首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
《Process Biochemistry》2007,42(3):344-351
A strategy that optimization of medium compositions for maximum biomass followed by feeding of sucrose for maximum polysaccharide synthesis was developed for enhancing polysaccharide production in suspension culture of protocorm-like bodies (PLBs) of Dendrobium huoshanense C.Z. Tang et S.J. Cheng. In growth stage, the original half-strength MS medium was optimized with carbon sources, nitrogen sources and metal ion combinations. The effects of different carbon sources on PLBs growth were remarkable and sucrose at 35 g l−1 was the most suitable. Sole nitrate nitrogen of 30 mmol l−1 was the best for PLBs growth. Metal ions (Ca2+, Fe2+, Mn2+ and Zn2+) showed different influences on PLBs growth. The optimal concentration of Ca2+, Fe2+, Mn2+ and Zn2+ was 4.5 mmol l−1, 0.1 mmol l−1, 0.5 mmol l−1 and 0.06 mmol l−1, respectively. In the optimized medium (sucrose, nitrate, Ca2+, Fe2+, Mn2+ and Zn2+ concentration as described above, the other component concentration seen in half-strength MS), 33.9 g DW l−1 PLBs were harvested after 30 days of culture and biomass increase was improved 245% as compared with that in the original medium. In production stage, polysaccharide synthesis was significantly improved by the feeding sucrose. The maximum polysaccharide production (22 g l−1) was obtained in the case of 50 g l−1 sucrose feeding at day 30 of culture, which was about 109-fold higher than that in the original medium without feeding of sucrose.  相似文献   

2.
Isomaltulose is a structural isomer of sucrose commercially used in food industries. Glucosyltransferase produced by Erwinia sp. D12 catalyses an intramolecular transglucosylation of sucrose giving isomaltulose. An experimental Design and Response Surface Methodology were applied for the optimization of the nutrient concentration in the culture medium for enzyme production in shaken flasks at 200 rpm and 30 °C. A higher production of glucosyltransferase (7.47 Uml−1) was observed in the culture medium containing sugar cane molasses (160 gl−1), bacteriological peptone (20 gl−1) and yeast extract Prodex Lac SD® (15 gl−1) after 8 h, at 30 °C. The highest production of glucosyltransferase in the 6.6-l bioreactor (14.6 Uml−1) was obtained in the optimized culture medium after 10 h at 26 °C. When Erwinia sp. D12 cells were immobilized in sodium alginate, it was verified that sodium alginate solution A could be substituted by a cheaper one, sodium alginate solution B. Using a 40% cell suspension and 2% sodium alginate solution B for cell immobilization in a packed-bed reactor, 64.1% conversion of sucrose to isomaltulose was obtained. The packed-bed reactor with immobilized cells plus glutaraldehyde and polyethylenimine solutions remained in a pseudo-steady-state for 180 h.  相似文献   

3.
During mixed-acid fermentation by Corynebacterium crenatum under anaerobic conditions, two moles of NADH are required to synthesize 1 mol of succinic acid. In this work, four controlled culture redox potentials and different carbon sources with different oxidation states were used to investigate the possibility of enhancing the succinic acid production by increasing the availability of NADH. When the culture redox potential was ?300 mV, the yield of succinic acid was 0.31 g/g, representing a 72% increase compared with the yield when the culture redox potential was ?40 mV. Meanwhile, the molar ratio of succinic acid/lactic acid increased from 0.27 to 0.48. When 0.1% neutral red was added to the acid production medium, the yield of succinic acid was 0.25 g/g, and the molar ratio of succinic acid/lactic acid was 0.38. Both values were higher than those obtained from glucose only (0.19 g/g, 0.26) or gluconate (0.05 g/g, 0.18). A higher NADH/NAD+ ratio and increased enzymatic activity could be achieved to enhance the succinic acid production by manipulating the culture to a more reductive environment.  相似文献   

4.
The aim of this research was to identify a low cost medium based on commercial products and by-products that provided maximum Bacillus subtilis CPA-8 growth and maintained biocontrol efficacy. Low cost media combining economical nitrogen and carbon sources such as yeast extract, peptone, soy products, sucrose, maltose and molasses were tested. Tests were carried out in 250-ml flasks containing 50 ml of each tested medium. Maximum cell growth (>3 × 109 CFU ml?1) was obtained in defatted soy flour 44% combined with sucrose or molasses media. Second, CPA-8 production was scaled up in a 5-l fermenter and CPA-8 population dynamics, pH and oxygen consumption in the optimized medium (defatted soy flour 44% – molasses) was recorded. In these tests, there was a 5-h lag phase before growth, after which exponential growth occurred and maximum production was 3 × 109 CFU ml?1 after 20 h. Fruit trials with cells and cell free supernatants from CPA-8 grown in optimized medium maintained biocontrol efficacy against Monilinia fructicola on peaches, resulting in disease reductions up to 95%. CPA-8 populations survived in wounds on inoculated peaches, regardless of the culture media used. The results show that B. subtilis CPA-8 can be produced in a low cost medium combining inexpensive nitrogen and carbon sources (40 g l?1 defatted soy flour 44%, 5 g l?1 molasses plus mineral trace supplements) in shake flasks and a laboratory fermenter (5 l). The results could be used to provide a reliable basis for scaling up the fermentation process to an industrial level.  相似文献   

5.
《Process Biochemistry》2010,45(6):887-891
For efficient production of (R)-(−)-mandelic acid, a nitrilase gene from Alcaligenes sp. ECU0401 was cloned and overexpressed in Escherichia coli. After simple optimization of the culture conditions, the biocatalyst production was greatly increased from 500 to 7000 U/l. The recombinant E. coli whole cells showed strong tolerance against a high substrate concentration of up to 200 mM, and the concentration of (R)-(−)-mandelic acid after only 4 h of transformation reached 197 mM with an enantiomeric excess (eep) of 99%. In a fed-batch reaction with 600 mM mandelonitrile as the substrate, the cumulative production of (R)-(−)-mandelic acid after 17.5 h of conversion reached 520 mM. The recombinant E. coli cells could also be repeatedly used in the biotransformation, retaining 40% of the initial activity after 10 batches of reaction. The highly substrate/product tolerable and enantioselective nature of this recombinant nitrilase suggests that it is of great potential for the practical production of optically pure (R)-(−)-mandelic acid.  相似文献   

6.
《Process Biochemistry》2010,45(1):67-74
RAmy3D promoter is capable of expressing high levels of recombinant proteins in response to the depletion of sugar in transgenic rice cell suspension cultures. For this reason, it is necessary to change the growth medium into sugar-free production medium to produce the target protein, human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig), using the inducible RAmy3D promoter. Since the two-stage culture is a complex process to perform in large-scale, a fed-batch method was evaluated with the addition of concentrated amino acids before the depletion of sugar to induce hCTLA4Ig production. This fed-batch culture was found to be effective and the production of hCTLA4Ig was enhanced up to 1.2-fold compared to that of two-stage cultures with medium exchange. In addition, when this fed-batch culture was performed in a 15-l stirred-tank bioreactor, maximum hCTLA4Ig level was 76.5 mg l−1 at day 10.  相似文献   

7.
《Process Biochemistry》2010,45(2):196-202
The osmotic shock process for the release of periplasmic recombinant human interferon-α2b from Escherichia coli was optimized using response surface method (RSM). The process parameters such as pH, buffer concentration and sucrose concentration in hypertonic solution, cell concentration to hypertonic solution, contact time of cells with hypertonic solution, temperature of hypertonic solution, cell concentration to hypotonic solution, contact time of cells with hypotonic solution and temperature of hypotonic solution were initially screened using Plackett Burman design. Further optimization was carried out using central composite design (one of the design in RSM) for sucrose concentration in hypertonic solution as well as cell concentration to hypertonic and hypotonic solutions. The optimal cell concentration was 0.05 g/mL in hypertonic solution and 0.2 g/mL in hypotonic solution. The use of hypertonic solution containing 18% sucrose with a combination of 100 mM Tris and 2.5 mM EDTA buffer (pH 8.0 and 25 °C) and cold water (4 °C) as a hypotonic solution gave the optimum release of interferon-α2b. Increased product concentration in the final solution resulted from the optimized process would reduce the downstream steps during purification. The concept of reuse of hypertonic solution was also demonstrated.  相似文献   

8.
The moderate halophile Halomonas boliviensis, isolated from a Bolivian saline soil sample, was able to accumulate poly(β-hydroxybutyrate) (PHB) when grown under conditions of nutrient limitation and excess carbon source. The concentration of sodium chloride in the medium influenced the cell-growth, -size, and rate of PHB accumulation. Cultivation in shake flasks led to a PHB accumulation of about 54 wt.% with respect to cell dry weight at 4.5% (w/v) NaCl in a medium with butyric acid and sodium acetate as carbon sources. The production of PHB was substantially improved to a maximum value of 88 wt.% during cultivation under controlled conditions of pH and oxygen concentration in a fermentor. The use of glucose and sucrose, respectively, as carbon source could also lead to the production of PHB at an average level of 55 wt.%.  相似文献   

9.
Sheep pox virus initially adapted to replicate in primary lamb kidney cells was adapted to Vero cells by serial passages in monolayer cultures. After nine passages the virus was able to correctly replicate in Vero cells, virus titer achieved was 105.875 TCID50 (median tissue culture infective dose) ml−1.To optimize the production process, the effects of MOI (multiplicity of infection), TOI (time of infection) and the culture medium were investigated. Cell infection at a MOI of 0.005 concurrently with cell seeding showed the best results in terms of specific virus productivity. The effect of MEM enrichment with several components was investigated using the experimental design approach. 67 experiments were performed in 6-well plates to select the best combination. The highest titer was achieved when MEM was supplemented with 5 mM glucose, 5 mM fructose and 25 mM sucrose. Spinner culture confirms these data; virus titer was 107.375 TCID50 ml−1.In addition Vero cells were cultivated in a 7-l bioreactor in batch mode on 3 g l−1 Cytodex1, and infected at cell seeding at a MOI of 0.005. Maximal virus titer was 107.275 TCID50 ml−1. This corresponds to 44-fold factor enhancement compared to spinner cultures conducted in MEM + 2% FCS.  相似文献   

10.
《Process Biochemistry》2007,42(6):925-933
The influence of organic acids on growth and dithiolopyrrolone antibiotic production by Saccharothrix algeriensis NRRL B-24137 was studied. The production of dithiolopyrrolones depends upon the nature and concentration of the organic acids in the culture medium. Study of the nature of organic acids showed that the most effective organic acids for thiolutin specific production were maleic, 4-hydroxybenzoic, benzentetracarboxylic, pantothenic, pivalic and pyruvic acids (which yielded almost five-fold over the starting medium) and pimelic acid (more than three-fold). 4-Bromobenzoic acid showed the best production of senecioyl-pyrrothine (59 mg g−1 DCW). Tiglic acid showed the best production of tigloyl-pyrrothine (22 mg g−1 DCW). The highest yield of isobutyryl-pyrrothine (7.6 mg g−1 DCW) was observed in the presence of crotonic acid. Sorbic acid yielded the best production of butanoyl-pyrrothine (26 mg g−1 DCW). Methacrylic, butyric, pyruvic and 4-bromobenzoic acids also exhibited the best production of butanoyl-pyrrothine (27–11-fold).Study of organic acid concentration showed that among the selected organic acids, pimelic acid yielded the highest specific production of thiolutin (91 mg g−1 DCW) at 7.5 mM; and senecioyl-pyrrothine (11 mg g−1 DCW), tigloyl-pyrrothine (9 mg g−1 DCW) and butanoyl-pyrrothine (3.5 mg g−1 DCW) at 5 mM. Pyruvic acid at 1.25 mM enhanced the production of senecioyl-pyrrothine (4.3 mg g−1 DCW). The maximum production of tigloyl-pyrrothine (18.6 mg g−1 DCW) was observed in the presence of tiglic acid at 2.5 mM. Maximum production of isobutyryl-pyrrothine was observed in the presence of 7.5 mM tiglic acid. In addition, methacrylic acid (at 5 mM) and butyric acid (at 2.5 mM) enhanced the production of butanoyl-pyrrothine (26 and 20 times, respectively).The above results can be employed in the optimisation of the culture medium for the production of dithiolopyrrolone in higher quantities.  相似文献   

11.
Sugar degradation occurs during acid-catalyzed pretreatment of lignocellulosic biomass at elevated temperatures, resulting in degradation products that inhibit microbial fermentation in the ethanol production process. Arabinose, the second most abundant pentose in grasses like corn stover and wheat straw, degrades into furfural. This paper focuses on the first-order rate constants of arabinose (5 g/L) degradation to furfural at 150 and 170 °C in the presence of sulfuric, fumaric, and maleic acid and water alone. The calculated degradation rate constants (kd) showed a correlation with the acid dissociation constant (pKa), meaning that the stronger the acid, the higher the arabinose degradation rate. However, de-ionized water alone showed a catalytic power exceeding that of 50 mM fumaric acid and equaling that of 50 mM maleic acid. This cannot be explained by specific acid catalysis and the shift in pKw of water at elevated temperatures. These results suggest application of maleic and fumaric acid in the pretreatment of lignocellulosic plant biomass may be preferred over sulfuric acid. Lastly, the degradation rate constants found in this study suggest that arabinose is somewhat more stable than its stereoisomer xylose under the tested conditions.  相似文献   

12.
《Cryobiology》2013,66(3):289-300
This work explores the design of a vitrification solution (VS) for scaled-up cryopreservation of hepatocytes, by adapting VSbasic (40% (v/v) ethylene glycol 0.6 M sucrose, i.e. 7.17 M ethylene glycol 0.6 M sucrose), previously proven effective in vitrifying bioengineered constructs and stem cells. The initial section of the scale-up study involved the selection of non-penetrating additives to supplement VSbasic and increase the solution’s total solute concentration. This involved a systematic approach with a step-by-step elimination of non-penetrating cryoprotectants, based on their effect on cells after long/short term exposures to high/low concentrations of the additives alone or in combinations, on the attachment ability of hepatocytes after exposure. At a second stage, hepatocyte suspension was vitrified and functions were assessed after continuous culture up to 5 days.Results indicated Ficoll as the least toxic additive. Within 60 min, the exposure of hepatocytes to a solution composed of 9% Ficoll + 0.6 M sucrose (10−3 M Ficoll + 0.6 M sucrose) sustained attachment efficiency of 95%, similar to control. Furthermore, this additive did not cause any detriment to the attachment of these cells when supplementing the base vitrification solution VSbasic. The addition of 9% Ficoll, raised the total solute concentration to 74.06% (w/v) with a negligible 10−3 M increase in molarity of the solution. This suggests main factor in inducing detriment to cells was the molar contribution of the additive.Vitrification protocol for scale-up condition sustained hepatocyte suspension attachment efficiency and albumin production. We conclude that although established approach will permit scaling-up of vitrification of hepatocyte suspension, vitrification of hepatocytes which are attached prior to vitrification is more effective by comparison.  相似文献   

13.
The effects of the natural phytochemicals trans-cinnamic acid (CA) and ferulic acid (FA) at concentrations of 1–20 mM (CA) and 1–25 mM (FA) on sclerotial production by Aspergillus flavus and Aspergillus parasiticus were evaluated. Studies on sclerotium number and size were carried out in different growth media and water potentials (MPa). High concentrations of CA (20 mM, ?0.75 MPa; 10 mM, ?3.5 MPa) and FA (10, 20, 25 mM, ?0.75 and ?3.5 MPa) significantly reduced sclerotial production of Aspergillus strains. Overall, CA at concentrations of 10 and 20 mM on Czapek Dox medium (CD), maize meal extract agar (MMEA) and maize meal extract agar with sucrose and NaNO3 (MMEA S/N) inhibited sclerotium most in the four species assayed. The data show that the sclerotia characteristics of A. flavus and A. parasiticus were influenced by natural phytochemicals and modifications of growth media and water potential. CA and FA could be used at high concentrations to prevent the survival of Aspergillus species in grain.  相似文献   

14.
Simultaneous saccharification and fermentation (SSF) of renewable cellulose for the production of 3-phenyllactic acid (PhLA) by recombinant Escherichia coli was investigated. Kraft pulp recovered from biomass fractionation processes was used as a model cellulosic feedstock and was hydrolyzed using 10–50 filter paper unit (FPU) g−1 kraft pulp of a commercial cellulase mixture, which increased the glucose yield from 21% to 72% in an enzyme dose-dependent manner. PhLA fermentation of the hydrolyzed kraft pulp by a recombinant E. coli strain expressing phenylpyruvate reductase from Wickerhamia fluorescens TK1 produced 1.9 mM PhLA. The PhLA yield obtained using separate hydrolysis and fermentation was enhanced from 5.8% to 42% by process integration into SSF of kraft pulp (20 g L−1) in a complex medium (pH 7.0) at 37 °C. The PhLA yield was negatively correlated with the initial glucose concentration, with a five-fold higher PhLA yield observed in culture medium containing 10 g L−1 glucose compared to 100 g L−1. Taken together, these results suggest that the PhLA yield from cellulose in kraft pulp can be improved by SSF under glucose-limited conditions.  相似文献   

15.
Mesorhizobium sp. F28 contains cobalt-NHase, which effectively converts acrylonitrile into acrylamide. When urea was added to the culture medium, the NHase activity was 62.3 U ml?1 (R2A–R2A/urea) after 22.5 h of cultivation, which was similar to that in the medium without addition (R2A–R2A, 70.0 U ml?1). The relative activity of the purified NHase was 100%, 92%, 94%, and 92% in the medium containing, respectively, 0 mM, 2 mM, 5 mM, and 10 mM of urea. Urea had no significant effect on the purified NHase activity of Mesorhizobium sp. F28. This research did not observe the NHase production by Mesorhizobium sp. F28 when acrylonitrile was supplemented in the culture medium except that cobalt ions existed. The highest enzyme activity was 328.5 U ml?1 as cobalt ions were added in the pre-culture and culture medium after 22.5 h of cultivation (R2A/Co-R2A/Co); compared to media without cobalt ions (R2A–R2A, 22.5 h, 70.5 U ml?1) this is an almost five-fold enhancement. It can be concluded that culture media containing cobalt ions was beneficial for the formation of active NHase of Mesorhizobium sp. F28.  相似文献   

16.
A β-glucosidase gene from Putranjiva roxburghii (PRGH1) was heterologously expressed in Saccharomyces cerevisiae to enable growth on cellobiose. The recombinant enzyme was secreted to the culture medium, purified and biochemically characterized. The enzyme is a glycoprotein with a molecular weight of ∼68 kDa and exhibited enzymatic activity with β‐linked aryl substrates like pNP-Fuc, pNP-Glc, pNP-Gal and pNP-Cel with catalytic efficiency in that order. Significant enzyme activity was observed for cellobiose, however the enzyme activity was decreased with increase in chain length of glycan substrates. Using cellobiose as substrate, the enzyme showed optimal activity at pH 5.0 and 65 °C. The enzyme was thermostable up to 75 °C for 60 min. The enzyme showed significant resistance towards both glucose and ethanol induced inhibition. The recombinant S. cerevisiae strain showed advantages in cell growth, glucose and bio-ethanol production over the native strain with cellobiose as sole carbon source. In simultaneous saccharification and fermentation (SSF) experiments, the recombinant strain was used for bio-ethanol production from two different cellulosic biomass sources. At the end of the SSF, we obtained 9.47 g L−1 and 14.32 g L−1 of bio-ethanol by using carboxymethyl cellulose and pre-treated rice straw respectively. This is first report where a β-glucosidase gene from plant origin has been expressed in S. cerevisiae and used in SSF.  相似文献   

17.
Fifty-three plant-associated microorganisms were investigated for their ability to convert sucrose to its isomers. These microorganisms included one Dickeya zeae isolate and 7 Enterobacter, 3 Pantoea, and 43 Pectobacterium species. Eleven out of the 53 strains (21%) showed the ability to transform sucrose to isomaltulose and trehalulose. Among those, Pectobacterium carotovorum KKH 3-1 showed the highest bioconversion yield (97.4%) from sucrose to its isomers. In this strain, the addition of up to 14% sucrose in the medium enhanced sucrose isomerase (SIase) production. The SIase activity at 14% sucrose (47.6 U/mg dcw) was about 3.6-fold higher than that of the negative control (13.3 U/mg dcw at 0% sucrose). The gene encoding SIase, which is comprised a 1776 bp open reading frame (ORF) encoding 591 amino acids, was cloned from P. carotovorum KKH 3-1 and expressed in Escherichia coli. The recombinant SIase (PCSI) was shown to have optimum activity at pH 6.0 and 40 °C. The reaction temperature significantly affected the ratio of sucrose isomers produced by PCSI. The amount of trehalulose increased from 47.5% to 79.1% as temperature was lowered from 50 °C to 30 °C, implying that SIase activity can be controlled by reaction temperature.  相似文献   

18.
Serratia marcescens C3 produces a natural red-pigment, prodigiosin, which exhibits immunosuppressive properties, in vitro apoptotic effects, and in vivo anti-tumor activities. This work seeks to improve the production of prodigiosin by S. marcescens C3 using various strategies. Starch and peptone were identified as the optimized carbon and nitrogen sources for the production of prodigiosin, yielding a prodigiosin concentration of 2.3 g/L. This value was significantly increased to 6.7 g/L using a carbon/nitrogen ratio of 6/4 (starch/peptone = 16 g/L/10.67 g/L). To enhance prodigiosin production even further, a statistical experimental design methodology was utilized to optimize the composition of the culture medium that is utilized in the production of prodigiosin. Prodigiosin production of 7.07 g/L was achieved when the concentrations of two trace compounds, FeSO4·4H2O and MnSO4·4H2O, were optimized using the statistical experimental design methodology. Their optimal concentrations were 0.56 mM and 3.25 mM, respectively. Ultimately, the production of prodigiosin was increased from 2.3 g/L to 15.6 g/L, or by a factor of nearly seven by immobilizing microorganisms in 3% calcium alginate beads.  相似文献   

19.
Assemblages of anaerobic sulphidogenic microorganisms were isolated from soil polluted by oil-derived products and grown using the microcosms method. The cultures were grown in minimal and Postgate media with phosphogypsum (PG) as the sole electron acceptor and with lactate, casein or lactose as the sole carbon source. The most effective was the assemblage in Postgate medium with lactose as the sole carbon source. A reduction of 980 mg COD l?1 (reduction of about 40%) and 790 mg SO42? l?1 (reduction of 53% of phosphogypsum introduced to the medium) was noted in the culture. The lowest activity was observed for minimal medium with lactose as sole carbon source (reduction of 4.4% COD and 40% PG). The selected assemblage became an inoculum for a culture in Postgate, minimal and/or distilled water medium with PG (6 g l?1) and cheese whey (2.5 and 4.5 g l?1).A percentage reduction of COD and SO42? of PG was observed in all cultures. After growth, the residues were weighed and in all cases a distinct mass reduction of PG was observed in comparison to the 6 g l?1 introduced to the medium. Diffractometric studies of the residues confirmed the presence of calcite and apatite. The presence of these mineral phases in the residues allows their application as agricultural fertilisers.  相似文献   

20.
《Process Biochemistry》2014,49(4):655-659
An efficient biocatalytic process for the production of nicotinic acid (niacin) from 3-cyanopyridine was developed using cells of recombinant Escherichia coli JM109 harboring the nitrilase gene from Alcaligenes faecalis MTCC 126. The freely suspended cells of the biocatalyst were found to withstand higher concentrations of the substrate and the product without any signs of substrate inhibition. Immobilization of the cells further enhanced their substrate tolerance, stability and reusability in repetitive cycles of nicotinic acid production. Under optimized conditions (37 °C, 100 mM Tris buffer, pH 7.5) for the immobilized cells, the recombinant biocatalyst achieved a 100% conversion of 1 M 3-cyanopyridine to nicotinic acid within 5 h at a cell mass concentration (fresh weight) of 500 mg/mL. The high substrate/product tolerance and stability of the immobilized whole cell biocatalyst confers its potential industrial use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号