortex, olfactory bulb, and pituitary gland at 20 mg/kg after oral administration. In this report, we discuss the structure–activity-relationship of these 7-arylamino-1H-benzimidazoles and their synthetic method.  相似文献   

7.
In the dorsal raphe nucleus (DRN) many inputs converge and interact to modulate serotonergic neuronal activity and the behavioral responses to stress. The effects exerted by two stress-related neuropeptides, corticotropin releasing factor (CRF) and nociceptin/orphaninFQ (N/OFQ), on the outflow of [3H]5-hydroxytryptamine were investigated in superfused rat dorsal raphe nucleus slices.Electrical stimulation (100 mA, 1 ms for 2 min) evoked a frequency-dependent peak of [3H]5-hydroxytryptamine outflow, which was sodium and calcium-dependent. Corticotropin releasing factor (1–100 nM), concentration-dependently inhibited the stimulation (3 Hz)-evoked [3H]5-hydroxytryptamine outflow; the inhibition by 30 nM corticotropin releasing factor (to 68 ± 5.7%) was prevented both by the non selective CRF receptor antagonist alpha-helicalCRF(9-41) (α-HEL) (300 nM) and by the CRF1 receptor antagonist antalarmin (ANT) (100 nM). The CRF2 agonist urocortin II (10 nM) did not modify [3H]5-hydroxytryptamine outflow, ruling out the involvement of CRF2 receptors. Bicuculline (BIC), a GABAA antagonist (10 μM), prevented the inhibitory effect of corticotropin releasing factor (30 nM), supporting the hypothesis that the inhibition was mediated by increased γ-aminobutyric acid (GABA) release. Nociceptin/orphaninFQ (1 nM–1 μM) exerted an antalarmin- and bicuculline-insensitive inhibition on [3H]5-hydroxytryptamine outflow, with the maximum at 100 nM (to 63 ± 4.2%), antagonized by the NOP receptor antagonist UFP-101 (1 μM). Dorsal raphe nucleus slices prepared from rats exposed to 15 min of forced swim stress displayed a reduced [3H]5-hydroxytryptamine outflow, in part reversed by antalarmin and further inhibited by nociceptin/orphaninFQ. These findings indicate that (i) both corticotropin releasing factor and nociceptin/orphaninFQ exert an inhibitory control on dorsal raphe nucleus serotonergic neurons; (ii) the inhibition by corticotropin releasing factor involves γ-aminobutyric acid neurons; (iii) nociceptin/orphaninFQ inhibits dorsal raphe nucleus serotonin system in a corticotropin releasing factor- and γ-aminobutyric acid-independent manner; (iv) nociceptin/orphaninFQ modulation is still operant in slices prepared from stressed rats. The nociceptin/orphaninFQ-NOP receptor system could represent a new target for drugs effective in stress-related disorders.  相似文献   

8.
Park MY  Kwon HJ  Sung MK 《Life sciences》2011,88(11-12):486-492
AimsAloe has been a very popular folk remedy for inflammation-related pathological conditions despite the lack of studies reporting its efficacy in vivo. The present study evaluated the anti-inflammatory effects of aloe components (aloin, aloesin and aloe-gel) known to be biologically active in the rat model of colitis.Main methodsMale Sprague Dawley rats were fed experimental diets for 2 weeks before and during the induction of colitis. Drinking water containing 3% dextran sulfate sodium (DSS) was provided for 1 week to induce colitis. At the end of the experimental period, clinical and biochemical markers were compared.Key findingsPlasma leukotriene B4 (LTB4) and tumor necrosis factor-α (TNF-α) concentrations were significantly decreased in all groups supplemented with aloe components compared to the colitis control group (p < 0.05). Animals fed both a 0.1% and 0.5% aloesin supplemented diet showed colonic myeloperoxidase (MPO) activities which were decreased by 32.2% and 40.1%, respectively (p < 0.05). Colonic mucosa TNF-α and interleukin-1ß (IL-1β) mRNA expressions were significantly reduced in all animals fed aloin, aloesin, or aloe-gel (p < 0.05).SignificanceDietary supplementation of aloe components ameliorates intestinal inflammatory responses in a DSS-induced ulcerative colitis rat model. In particular, aloesin was the most potent inhibitor. Further studies are required for a more complete understanding of the specific mechanism of the action of these supplements.  相似文献   

9.
Studies have shown a reduction of food intake following peripheral and brain injection of CCK. However, it remains to be established whether endogenous central CCK is involved in the regulation of food intake. We investigated the role of central CCK in the regulation of food intake by pharmacological manipulation of the CCKB (CCK2) receptor system. Intracerebroventricularly (ICV) cannulated male Sprague Dawley rats were fasted for 24 h and received an ICV injection of the CCKB receptor antagonist CI988 at a dose of 10 nmol or 49 nmol or vehicle. Another group received two consecutive ICV injections consisting of the corticotropin-releasing factor (CRF) receptor-1 (CRF1) antagonist, CP376395 (3 nmol) or the CRF2 receptor antagonist, K41498 (2 nmol) alone, or followed by CI988 (49 nmol). Lastly, another group of rats received an intraperitoneal (IP) injection of the dopamine antagonist, flupentixol (∼197 and ∼493 nmol/kg) alone, or followed by CI988 (49 nmol, ICV). Cumulative food intake was assessed for 11 h. Vehicle injected rats showed a robust feeding response. CI988 at 49 nmol reduced food intake by 30% starting at 2 h post injection. CP376395 and K41498 had no effect on food intake. Flupentixol injected IP at a dose of 197 and 493 nmol/kg alone did not modulate food intake whereas the higher dose blocked the CI988-induced reduction of feeding. During the dark phase, CI988 had no effect on food intake in unfasted rats. In summary, CCKB signaling is involved in the regulation of food intake after a fast likely by downstream dopamine signaling.  相似文献   

10.
Accumulating evidence suggests that inflammatory processes are involved in the development of diabetic nephropathy (DN). However, there are no effective interventions for inflammation in the diabetic kidneys. Here, we tested the hypothesis that Astragaloside IV(AS-IV), a novel saponin purified from Astragalus membranaceus (Fisch) Bge, ameliorates DN in streptozotocin (STZ)-induced diabetic rats through anti-inflammatory mechanisms. Diabetes was induced with STZ (65 mg/kg) by intraperitoneal injection in rats. Two weeks after STZ injection, rats were divided into three groups (n = 8/each group), namely, diabetic rats, diabetic rats treated with AS-IV at 5 and 10 mg kg?1 d?1, p.o., for 8 weeks. The normal rats were chosen as nondiabetic control group (n = 8). The rats were sacrificed 10 weeks after induction of diabetes. AS-IV ameliorated albuminuria, renal histopathology and podocyte foot process effacement in diabetic rats. Renal NF-κB activity, as wells as protein and mRNA expression were increased in diabetic kidneys, accompanied by an increase in mRNA expression and protein content of TNF-α, MCP-1 and ICAM-1 in kidney tissues. The α1-chain type IV collagen mRNA was elevated in the kidneys of diabetic rats. All of these abnormalities were partially restored by AS-IV. AS-IV also decreased the serum levels of TNF-α, MCP-1 and ICAM-1 in diabetic rats. These findings suggest that AS-IV, a novel anti-inflammatory agent, attenuated DN in rats through inhibiting NF-κB mediated inflammatory genes expression.  相似文献   

11.
Postinflammatory hyperpigmentation (PIH) is an acquire hypermelanosis after cutaneous inflammation and injury. The aim of the present study was to investigate a natural ingredient with the anti-inflammatory and depigmentation activities into possible applications of postinflammatory hyperpigmentation. Methanol extracts of Lespedeza bicolor and its various fractions inhibited LPS-induced NO production in RAW 264.7 macrophages in a concentration-dependent manner. In particular, the ethyl acetate fraction was shown to be inhibition of NO production (89%) and down-regulation of iNOS mRNA without causing cytotoxicity. In addition, ethyl acetate fraction significantly attenuated LPS-induced NF-κB activation (P < 0.05), indicating the anti-inflammatory activity due to NF-κB inhibition. Moreover, extracts, mainly ethyl acetate fraction, exhibited not only DPPH free radical scavenging activity (IC50, 112.45 μg/mL) with 4 times lower activity than ascorbic acid, but also anti-tyrosinase activity (IC50, 1 μg/mL) with a similar activity to arbutin showing a competitive inhibitor. Furthermore, vitexin and haginins A, B and C were identified through LC–MS analysis as potential compounds responsible for these effects. These results suggest that L. bicolor extract have anti-inflammatory, antioxidant activities and tyrosinase inhibitory effect and it might be used in the management of postinflammatory pigmentation through inhibition of pathogenic process involved in hyperpigmentation.  相似文献   

12.
13.
Angiotensin II (Ang II) type 1 receptor (AT1R) mediates the major cardiovascular effects of Ang II. However, the effects mediated via AT2R are still controversial. The aim of the present study is to define the effect of AT2R agonist CGP42112A (CGP) on high stretch-induced ANP secretion and its mechanism using in vitro and in vivo experiments. CGP (0.01, 0.1 and 1 μM) stimulated high stretch-induced ANP secretion and concentration from isolated perfused rat atria. However, atrial contractility and the translocation of extracellular fluid did not change. The augmented effect of CGP (0.1 μM) on high stretch-induced ANP secretion was attenuated by the pretreatment with AT2R antagonist or inhibitor for phosphoinositol 3-kinase (PI3K), nitric oxide (NO), soluble guanylyl cyclase (sGC), or protein kinase G (PKG). However, antagonist for AT1R or Mas receptor did not influence CGP-induced ANP secretion. In vivo study, acute infusion of CGP for 10 min increased plasma ANP level without blood pressure change. In renal hypertensive rat atria, AT2R mRNA and protein levels were up-regulated and the response of plasma ANP level to CGP infusion in renal hypertensive rats augmented. The pretreatment with AT2R antagonist for 10 min followed by CGP infusion attenuated an increased plasma ANP level induced by CGP. However, pretreatment with AT1R or Mas receptor antagonist unaffected CGP-induced increase in plasma ANP level. Therefore, we suggest that AT2R agonist CGP stimulates high stretch-induced ANP secretion through PI3K/NO/sGC/PKG pathway and these effects are augmented in renal hypertensive rats.  相似文献   

14.
We describe herein the design, synthesis and pharmacological evaluation of novel 3-arylamine-imidazo[1,2-a]pyridine derivatives structurally designed as novel symbiotic prototypes presenting analgesic and anti-inflammatory properties. The derivatives obtained were submitted to in vivo assays of nociception, hyperalgesia and inflammation, and to in vitro assays of human PGHS-2 inhibition. These assays allowed the identification of compound LASSBio-1135 (3a) as an anti-inflammatory and analgesic symbiotic prototype. This compound inhibited moderately the human PGHS-2 enzyme activity (IC50 = 18.5 μM) and reverted the capsaicin-induced thermal hyperalgesia (100 μmol/kg, po) similarly to p38 MAPK inhibitor SB-203580 (2). Additionally, LASSBio-1135 (3a) presented activity similar to celecoxib (1) regarding the reduction of the carrageenan-induced rat paw edema (33% of inhibition at 100 μmol/kg, po). We also discovered derivatives LASSBio-1140 (3c) and LASSBio-1141 (3e) as analgesic and anti-inflammatory prototypes, which were able to attenuate the capsaicin-induced thermal hyperalgesia (100 μmol/kg, po) and reduce the carrageenan-induced paw edema (ED50 = 11.5 μmol/kg (3.3 mg/kg) and 14.5 μmol/kg (4.1 mg/kg), respectively), being both more active than celecoxib (1), despite the fact that their effects involve a different mechanism of action. Additionally, derivative LASSBio-1145 (3j) showed remarkable analgesic (ED50 = 22.7 μmol/kg (8.9 mg/kg)) and anti-inflammatory (ED50 = 8.7 μmol/kg (3.4 mg/kg)) profile in vivo (100 μmol/kg; po), in AcOH-induced abdominal constrictions in mice and carrageenan-induced rat paw edema models, respectively, being a novel orally-active anti-inflammatory drug candidate that acts as a selective PGHS-2 inhibitor (IC50 = 2.8 μM).  相似文献   

15.
The mechanisms of toxicity during exposure of the airways to chlorinated biomolecules generated during the course of inflammation and to chlorine (Cl2) gas are poorly understood. We hypothesized that lung epithelial cell mitochondria are damaged by Cl2 exposure and activation of autophagy mitigates this injury. To address this, NCI-H441 (human lung adenocarcinoma epithelial) cells were exposed to Cl2 (100 ppm/15 min) and bioenergetics were assessed. One hour after Cl2, cellular bioenergetic function and mitochondrial membrane potential were decreased. These changes were associated with increased MitoSOX signal, and treatment with the mitochondrial redox modulator MitoQ attenuated these bioenergetic defects. At 6 h postexposure, there was significant increase in autophagy, which was associated with an improvement of mitochondrial function. Pretreatment of H441 cells with trehalose (an autophagy activator) improved bioenergetic function, whereas 3-methyladenine (an autophagy inhibitor) resulted in increased bioenergetic dysfunction 1 h after Cl2 exposure. These data indicate that Cl2 induces bioenergetic dysfunction, and autophagy plays a protective role in vitro. Addition of trehalose (2 vol%) to the drinking water of C57BL/6 mice for 6 weeks, but not 1 week, before Cl2 (400 ppm/30 min) decreased white blood cells in the bronchoalveolar lavage fluid at 6 h after Cl2 by 70%. Acute administration of trehalose delivered through inhalation 24 and 1 h before the exposure decreased alveolar permeability but not cell infiltration. These data indicate that Cl2 induces bioenergetic dysfunction associated with lung inflammation and suggests that autophagy plays a protective role.  相似文献   

16.
The presence of both Urocortin 1 (Ucn1) and corticotropin-releasing factor 2 receptors (CRF2R) in the hypothalamic supraoptic nucleus (SON) suggests that endogenous Ucn1 released within this brain area acts as a local signal that might be involved in the regulation of not only endocrine but also behavioural stress responses. To test this hypothesis, we monitored the effects induced by the administration of a range of doses of synthetic Ucn1 (0.001–1.0 μg) bilaterally into the SON of rats in the open field test (OFT). Ucn1 administration produced an inverted U-shaped dose–response curve on OFT behaviour, in particular the dose of 0.01 μg of Ucn1 significantly increased the number of rearing and grooming episodes without affecting locomotion. In addition, this dosage augmented also the latency to visit the centre of the open field. Pre-treatment with the CRF2R antagonist, astressin-2B (0.1 μg) normalized Ucn1 treatment-induced effects. These results suggest that Ucn1 released within the SON area interacts with CRF2R to control the state of arousal.  相似文献   

17.
Chronic inflammation is the persistent and excessive immune response and can lead to a variety of diseases. Aiming to discover new compounds with anti-inflammatory activity, we report herein the synthesis and biological evaluation of 3-arylcoumarins. Thirty five 3-arylcoumarins were prepared through Perkin condensation and further acid-promoted hydrolysis if necessary. In lipopolysaccharide-activated mouse macrophage RAW264.7 cells, 6,8-dichloro-3-(2-methoxyphenyl)coumarin (16) and 6-bromo-8-methoxy-3-(3-methoxyphenyl)coumarin (25) exhibited nitric oxide production inhibitory activity with the IC50 values of 8.5 μM and 6.9 μM, respectively, providing a pharmacological potential as anti-inflammatory agents.  相似文献   

18.
AimsThe renin–angiotensin system (RAS) plays a key role in heat acclimation, a process which induces adaptive changes in cardiac function. These changes are mediated in part by reduced thyroid hormone activity and improve myocardial function during and following exposure to various (non-heat) stresses such as ischemia. The aim of this study was to examine the role of RAS in the development of the heat acclimated protected heart.Main methodsThree treatment groups were used: (1) C, controls; (2) AC, heat acclimated rats (1 mo 34 °C,); and (3) HAEL, heat acclimated euthyroid rats treated with 3 ng/ml of eltroxine. A Langendorff perfusion apparatus was used to measure hemodynamic parameters at baseline and following administration of angiotensin-II, losartan and PD123319 in isolated hearts. Protein and mRNA levels of angiotensin receptors were measured.Key findingsBoth C and HAEL animals showed increased contractility and a drop in coronary flow during angiotensin II exposure whereas AC animals did not have an inotropic response or vasoconstriction. Significantly different patterns of AT1 and AT2 receptor densities (a 50% reduction and a 30% increase in outer cell membrane AT1 and AT2 receptors respectively) were observed in AC animals compared to the other two groups. AT receptor mRNA levels were similar in all treatment groups.SignificanceThe attenuated response of heat acclimated hearts to angiotensin is mediated by reduced thyroxine levels and is associated with a shift in AT1 receptors from the outer to the inner membrane. This shift appears to be caused by modified posttranslational trafficking of AT receptors.  相似文献   

19.
Selective inhibition of pro-inflammatory prostaglandin (PG)E2 formation via microsomal PGE2 synthase-1 (mPGES-1) might be superior over inhibition of all cyclooxygenase (COX)-derived products by non-steroidal anti-inflammatory drugs (NSAIDs) and coxibs. We recently showed that benzo[g]indol-3-carboxylates potently suppress leukotriene biosynthesis by inhibiting 5-lipoxygenase. Here, we describe the discovery of benzo[g]indol-3-carboxylates as a novel class of potent mPGES-1 inhibitors (IC50 ? 0.1 μM). Ethyl 2-(3-chlorobenzyl)-5-hydroxy-1H-benzo[g]indole-3-carboxylate (compound 7a) inhibits human mPGES-1 in a cell-free assay (IC50 = 0.6 μM) as well as in intact A549 cells (IC50 = 2 μM), and suppressed PGE2 pleural levels in rat carrageenan-induced pleurisy. Inhibition of cellular COX-1/2 activity was significantly less pronounced. Compound 7a significantly reduced inflammatory reactions in the carrageenan-induced mouse paw edema and rat pleurisy. Together, based on the select and potent inhibition of mPGES-1 and 5-lipoxygenase, benzo[g]indol-3-carboxylates possess potential as novel anti-inflammatory drugs with a valuable pharmacological profile.  相似文献   

20.
Although females suffer twice as much as males from stress-related disorders, sex-specific participating and pathogenic cellular stress mechanisms remain uncharacterized. Using corticotropin-releasing factor receptor 2–deficient (Crhr2−/− ) and wild-type (WT) mice, we show that CRF receptor type 2 (CRF2) and its high-affinity ligand, urocortin 1 (Ucn1), are key mediators of the endoplasmic reticulum (ER) stress response in a murine model of acute pancreatic inflammation. Ucn1 was expressed de novo in acinar cells of male, but not female WT mice during acute inflammation. Upon insult, acinar Ucn1 induction was markedly attenuated in male but not female Crhr2−/− mice. Crhr2−/− mice of both sexes show exacerbated acinar cell inflammation and necrosis. Electron microscopy showed mild ER damage in WT male mice and markedly distorted ER structure in Crhr2−/− male mice during pancreatitis. WT and Crhr2−/− female mice showed similarly distorted ER ultrastructure that was less severe than distortion seen in Crhr2−/− male mice. Damage in ER structure was accompanied by increased ubiquitination, peIF2, and mistargeted localization of vimentin in WT mice that was further exacerbated in Crhr2−/− mice of both sexes during pancreatitis. Exogenous Ucn1 rescued many aspects of histological damage and cellular stress response, including restoration of ER structure in male WT and Crhr2−/−mice, but not in females. Instead, females often showed increased damage. Thus, specific cellular pathways involved in coping and resolution seem to be distinct to each sex. Our results demonstrate the importance of identifying sex-specific pathogenic mechanisms and their value in designing effective therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号