首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
RNA viruses are a major source of respiratory diseases worldwide. The lack of effective therapeutical treatment underlines the importance of research for new antiviral compounds. Raoulic acid is a principal ingredient of the plant Raoulia australis Hook. F. Antiviral assay using cytopathic effect (CPE) reduction method showed that raoulic acid possessed strong antiviral activity against human rhinovirus 2 (HRV2) with a 50% inhibition concentration (IC50) value of less than 0.1 μg/ml, human rhinovirus 3 (HRV3) with a IC50 value of 0.19 μg/ml, coxsackie B3 (CB3) virus with IC50 values of 0.33 μg/ml, coxsackie B4 (CB4) virus with IC50 values of 0.40 μg/ml, and enterovirus 71 (EV71) virus with IC50 values of less than 0.1 μg/ml. However, the compound did not possess antiviral activity against influenza A (Flu A/PR, Flu A/WS, H1N1) and B viruses at four concentrations ranging from 0.1 to 100 μg/ml.  相似文献   

2.
Seabuckthorn is a medicinal plant that is used to prevent cold. It was tested for its metabolic content followed by activity against cancer and virus. The metabolic distribution of different polarity solvent extractions from the leaves was analyzed by LC–MS/MS. Flavonol glycoside contents in EA and Bu extracts were higher than MeOH and DW was observed. MeOH and EA extracts recorded high activity against influenza A/PR virus with IC50 of 7.2 μg/mL and 10.3 μg/mL compared with known drug Oseltamivir of 60.3 μg/mL. A similar trend showed in influenza A/Victoria virus. In case of influenza B viruses such as B/Lee and B/Maryland, EA extract (2.87 μg/mL and 4.5 μg/mL of IC50) emerged strongest among other extracts and Oseltamivir (103.73 μg/mL and 71.6 μg/mL). Each extract showed potent anticancer activities. Interestingly, Bu extract showed stronger anticancer activity against human cancer cells such as NCL-H1299, HeLa, SKOV and Caski (8.2 μg/mL, 8.6 μg/mL, 18.2 μg/mL and 9.2 μg/mL of IC50) respectively. Correlation study reveals that aglycones and flavonol mono-glycosides highly correlated with anti-influenza activities but not correlated with anticancer activities. Reversely, di-glycosides and tri-glycosides have a high correlation with cytotoxic effect with both normal and cancer cells. Therefore, this study provides significant information concerning Seabuckthorn for further medicinal drug development.  相似文献   

3.
Background and ObjectivesRecently influenza pandemic outbreaks were caused by emerging H5N1, H7N9 and H1N1 viruses. However, virucidal disinfectants are mainly unspecific and toxic. It is tactical to discover specific virucidal compounds.MethodsThe inhibitory potency was determined in H5N1 pseudovirus system; Interactions of compounds with hemagglutinin (HA) were detected with surface plasmon resonance (SPR) and further calculated with molecular docking. Virucidal effect was also estimated in influenza virus A/Puerto Rico/8/34(H1N1). Prevention efficacy was further estimated in mice model.ResultsOligothiophene compound 4sc was potently virucidal against H5N1 pseudovirus with selective index > 1169 (IC50 = 0.17 ± 0.01 μM). Pseudovirus assay revealed 4sc may interact with HA. However, HA inhibition test indicated 4sc did not interact with receptor pocket in HA. SPR detection revealed 4sc interacted directly with HA and its HA2 subunits. Molecular docking analysis revealed that 4sc interacted with the cavity of HA2 stem region and HA1-HA2 interface which consist of 7 residues: L22, K262, G472 and F1102 in HA2; M241, E251 and N271 in HA1. 4sc also potently and irreversibly neutralized PR8 (H1N1) virus, causing 105.06 ± 0.26 fold decrease of virus titer after exposure for 10 min. 4sc blocked PR8 transmission to MDCK cells. Amazingly, virucidal effect of 4sc was not significantly reduced even at 4 °C. Furthermore, 4sc blocked viral transmission to mice.ConclusionOligothiophene compound 4sc is a novel selective virucide of influenza virus, which blocks entry by interfering viral hemagglutinin. Due to promising safety profile and stable virucidal effect at 4 °C, 4sc may be useful in disinfecting H5N1 and H1N1 influenza virus.  相似文献   

4.
A chemically sulfated galactomannan (BRS) from seeds of Mimosa scabrella had in vitro antiviral activity against Herpes simplex virus 1 (HSV-1), but not against Simian rotavirus A/SA11 (SiRV-A/SA11). It was examined by 13C NMR spectroscopy, which showed the sulfate groups to be mainly at C-6 of galactose residues. BRS had a selective inhibition against HSV-1 during its attachment step, having an IC50 lower than 2.5 μg/ml, determined by plaque reduction, and a selectivity index of greater than 181, suggesting that the antiviral effect is likely due to interactions between the virus and BRS, being influenced its overall surface charge.  相似文献   

5.
The aim of this study was to evaluate the antiviral potential of methanolic extract (ME) of Achyranthes aspera, an Indian folk medicine and one of its pure compound oleanolic acid (OA) against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2). The ME possessed weak anti-herpes virus activity (EC50 64.4 μg/ml for HSV-1 and 72.8 μg/ml for HSV-2). While OA exhibited potent antiherpesvirus activity against both HSV-1 (EC50 6.8 μg/ml) and HSV-2 (EC50 7.8 μg/ml). The time response study revealed that the antiviral activity of ME and OA is highest at 2–6 h post infection. The infected and drug-treated peritoneal macrophage at specific time showed increased level of pro-inflammatory cytokines (IL6 and IL12). Further, the PCR of DNA from infected cultures treated with ME and OA, at various time intervals, failed to show amplification at 48–72 h, similar to that of HSV infected cells treated with acyclovir, indicating that the ME and OA probably inhibit the early stage of multiplication (post infection of 2–6 h). Thus, our study demonstrated that ME and OA have good anti-HSV activity, with SI values of 12, suggesting the potential use of this plant.  相似文献   

6.
《Phytomedicine》2014,21(11):1273-1280
Antiviral agents frequently applied for treatment of herpesvirus infections include acyclovir and its derivatives. The antiviral effect of a triterpene extract of birch bark and its major pentacyclic triterpenes, i.e. betulin, lupeol and betulinic acid against acyclovir-sensitive and acyclovir-resistant HSV type 1 strains was examined. The cytotoxic effect of a phytochemically defined birch bark triterpene extract (TE) as well as different pentacyclic triterpenes was analyzed in cell culture, and revealed a moderate cytotoxicity on RC-37 cells. TE, betulin, lupeol and betulinic acid exhibited high levels of antiviral activity against HSV-1 in viral suspension tests with IC50 values ranging between 0.2 and 0.5 μg/ml. Infectivity of acyclovir-sensitive and clinical isolates of acyclovir-resistant HSV-1 strains was significantly reduced by all tested compounds and a direct concentration- and time-dependent antiherpetic activity could be demonstrated. In order to determine the mode of antiviral action, TE and the compounds were added at different times during the viral infection cycle. Addition of these drugs to uninfected cells prior to infection or to herpesvirus-infected cells during intracellular replication had low effect on virus multiplication. Minor virucidal activity of triterpenes was observed, however both TE and tested compounds exhibited high anti-herpetic activity when viruses were pretreated with these drugs prior to infection. Pentacyclic triterpenes inhibit acyclovir-sensitive and acyclovir-resistant clinical isolates of HSV-1 in the early phase of infection.  相似文献   

7.
《Phytomedicine》2014,21(6):857-865
Several essential oils exert in vitro activity against bacteria and viruses and, among these latter, herpes simplex virus type 1 (HSV-1) is known to develop resistance to commonly used antiviral agents. Thus, the effects of the essential oil derived from Mentha suaveolens (EOMS) and its active principle piperitenone oxide (PEO) were tested in in vitro experimental model of infection with HSV-1. The 50% inhibitory concentration (IC50) was determined at 5.1 μg/ml and 1.4 μg/ml for EOMS and PEO, respectively. Australian tea tree oil (TTO) was used as control, revealing an IC50 of 13.2 μg/ml. Moreover, a synergistic action against HSV-1 was observed when each oil was added in combination with acyclovir. In order to find out the mechanism of action, EOMS, PEO and TTO were added to the cells at different times during the virus life-cycle. Results obtained by yield reduction assay indicated that the antiviral activity of both compounds was principally due to an effect after viral adsorption. Indeed, no reduction of virus yield was observed when cells were treated during viral adsorption or pre-treated before viral infection. In particular, PEO exerted a strong inhibitory effect by interfering with a late step of HSV-1 life-cycle. HSV-1 infection is known to induce a pro-oxidative state with depletion of the main intracellular antioxidant glutathione and this redox change in the cell is important for viral replication. Interestingly, the treatment with PEO corrected this deficit, thus suggesting that the compound could interfere with some redox-sensitive cellular pathways exploited for viral replication. Overall our data suggest that both EOMS and PEO could be considered good candidates for novel anti-HSV-1 strategies, and need further exploration to better characterize the targets underlying their inhibition.  相似文献   

8.
The efficient synthesis of a new series of polyhydroxylated dibenzyl ω-(1H-1,2,3-triazol-1-yl)alkylphosphonates as acyclic nucleotide analogues is described starting from dibenzyl ω-azido(polyhydroxy)alkylphosphonates and selected alkynes under microwave irradiation. Selected O,O-dibenzylphosphonate acyclonucleotides were transformed into the respective phosphonic acids. All compounds were evaluated in vitro for activity against a broad variety of DNA and RNA viruses and for cytostatic activity against murine leukemia L1210, human T-lymphocyte CEM and human cervix carcinoma HeLa cells. Compound (1S,2S)-16b exhibited antiviral activity against Influenza A H3N2 subtype (EC50 = 20 μM—visual CPE score; EC50 = 18 μM—MTS method; MCC >100 μM, CC50 >100 μM) in Madin Darby canine kidney cell cultures (MDCK), and (1S,2S)-16k was active against vesicular stomatitis virus and respiratory syncytial virus in HeLa cells (EC50 = 9 and 12 μM, respectively). Moreover, compound (1R,2S)-16l showed activity against both herpes simplex viruses (HSV-1, HSV-2) in HEL cell cultures (EC50 = 2.9 and 4 μM, respectively) and feline herpes virus in CRFK cells (EC50 = 4 μM) but at the same time it exhibited cytotoxicity toward uninfected cell (MCC  4 μM). Several other compounds have been found to inhibit proliferation of L1210, CEM as well as HeLa cells with IC50 in the 4–50 μM range. Among them compounds (1S,2S)- and (1R,2S)-16l were the most active (IC50 in the 4–7 μM range).  相似文献   

9.
Recently, many natural products, especially some plant-derived polyphenols have been found to exert antiviral effects against influenza virus and show inhibitory activities on neuraminidases (NAs). In our research, we took caffeic acid which contained two phenolic hydroxyl groups as the basic fragment to build a small compound library with various structures. The enzyme inhibition result indicated that some compounds exhibited moderate activities against NA and compound 15d was the best with IC50 = 7.2 μM and 8.5 μM against N2 and N1 NAs, respectively. The 3,4-dihydroxyphenyl group from caffeic acid was important for the activity according to the docking analysis. Besides, compound 15d was found to be a non-competitive inhibitor with Ki = 11.5 ± 0.25 μM by the kinetic study and also presented anti-influenza virus activity in chicken embryo fibroblast cells. It seemed promising to discover more potent NA inhibitors from caffeic acid derivatives to cope with influenza virus.  相似文献   

10.
Seventy-six 2-phenylbenzimidazole derivatives were synthesized and evaluated in cell-based assays for cytotoxicity and antiviral activity against a panel of 10 RNA and DNA viruses. The most commonly affected viruses were, in decreasing order, CVB-2, BVDV, Sb-1, HSV-1, and YFV, while HIV-1 and VSV were not affected, and RSV, VV and Reo-1 were only susceptible to a few compounds. Thirty-nine compounds exhibited high activity (EC50 = 0.1–10 μM) against at least one virus, and four of them were outstanding for their high and selective activity against VV (24, EC50 = 0.1 μM) and BVDV (50, 51, and 53 with EC50 = 1.5, 0.8, and 1.0 μM, respectively). The last compounds inhibited at low micromolar concentrations the NS5B RdRp of BVDV and also of HCV, the latter sharing structural similarity with the former. The considered compounds represent attractive leads for the development of antiviral agents against poxviruses, pestiviruses and even HCV, which are important human and veterinary pathogens.  相似文献   

11.
The influenza A virus (IFV) possesses a highly ordered cholesterol-rich lipid envelope. A specific composition and structure of this membrane raft envelope are essential for viral entry into cells and virus budding. Several steroidal amines were investigated for antiviral activity against IFV. Both, a positively charged amino function and the highly hydrophobic (C log P ? 5.9) ring system are required for IC50 values in the low μM range. An amino substituent is preferential to an azacyclic A-ring. We showed that these compounds either disrupt or augment membrane rafts and in some cases inactivate the free virus. Some of the compounds also interfere with virus budding. The antiviral selectivity improved in the series 3-amino, 3-aminomethyl, 3-aminoethyl, or by introducing an OH function in the A-ring. Steroidal amines show a new mode of antiviral action in directly targeting the virus envelope and its biological functions.  相似文献   

12.
Herpes simplex viruses (HSVs) display affinity for cell-surface heparan sulfate proteoglycans with biological relevance in virus entry. Here, we exploit an approach to inhibiting HSV infection by using a sulfated fucoidan, and a guluronic acid-rich alginate derived from Sargassum tenerrimum, mimicking the active domain of the entry receptor. These macromolecules have apparent molecular masses of 30 ± 5 and 26 ± 5 kDa, respectively. They and their chemically sulfated derivatives showed activity against herpes simplex virus type 1 (HSV-1). Their inhibitory concentration 50% (IC50) values were in the range 0.5–15 μg/ml and they lacked cytotoxicity at concentrations up to 1000 μg/ml. The anti-HSV activity increased with increasing sulfate ester content. Our results suggest the feasibility of inhibiting HSV infection by blocking viral entry with polysaccharide having specific structure.  相似文献   

13.
Boerhaavia diffusa Linn. of family Nyctaginaceae is a known traditional medicinal plant and has been used in the treatment of many free radical mediated diseases. Excessive formation of free radicals, either reactive oxygen species (ROS) or reactive nitrogen species (RNS) is responsible for damaging various biomolecules like DNA, lipids and proteins. The present investigation was initially carried out to explore the possible link between antioxidant, oxidative DNA damage protective and α-amylase inhibitory property of B. diffusa root extract and their bioactive fraction. Our results illustrated an enhanced DPPH radical scavenging activity/antioxidant power of methanol root extract (IC50 < 250 μg/ml) than ethanol (IC50 = 250 μg/ml) and aqueous extract (IC50 > 250 μg/ml). In addition, the methanol root extract also showed better oxidative DNA damage protective activity and α-amylase inhibitory property than ethanol and aqueous root extract. Phytochemical screening of B. diffusa ethanol and methanol root extract showed the presence of saponins, alkaloids, flavonoids, glycosides and terpenoids in large amount. By means of repetitive preparatory TLC and HPLC the potent antioxidant and α-amylase inhibitory fraction was isolated from methanol root extract. Our results illustrated that DPPH radical scavenging activity (IC50 < 250 μg/ml) and oxidative DNA damage protective and α-amylase inhibitory activity of the isolated/purified bioactive compound from methanol extract were significantly closer to that of crude extract, which in turn confirm that antioxidant and antidiabetic property of methanol root extract resides in this fraction and established a significant correlation between antioxidant and inhibitory α-amylase property of this bioactive fraction compound. These profound effects of B. diffusa methanol root extract and its purified fraction against oxidative plasmid DNA damage, antioxidant and α-amylase inhibitory activity may explain its extensive use in daily life and possible health benefits.  相似文献   

14.
Twelve aminoarylazocompounds (AC) and 46 aryltriazene 7 derivatives (DG) have been synthesized and evaluated in cell-based assays for cytotoxicity and antiviral activity against a panel of 10 RNA and DNA viruses.Eight aminoazocompounds and 27 aryltriazene derivatives exhibited antiviral activity, sometimes of high level, against one or more viruses. A marked activity against BVDV and YFV was prevailing among the former compounds, while the latter type of compounds affected mainly CVB-2 and RSV. None of the active compounds inhibited the multiplication of HIV-1, VSV and VV.Arranged in order of decreasing potency and selectivity versus the host cell lines, the best compounds are the following; BVDV: 1 > 7 > 8 > 4; YFV: 7 > 5; CVB-2: 25 > 56 > 18; RSV: 14 > 20 > 55 > 38 > 18 > 19; HSV-1: 2. For these compounds the EC50 ranged from 1.6 μM (1) to 12 μM (18), and the S. I. from 19.4 (1) to 4.2 (2).Thus the aminoarylazo and aryltriazene substructures appear as interesting molecular component for developing antiviral agents against ss RNA viruses, particularly against RSV and BVDV, which are important human and veterinary pathogens.Finally, molecular modeling investigations indicated that compounds of structure AC, active against BVDV, could work targeting the viral RNA-dependent RNA-polymerase (RdRp), having been observed a good agreement between the trends of the estimated IC50 and the experimental EC50 values.  相似文献   

15.
Ammocharis coranica (Ker-Gawl.) Herb. (Amaryllidaceae) is used in southern Africa for the treatment of mental illnesses. The ethanol extracts of the bulb of A. coranica and its total alkaloids rich fractions were screened for inhibition of acetylcholinesterase enzyme (AChE), which is implicated in the pathophysiology of Alzheimer's disease. The ethanolic extracts significantly inhibited AChE with IC50 value of 14.3 ± 0.50 μg/ml. The basic ethyl acetate and butanol fractions of the crude extracts were the most active against AChE with IC50 values of 43.1 ± 1.22 and 0.05 ± 0.02 μg/ml respectively. Bioassay-guided fractionation of the basic fractions led to the isolation of lycorine and 24-methylenecycloartan-3β-ol. Lycorine which was isolated from both butanol and ethyl acetate fractions had IC50 of 29.3 ± 3.15 μg/ml, while 24-methylenecycloartan-3β-ol was not active.  相似文献   

16.
The discovery and development of antimicrobial agents that do not give rise to resistance remains an ongoing challenge. Our efforts in this regard continue to reveal new potential therapeutic agents with differing physicochemical properties while retaining the effective N,N-dichloroamine pharmacophore as the key antimicrobial warhead. In this Letter, we disclose agents containing polyol units as a water solubilizing group. These sulfonyl-polyol agents show broad spectrum bactericidal and virucidal activity. These compounds show 1h MBC’s of 16–512 μg/mL against Escherichia coli and 4–256 μg/mL against Staphylococcus aureus at neutral pH, and 1-h IC50’s of 4.5–32 μM against Adenovirus 5 and 0.7–3.0 μM against Herpes simplex virus 1. The lead compounds were tested in a tissue culture irritancy assay and showed only minimal irritation at the highest concentrations tested.  相似文献   

17.
Despite the prepdominat agent causing severe entero-pathogenic diarrhea in swine, there are no effective therapeutical treatment of porcine epidemic diarrhea virus (PEDV). In this study, we evaluated the antiviral activity of five phlorotannins isolated from Ecklonia cava (E. cava) against PEDV. In vitro antiviral activity was tested using two different assay strategies: (1) blockage of the binding of virus to cells (simultaneous-treatment assay) and (2) inhibition of viral replication (post-treatment assay). In simultaneous-treatment assay, compounds 25 except compound 1 exhibited antiviral activities of a 50% inhibitory concentration (IC50) with the ranging from 10.8 ± 1.4 to 22.5 ± 2.2 μM against PEDV. Compounds 15 were completely blocked binding of viral spike protein to sialic acids at less than 36.6 μM concentrations by hemagglutination inhibition. Moreover, compounds 4 and 5 of five phlorotannins inhibited viral replication with IC50 values of 12.2 ± 2.8 and 14.6 ± 1.3 μM in the post-treatment assay, respectively. During virus replication steps, compounds 4 and 5 exhibited stronger inhibition of viral RNA and viral protein synthesis in late stages (18 and 24 h) than in early stages (6 and 12 h). Interestingly, compounds 4 and 5 inhibited both viral entry by hemagglutination inhibition and viral replication by inhibition of viral RNA and viral protein synthesis, but not viral protease. These results suggest that compounds isolated from E. cava have strong antiviral activity against PEDV, inhibiting viral entry and/or viral replication, and may be developed into natural therapeutic drugs against coronavirus infection.  相似文献   

18.
Four new daphnane-type diterpenes, genkwadanes A–D (14), together with 19 known ones, were isolated from ethanol extract of the flower buds of Daphne genkwa. Their structures were determined on the basis of extensive spectroscopic data. Among them, daphnane-type diterpene with a 1,10-double bond (1) was isolated from this plant for the first time. The cytotoxicity of all compounds 123 against the 10 selected human cancer cell lines was assayed. A number of compounds exhibited significant activities against the 10 cancer cell lines (IC50 < 9.56 μM). and most interestingly, all the compounds revealed preferred cytotoxicities on the HT-1080 cell line and displayed much stronger inhibitory activities (IC50 < 29.94 μM) compared with positive control 5-fluorouracil (IC50 = 35.62 μM), particularly, compounds 911, 13, 16 and 19 exhibited the strongest cytotoxicity activities against the HT-1080 cell line (IC50 < 0.1 μM).  相似文献   

19.
The high mutation rate of RNA viruses has resulted in limitation of vaccine effectiveness and increased emergence of drug-resistant viruses. New effective antivirals are therefore needed to control of the highly mutative RNA viruses. The n-butanol fraction of the stem bark of Mangifera indica exhibited inhibitory activity against influenza neuraminidase (NA) and coxsackie virus 3C protease. Bioassay guided phytochemical study of M. indica stem bark afforded two new compounds including one benzophenone C-glycoside (4) and one xanthone dimer (7), together with eleven known compounds. The structures of these isolated compounds were elucidated on the basis of spectroscopic evidences and correlated with known compounds. Anti-influenza and anti-coxsackie virus activities were evaluated by determining the inhibition of anti-influenza neuraminidase (NA) from pandemic A/RI/5+/1957 H2N2 influenza A virus and inhibition of coxsackie B3 virus 3C protease, respectively. The highest anti-influenza activity was observed for compounds 8 and 9 with IC50 values of 11.9 and 9.2 μM, respectively. Compounds 8 and 9 were even more potent against coxsackie B3 virus 3C protease, with IC50 values of 1.1 and 2.0 μM, respectively. Compounds 8 and 9 showed weak cytotoxic effect against human hepatocellular carcinoma and human epithelial carcinoma cell lines through MTT assay.  相似文献   

20.
《Process Biochemistry》2014,49(9):1457-1463
The aim of this study was to investigate the effect of black chokeberry (Aronia melanocarpa L.) extract on the activity of porcine pancreatic α-amylase and lipase. An in vitro study demonstrated that three kinds of chokeberry extracts: methanolic, water and acetic caused inhibition of α-amylase and lipase. The methanolic and acetic extracts exhibited the highest inhibitory activities against α-amylase with the IC50 values of 10.31 ± 0.04 mg/ml and pancreatic lipase 83.45 ± 0.50 mg/ml, respectively. In order to identify the compounds which may be the potential inhibitors of α-amylase and lipase, chokeberry extract was analyzed by preparative reverse phase chromatography and high performance liquid chromatography–mass spectrometry (HPLC–MS). These studies have shown that both anthocyanins and phenolic acids are compounds which inhibit the ability of the reaction catalyzed by α-amylase and lipase. The most effective inhibitor of pancreatic α-amylase was chlorogenic acid (IC50 = 0.57 ± 0.16 mg/ml). In the group of anthocyanins the most potent inhibitor of α-amylase was cyanidin-3-glucoside (IC50 = 1.74 ± 0.04 mg/ml), which also showed an ability to inhibit the reaction catalyzed by pancreatic lipase (IC50 = 1.17 ± 0.05 mg/ml). These findings seem to indicate the use of chokeberry as a functional food component, contributing to its anti-obesity activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号