首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CoA-dependent transacylation activity in microsomes catalyzes the transfer of fatty acid between phospholipids and lysophospholipids in the presence of CoA without the generation of free fatty acid. We examined the mechanism of the transacylation system using partially purified acyl-CoA:lysophosphatidylinositol (LPI) acyltransferase (LPIAT) from rat liver microsomes to test our hypothesis that both the reverse and forward reactions of acyl-CoA:lysophospholipid acyltransferases are involved in the CoA-dependent transacylation process. The purified LPIAT fraction exhibited ATP-independent acyl-CoA synthetic activity and CoA-dependent LPI generation from PI, suggesting that LPIAT could operate in reverse to form acyl-CoA and LPI. CoA-dependent acylation of LPI by the purified LPIAT fraction required PI as the acyl donor. In addition, the combination of purified LPIAT and recombinant lysophosphatidic acid acyltransferase could reconstitute CoA-dependent transacylation between PI and phosphatidic acid. These results suggest that the CoA-dependent transacylation system consists of the following: 1) acyl-CoA synthesis from phospholipid through the reverse action of acyl-CoA:lysophospholipid acyltransferases; and 2) transfer of fatty acyl moiety from the newly formed acyl-CoA to lysophospholipid through the forward action of acyl-CoA:lysophospholipid acyltransferases.  相似文献   

2.
The activities of three acylation systems for 1-alkenylglycerophosphoethanolamine (1-alkenyl-GPE), 1-acyl-GPE and 1-acylglycerophosphocholine (1-acyl-GPC) were compared in rat brain microsomes and the acyl selectivity of each system was clarified. The rate of CoA-independent transacylation of 1-[3H]alkenyl-GPE (approx. 4.5 nmol/10 min per mg protein) was about twice as high as in the case of 1-[3H]acyl-GPE and 1-[14C]acyl-GPC. On the other hand, the rates of CoA-dependent transacylation and CoA + ATP-dependent acylation (acylation of free fatty acids by acyl-CoA synthetase and acyl-CoA acyltransferase) of lysophospholipids were in the order 1-acyl-GPC greater than 1-acyl-GPE much greater than 1-alkenyl-GPE. HPLC analysis of newly synthesized molecular species revealed that the CoA-independent transacylation system exclusively esterified docosahexaenoate and arachidonate, regardless of the lysophospholipid class. The CoA-dependent transacylation and CoA + ATP-dependent acylation systems were almost the same with respect to the selectivities for unsaturated fatty acids when the same acceptor lysophospholipid was used, but some distinctive acyl selectivities were observed with different acceptor lysophospholipids. 1-Alkenyl-GPE selectively acquired only oleate in these two systems. 1-Acyl-GPE and 1-acyl-GPC showed selectivities for both arachidonate and oleate. In addition, an appreciable amount of palmitate was transferred to 1-acyl-GPC, not to 1-acyl-GPE, in CoA- or CoA + ATP-dependent manner. The acylation of exogenously added acyl-CoA revealed that the acyl selectivities of the CoA-dependent transacylation and CoA + ATP-dependent acylation systems may be mainly governed through the selective action of acyl-CoA acyltransferase. The preferential utilization of oleoyl-CoA by all acceptors and the different utilization of arachidonoyl-CoA between alkenyl and acyllysophospholipids indicated that there might be two distinct acyl-CoA:lysophospholipid acyltransferases that discriminate between oleoyl-CoA and arachidonoyl-CoA, respectively. Our present results clearly show that all three microsomal acylation systems can be active in the reacylation of three major brain glycerophospholipids and that the higher contribution of the CoA-independent system in the reacylation of ethanolamine glycerophospholipids, especially alkenylacyl-GPE, may tend to enrich docosahexaenoate in these phospholipids, as compared with in the case of diacyl-GPC.  相似文献   

3.
Coenzyme A-dependent transacylation system in rabbit liver microsomes   总被引:1,自引:0,他引:1  
The activities of cofactor-independent and CoA-dependent transacylation were examined for various rabbit tissues. Liver microsomes were found to exhibit relatively high CoA-dependent transacylation activity, while the cofactor-independent transacylation activity was low. The apparent Km values for CoA were 1.4 microM (acceptor, 1-acyl-sn-glycero-3-phosphocholine (1-acyl-GPC] and 3.8 microM (acceptor, 1-acyl-sn-glycero-3-phosphoethanolamine (1-acyl-GPE], respectively. The apparent Vmax values were 2.6 nmol/min/mg (1-acyl-GPC) and 1.2 nmol/min/mg (1-acyl-GPE), respectively. The CoA-dependent transacylation reaction shows a distinct fatty acid specificity. [14C]18:2 and [14C]20:4 at the 2-positions and [14C]18:0 at the 1-positions of donor phospholipids were transferred to lysophospholipids in the presence of CoA. We observed the formation of considerable amounts of acyl-CoA from these fatty acids during the reaction, without the participation of ATP. The transfer of other fatty acids between phospholipids was shown to be almost nil. The very low transfer of 18:1 was in marked contrast to the effective utilization of 18:1-CoA by acyl-CoA:1-acyl-GPC acyltransferase. The effects of several compounds and heat treatment on these two acylation reactions were also examined. The CoA-dependent transacylation reaction may be important for the selective acylation of certain lysophospholipids, such as 1-acyl-GPE, in living cells with the cooperation of acyl-CoA:lysophospholipid acyltransferase, which generates CoA for the former reaction.  相似文献   

4.
The distribution of fatty acids among cellular glycerophospholipids is finely regulated by the CoA-dependent acylation of lysophospholipids followed by transacylation reactions. Arachidonic acid is the fatty acid precursor of a wide family of bioactive compounds called the eicosanoids, with key roles in innate immunity and inflammation. Because availability of free AA constitutes a rate-limiting step in the generation of eicosanoids by mammalian cells, many studies have been devoted to characterize the processes of arachidonate liberation from phospholipids by phospholipase A2s and its re-incorporation and further remodeling back into phospholipids by acyltransferases and transacylases. These studies have traditionally been conducted by using radioactive precursors which do not allow the identification of the phospholipid molecular species involved in these processes. Nowadays, lipidomic approaches utilizing mass spectrometry provide a new frame for the analysis of unique phospholipid species involved in fatty acid release and phospholipid incorporation and remodeling. This review focuses on the mass spectrometry techniques applied to the study of phospholipid fatty acid trafficking and the recent advances that have been achieved by the use of this technique.  相似文献   

5.
CoA-dependent transacylation activity in microsomes is known to catalyze the transfer of fatty acids between phospholipids and lysophospholipids in the presence of CoA without the generation of free fatty acids. We previously found a novel acyl-CoA synthetic pathway, ATP-independent acyl-CoA synthesis from phospholipids. We proposed that: 1) the ATP-independent acyl-CoA synthesis is due to the reverse reaction of acyl-CoA:lysophospholipid acyltransferases and 2) the reverse and forward reactions of acyltransferases can combine to form a CoA-dependent transacylation system. To test these proposals, we examined whether or not recombinant mouse acyl-CoA:1-acyl-sn-glycero-3-phosphate (lysophosphatidic acid, LPA) acyltransferase (LPAAT) could catalyze ATP-independent acyl-CoA synthetic activity and CoA-dependent transacylation activity. ATP-independent acyl-CoA synthesis was indeed found in the membrane fraction from Escherichia coli cells expressing mouse LPAAT, whereas negligible activity was observed in mock-transfected cells. Phosphatidic acid (PA), but not free fatty acids, served as an acyl donor for the reaction, and LPA was formed from PA in a CoA-dependent manner during acyl-CoA synthesis. These results indicate that the ATP-independent acyl-CoA synthesis was due to the reverse reaction of LPAAT. In addition, bacterial membranes containing LPAAT catalyzed CoA-dependent acylation of LPA; PA but not free fatty acid served as an acyl donor. These results indicate that the CoA-dependent transacylation of LPA consists of 1) acyl-CoA synthesis from PA through the reverse action of LPAAT and 2) the transfer of the fatty acyl moiety of the newly formed acyl-CoA to LPA through the forward reaction of LPAAT.  相似文献   

6.
Intact alveolar macrophages were found to acylate alkyl- and acyllysophospholipids with a high selectivity for arachidonate. A specific mechanism appears responsible for the incorporation of arachidonate into lysophospholipids in intact cells since the kinetic pattern for the formation of the 20:4 species was different from all other species. This specificity was investigated in more detail by examining the enzymatic acylation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine by macrophage membranes; in the absence of CoA, ATP, and Mg2+, this lysophospholipid was acylated with a high preference for arachidonate that was independent of added free fatty acids. The addition of CoA alone increased the rate of acylation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine, mainly due to an increase in the formation of species other than those containing arachidonate. When CoA, ATP, and Mg2+ were present, the macrophage membranes catalyzed the acylation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine without preference for arachidonate. A different apparent Km and Vmax was observed for reactions involving each cofactor condition. We conclude that the acylation of alkyl- and acyllysophospholipids by rabbit alveolar macrophages occurs by three separate mechanisms: a CoA-independent transacylation, a CoA-dependent transacylation (reverse reaction catalyzed by acyl-CoA acyltransferase), and an acyl-CoA-dependent acylation. The CoA-independent transacylation reaction is unique in that it is specific for arachidonate and accounts for the selective acylation of alkyl- and acyllysophospholipids by arachidonate in membrane preparations of alveolar macrophages. This reaction appears to be extremely important in the remodeling of phospholipid molecular species and the mobilization of arachidonate into ether-linked lipids. The transfer of arachidonate to 1-alkyl-2-lyso-sn-glycero-3-phosphocholine also is of importance in the final inactivation step for platelet activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine), whereby 1-alkyl-2-arachidonoyl-sn-glycerol-3-phosphocholine (a stored precursor of both platelet activating factor and arachidonic acid metabolites) is formed.  相似文献   

7.
Abstract: Lysophospholipids are generated during the turnover and breakdown of membrane phospholipids. We have identified and partially characterized three enzymes involved in the metabolism of lysophospholipids in human brain, namely, lysophospholipase, lysophospholipid:acyl-CoA acyltransferase (acyltransferase), and lysophospholipid:lysophospholipid transacylase (transacylase). Each enzyme displayed comparable levels of activity in biopsied and autopsied human brain, although in all cases the activity was somewhat lower in human than that in rat brain. All three enzymes were localized predominantly in the particulate fraction, with lysophospholipase possessing the greatest activity followed by acyltransferase and transacylase. Lysophosphatidylcholine possessed a Km in the micromolar range for lysophospholipase and transacylase, and in the millimolar range for acyltransferase, whereas arachidonyl-CoA displayed a Km in the micromolar range for acyltransferase. The three enzymes differed in their pH optima, with lysophospholipase being most active at pH 8.0, transacylase at pH 7.5, and acyltransferase at pH 6.0. Both bromophenacyl bromide and N-ethylmaleimide inhibited lysophospholipase activity and, to a lesser extent, that of acyltransferase and transacylase. None of the enzyme activities were affected by the presence of dithiothreitol or EDTA, although particulate lysophospholipase was activated approximately two-fold by the addition of 5 mM MgCl2 or CaCl2 but not KCl. Transacylating activity was stimulated by CoA, the EC50 of activation being 6.8 µM. Acyltransferase displayed an approximately threefold preference for arachidonyl-CoA over palmitoyl-CoA, whereas the acylation rate of different lysophospholipids was in the order lysophosphatidylinositol > 1-palmitoyl lysophosphatidylcholine > 1-oleoyl lysophosphatidylcholine ? lysophosphatidylserine > lysophosphatidylethanolamine. This, and the preference of human brain phospholipase A2 for phosphatidylinositol, suggests that this phospholipid may possess a higher turnover rate than the other phospholipid classes examined. Human brain homogenates also possessed the ability to transfer fatty acid from lysophosphatidylcholine to lysophosphatidylethanolamine. In addition, we also present evidence that diacylglycerophospholipids can act as acyl donors for the transacylation of lysophospholipids. We have therefore demonstrated the presence of, and partially characterized, three enzymes that are involved in the metabolism of lysophospholipids in human brain. Our results suggest that lysophospholipase may be the major route by which lysophospholipids are removed from the cell membrane in human brain. However, all three enzymes likely play an important role in the remodeling of membrane composition and thereby contribute to the overall functioning of membrane-associated processes.  相似文献   

8.
The main fatty acids at the sn-1 position of phospholipids (PLs) are saturated or monounsaturated fatty acids such as palmitic acid (C16:0), stearic acid (C18:0), and oleic acid (C18:1) and are constantly replaced, like unsaturated fatty acids at the sn-2 position. However, little is known about the molecular mechanism underlying the replacement of fatty acids at the sn-1 position, i.e., the sn-1 remodeling. Previously, we established a method to evaluate the incorporation of fatty acids into the sn-1 position of lysophospholipids (lyso-PLs). Here, we used this method to identify the enzymes capable of incorporating fatty acids into the sn-1 position of lyso-PLs (sn-1 lysophospholipid acyltransferase [LPLAT]). Screenings using siRNA knockdown and recombinant proteins for 14 LPLATs identified LPLAT7/lysophosphatidylglycerol acyltransferase 1 (LPGAT1) as a candidate. In vitro, we found LPLAT7 mainly incorporated several fatty acids into the sn-1 position of lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), with weak activities toward other lyso-PLs. Interestingly, however, only C18:0-containing phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were specifically reduced in the LPLAT7-mutant cells and tissues from knockout mice, with a concomitant increase in the level of C16:0- and C18:1-containing PC and PE. Consistent with this, the incorporation of deuterium-labeled C18:0 into PLs dramatically decreased in the mutant cells, while deuterium-labeled C16:0 and C18:1 showed the opposite dynamic. Identifying LPLAT7 as an sn-1 LPLAT facilitates understanding the biological significance of sn-1 fatty acid remodeling of PLs. We also propose to use the new nomenclature, LPLAT7, for LPGAT1 since the newly assigned enzymatic activities are quite different from the LPGAT1s previously reported.  相似文献   

9.
10.
Acylation of alkyllysophospholipids in most cells occurs by: (a) CoA-independent transacylation, (b) CoA-dependent transacylation, and (c) acyl-CoA-dependent acylation. Using a recently developed high-performance liquid chromatography method, we have investigated the factors that influence the molecular species composition of the acylated products formed via these pathways with 1-hexadecyl-2-lyso-sn-glycero-3-phosphocholine (alkyllyso-GPC) or 1-hexadecyl-2-lyso-sn-glycero-3-phospho-ethanolamine (alkyllyso-GPE) as substrates for the enzymes in Fischer R-3259 sarcoma microsomes. We found that short incubation times and low substrate concentrations favored the formation of polyunsaturated molecular species, i.e., 16:0-22:6, 16:0-22:5 (n - 3), and 16:0-20:4. Also, in agreement with results from other systems, CoA-independent transacylation produced a high percentage of polyunsaturated molecular species; acyl-CoA-dependent acylations generated the least polyunsaturated molecular species and CoA-dependent transacylation gave intermediate values. Furthermore, no substrate selectivity occurred with respect to alkyl chain lengths of alkyllyso-GPE; similar molecular species composition was obtained with either hexadecyllyso-GPE or octadecyllyso-GPE as substrates. Responses to N-ethylmaleimide inhibition and heat inactivation as well as pH optima suggest the same enzyme catalyzes the CoA-independent transacylation of both alkyllyso-GPC and alkyllyso-GPE.  相似文献   

11.
The availability of free arachidonic acid (AA) constitutes a limiting step in the synthesis of biologically active eicosanoids. Free AA levels in cells are regulated by a deacylation/reacylation cycle of membrane phospholipids, the so-called Lands cycle, as well as by further remodeling reactions catalyzed by CoA-independent transacylase. In this work, we have comparatively investigated the process of AA incorporation into and remodeling between the various phospholipid classes of human monocytes and monocyte-like U937 cells. AA incorporation into phospholipids was similar in both cell types, but a marked difference in the rate of remodeling was appreciated. U937 cells remodeled AA at a much faster rate than human monocytes. This difference was found not to be related to the differentiation state of the U937 cells, but rather to the low levels of esterified arachidonate found in U937 cells compared to human monocytes. Incubating the U937 cells in AA-rich media increased the cellular content of this fatty acid and led to a substantial decrease of the rate of phospholipid AA remodeling, which was due to reduced CoA-independent transacylase activity. Collectively, these findings provide the first evidence that cellular AA levels determine the amount of CoA-independent transacylase activity expressed by cells and provide support to the notion that CoA-IT is a major regulator of AA metabolism in human monocytes.  相似文献   

12.
2-Acyl-glycerophosphoethanolamine (2-acyl-GPE) acyltransferase and acyl-acyl carrier protein (acyl-ACP) synthetase are thought to be dual catalytic activities of a single inner membrane enzyme. A filter disc replica print method for the detection of acyl-ACP synthetase activity by colony fluorography was used to screen a mutagenized population of cells for acyl-ACP synthetase mutants (aas). All aas mutants lacked both acyl-ACP synthetase and 2-acyl-GPE acyltransferase activities in vitro. There was no detectable acyl-CoA-independent incorporation of exogenous fatty acids into phosphatidylethanolamine or the major outer membrane lipoprotein in aas mutants. Exogenous lysophospholipid uptake and acylation was also lacking in aas mutants. Lipoprotein acylation by phospholipids synthesized by the de novo biosynthetic pathway was not affected in aas mutants showing that this gene product was not directly involved in lipoprotein biogenesis. The aas mutants had an altered membrane phospholipid composition and accumulated both 2-acyl-GPE and acylphosphatidylglycerol. Acylphosphatidylglycerol accumulation was due to the transacylase activity of lysophospholipase L2 (the pldB gene product) since aas pldB double mutants accumulated 2-acyl-GPE, but not acylphosphatidylglycerol. The aas allele was mapped to 61 min of the Escherichia coli chromosome, and the deduced gene order in this region was thyA-aas-lysA. The biochemical, physiological, and genetic analyses of aas mutants support the conclusion that 2-acyl-GPE acyltransferase and acyl-ACP synthetase are two activities of the same protein and confirm that this enzyme system participates in membrane phospholipid turnover and governs the acyl-CoA independent incorporation of exogenous fatty acids and lysophospholipids into the membrane.  相似文献   

13.
An important feature in the remodelling of fatty acyl chains in cellular phospholipids is the acylation of lysophospholipids. Since lysophospholipids are cytolytic at high concentrations, the acylation reaction may provide an alternate pathway for the removal of cellular lysophospholipids. However, the physiological role of the acylation process in the maintenance of lysophospholipid levels in mammalian tissues has not been clearly defined. In this study, methyl lidocaine was found to inhibit both lysophosphatidylcholine:acyl-CoA and lysophosphatidylethanolamine:acyl-CoA acyltransferase activities in the hamster heart, but the drug had no effect on the other lysophospholipid metabolic enzymes. When the heart was perfused with 0.5 mg methyl lidocaine/mL, acyltransferase activities were attenuated, but there was no change in the activities of phospholipase A or lysophospholipase. The levels of the major lysophospholipids in the heart were not altered by methyl lidocaine perfusion. When the hearts were perfused with labelled lysophospholipid in the presence of methyl lidocaine, there was a reduction in the formation of the phospholipid and an increase in the release of the free fatty acid. However, the labelling of lysophospholipid in the heart was not altered by methyl lidocaine. We postulate that the acylation reaction has no direct contribution to the maintenance of the lysophospholipid levels in the heart.  相似文献   

14.
The goal of this study was to examine arachidonic acid (AA) metabolism by murine bone marrow-derived mast cells (BMMC) during apoptosis induced by cytokine depletion. BMMC deprived of cytokines for 12-48 h displayed apoptotic characteristics. During apoptosis, levels of AA, but not other unsaturated fatty acids, correlated with the percentage of apoptotic cells. A decrease in both cytosolic phospholipase A(2) expression and activity indicated that cytosolic phospholipase A(2) did not account for AA mobilization during apoptosis. Free AA accumulation is also unlikely to be due to decreases in 5-lipoxygenase and/or cyclooxygenase activities, since BMMC undergoing apoptosis produced similar amounts of leukotriene B(4) and significantly greater amounts of PGD(2) than control cells. Arachidonoyl-CoA synthetase and CoA-dependent transferase activities responsible for incorporating AA into phospholipids were not altered during apoptosis. However, there was an increase in arachidonate in phosphatidylcholine (PC) and neutral lipids concomitant with a 40.7 +/- 8.1% decrease in arachidonate content in phosphatidylethanolamine (PE), suggesting a diminished capacity of mast cells to remodel arachidonate from PC to PE pools. Further evidence of a decrease in AA remodeling was shown by a significant decrease in microsomal CoA-independent transacylase activity. Levels of lyso-PC and lyso-PE were not altered in cells undergoing apoptosis, suggesting that the accumulation of lysophospholipids did not account for the decrease in CoA-independent transacylase activity or the induction of apoptosis. Together, these data suggest that the mole quantities of free AA closely correlated with apoptosis and that the accumulation of AA in BMMC during apoptosis was mediated by a decreased capacity of these cells to remodel AA from PC to PE.  相似文献   

15.
Lysophospholipid acyltransferases (LPATs) incorporate fatty acyl chains into phospholipids via a CoA-dependent mechanism and are important in remodeling phospholipids to generate the molecular species of phospholipids found in cells. These enzymes use one lysophospholipid and one acyl-CoA ester as substrates. Traditional enzyme activity assays engage a single substrate pair, whereas in vivo multiple molecular species exist. We describe here an alternative biochemical assay that provides a mixture of substrates presented to the microsomal extracts. Microsomal preparations from RAW 264.7 cells were used to compare traditional LPAT assays with data obtained using a dual substrate choice assay using six different lysophospholipids and eight different acyl-CoA esters. The complex mixture of newly synthesized phospholipid products was analyzed using LC-MS/MS. Both types of assays provided similar results, but the dual choice assay provided information about multiple fatty acyl chain incorporation into various phospholipid classes in a single reaction. Engineered suppression of LPCAT3 activity in RAW 264.7 cells was easily detected by the dual choice method. These findings demonstrate that this assay is both specific and sensitive and that it provides much richer biochemical detail than traditional assays.  相似文献   

16.
Cardiolipin, the specific phospholipid of mitochondria, is involved in the biogenesis, the dynamics, and the supramolecular organization of mitochondrial membranes. Cardiolipin acquires a characteristic composition of fatty acids by post-synthetic remodeling, a process that is crucial for cardiolipin homeostasis and function. The remodeling of cardiolipin depends on the activity of tafazzin, a non-specific phospholipid–lysophospholipid transacylase. This review article discusses recent findings that suggest a novel function of tafazzin in mitochondrial membranes. By shuffling fatty acids between molecular species, tafazzin transforms the lipid composition and by doing so supports changes in the membrane conformation, specifically the generation of membrane curvature. Tafazzin activity is critical for the differentiation of cardiomyocytes, in which the characteristic cristae-rich morphology of cardiac mitochondria evolves. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

17.
Rabbit alveolar macrophage microsomes were found to acylate 1-[3H]alkyl-glycero-3-phosphocholine (GPC) (lyso platelet-activating factor) in the absence of any cofactors, indicating the presence of transacylation activity. The transacylation activity was comparable to the activity of acyl-CoA:1-alkyl-GPC acyltransferase. The fatty acyl moieties introduced into 1-[3H]alkyl-GPC from membrane lipids by microsomes were mainly 20:4 (n-6). A very similar acylation profile was observed for the acylation of 1-[3H]alkyl-GPC in intact macrophages, suggesting that the CoA-independent transacylation system plays a very important part in the acylation of 1-[3H]alkyl-GPC in cells. We also confirmed that 14C-labeled 20:4(n-6), 20:5(n-3), 22:4(n-6), and 22:6(n-3) were transferred well from diacyl-GPC to 1-alkyl-GPC in a CoA-independent manner. The transfer rates for 16:0, 18:0, and 18:1 from diacyl-GPC to 1-alkyl-GPC were very low in the presence and absence of CoA. On the other hand, the transfer of 20:4 from diacyl-GPE or diacyl-GPI to 1-alkyl-GPC or 1-acyl-GPC was markedly increased by the addition of CoA. The above results indicate that the transacylation system exhibits distinct donor and acceptor selectivities and CoA dependency. These transacylation reactions could be very important in the regulation of the levels and the availability of lysophospholipids, including lyso platelet-activating factor, and C20 and C22 polyunsaturated fatty acids in living cells.  相似文献   

18.
Ehrlich ascites cells were cultured with 1-O-[3H]alkylglycero-3-phosphoethanolamine (1-[3H]alkyl-GPE) or 1-O-[3H]alkylglycero-3-phosphocholine (1-[3H]alkyl-GPC) to reveal the selective retention of polyunsaturated fatty acids at second position of ether-containing phospholipids. Although small percentages of the lysophospholipids were degraded into long-chain alcohol, both alkyllyso-GPE and -GPC were acylated at the rate of approximately 2 nmol/30 min per 10(7) cells. Alkylacylacetylglycerols were prepared from the acylated products by phospholipase C treatment, acetylation and TLC, and fractionated according to the degree of unsaturation by AgNO3-TLC. The distribution of the radioactivity among the subfractions indicated that both alkyllysophospholipids were mainly esterified by docosahexaenoic acid and to a somewhat lesser extent by arachidonic acid. The selectivity for docosahexaenoic acid in the esterification of 1-alkyl-GPE was much stronger than in that of 1-alkyl-GPC. Although acyl-CoA: 1-alkyl-glycerophosphoethanolamine acyltransferase activity of Ehrlich cell microsomes with arachidonoyl-CoA and docosahexaenoyl-CoA as acyl donors was negligible compared with the acyl-CoA:1-alkyl-glycerophosphocholine acyltransferase activity, a significant amount of 1-alkyl-GPE was acylated in the microsomes without exogenously added acyl-CoA. HPLC analysis revealed that docosahexaenoic acid and arachidonic acid were mainly esterified by the microsomal transferase. Acylation of 1-alkyl-GPC with docosahexaenoic acid and arachidonic acid was also observed in the absence of added acyl-CoA, but the activity was lower than that for 1-alkyl-GPE. Although the source of the acyl donor in the acylation has not been determined, the acylation is probably due to the direct transfer of acyl groups between intact phospholipids. The above results provided the first evidence that the lysophospholipid acyltransferase system including the transacylase activity participates in the selective retention of docosahexaenoic acid in intact cells and a cell free system.  相似文献   

19.
Phospholipid remodeling involves phospholipase activity to remove acyl chains and acyltransferases to replace acyl chains. We here describe the characterization of a lysophospholipid acyltransferase in the opportunistic fungal pathogen, Candida albicans. Expression of this gene, C.a. LPT1, complemented the lysophospholipid acyltransferase defect in Saccharomyces cerevisiae strains lacking the homologous LPT1 gene. In vitro, lysophospholipid acyltransferase activity in these strains showed acyl-CoA substrate specificity, as measured by apparent Vmax/Km ratios, to be linolenoyl-CoA > oleoyl-CoA > linoleoyl-CoA > stearoyl-CoA. To address the physiological importance of C.a. LPT1, homozygous deletion strains were generated. Lysophospholipid acyltransferase activity with amine containing lysophospholipids was dramatically reduced while lysophosphatidylinositol and lysophosphatidic acid esterification was not significantly lowered. However, C.a. LPT1 over-expression yielded an increased amount of lysophosphatidic acyltransferase activity, suggesting a role in de novo phospholipid synthesis. LPT1 deletion strains showed slightly slowed growth in standard liquid media but no phenotype in media containing three antifungals that target sterols. To assess the role of C.a. Lpt1 in phospholipid remodeling, an in vivo, pulse–chase assay utilizing polysorbitan palmitate and mass spectrometry was developed. Cellular phospholipid composition became atypical with the provision of palmitate and gradually returned to the typical distribution when palmitate was removed. Deletion of C.a. LPT1 showed a modest yet significant effect on remodeling under these conditions.  相似文献   

20.
The phospholipase A2s (PLA2s) are a diverse group of enzymes that hydrolyze the sn-2 fatty acid from phospholipids and play a role in a wide range of physiological functions. A 61-kDa calcium-independent PLA2, termed cPLA2gamma, was identified as an ortholog of cPLA2alpha with approximately 30% overall sequence identity. cPLA2gamma contains a potential prenylation motif at its C terminus, and is known to have PLA2 and lysophospholipase activities, but its physiological roles have not been clarified. In the present study, we expressed various forms of recombinant cPLA2gamma, including non-prenylated and non-cleaved forms, in order to investigate the effects of C-terminal processing. We examined the expression of the wild type and non-prenylated (SCLA) forms of cPLA2gamma, and found that the SCLA form was expressed normally and retained almost full activity. Expression of the prenylated and non-cleaved form of cPLA2gamma using yeast mutants lacking prenyl protein proteases AFC1 (a-factor-converting enzyme) and RCE1 (Ras-converting enzyme) revealed decreased expression in the mutant strain compared to that in the wild type yeast, suggesting that complete C-terminal processing is important for the functional expression of cPLA2gamma. In addition, cPLA2gamma was found to have coenzyme A (CoA)-independent transacylation and lysophospholipid (LPL) dismutase (LPLase/transacylase) activities, suggesting that it may be involved in fatty acid remodeling of phospholipids and the clearance of toxic lysophospholipids in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号