首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A ganglioside-stimulated ecto-type protein phosphorylation system (ecto-Gg-kinase) was detected on the cell surface of a human neuroblastoma cell line (GOTO). When intact cells were incubated with [gamma-32P]ATP, at least 28 cell surface proteins were phosphorylated, as evident on SDS-PAGE (4-20%) analysis. Exogenously added gangliosides specifically stimulated the phosphorylation of at least three cell surface associated proteins of Mr = 64,000, 60,000, and 54,000. Phosphorylation was directed toward Thr and Ser residues, respectively, as revealed on acid hydrolysis followed by electrophoresis. GQ1b, at 5 nM, was the most potent among the several gangliosides tested and was more effective when added to cells before [gamma-32P]ATP administration. The simultaneous addition of an excess amount of the saccharide portion of GQ1b (oligo-GQ1b) inhibited the GQ1b-stimulated phosphorylation, indicating the necessity of the sialosaccharide moiety. These results strongly suggest that phosphorylation of the three proteins may be closely associated with the highly specific neuritogenic effect of GQ1b previously reported.  相似文献   

2.
Human neuroblastoma SH-SY5Y cells differentiate terminally in culture upon exposure to nerve growth factor (NGF) for 4-5 weeks. The neuronal phenotypic properties acquired in response to prolonged NGF treatment include morphological differentiation, cessation of mitotic activity, neuronal marker expression, increased membrane electrical potentials, and a survival dependence upon NGF for trophic support (Jensen, L.M. (1987) Dev. Biol. 120, 56-64). Thus, differentiated cultures survive indefinitely in the continued presence of NGF, however, withdrawal of NGF from differentiated cultures effects the loss of cellular viability within 3-6 days. Here, we show that death of differentiated SH-SY5Y cells caused by NGF deprivation is characteristic of apoptosis. To compare the differentiation promoting and the neurotrophic properties of NGF, whole SH-SY5Y cell extracts were analyzed by two-dimensional polyacrylamide gel electrophoresis using isoelectric focusing and nonequilibrium pH gradient electrophoresis gels in the first dimension. Steady-state levels of polypeptides extracted from whole-cell lysates of naive (untreated) cells, terminally differentiated cells, and NGF-deprived differentiated cells were compared. Over 1,000 spots from each were analyzed using computer-aided spot matching and densitometry. We noted 25 polypeptides that decreased during differentiation, including 15 that decreased by a factor of 10 or more. The levels of five polypeptides were induced from very low or undetectable levels in naive cells. Withdrawal of NGF from terminally differentiated cells produced alterations in steady-state protein patterns substantially distinct from those occurring during differentiation. While levels of most proteins do not appear affected early after NGF withdrawal, others rapidly return to levels comparable with those of the naive state and some changes occurring with differentiation are enhanced further upon NGF withdrawal. Three polypeptides were regulated uniquely by NGF withdrawal, including two that were induced, on average, 20- and 28-fold and another that was depressed more than 7-fold after NGF deprivation, before cell death. These data indicate that NGF elicits both constitutive and nonconstitutive changes in gene expression and suggest that the differentiation promoting and the neurotrophic properties of NGF correlate with the regulation of different gene products.  相似文献   

3.
Human nerve growth factor (NGF) receptor (NGFR) cDNA was transfected into a neuroblastoma cell line (HTLA 230) which does not express a functional NGF-NGFR signal transduction cascade. Short-term treatment of stably transfected cells (98-3) expressing membrane-bound NGF receptor molecules resulted in a cell cycle-dependent, transient expression of the c-fos gene upon treatment with NGF, suggesting the presence of functional high-affinity NGFR. Extensive outgrowth of neurites and cessation of DNA synthesis occurred in transfectants grown on an extracellular matrix after long-term treatment with NGF, suggesting terminal differentiation. Our data support the idea that introduction of a constitutively expressed NGFR cDNA into cells with neuronal background results in the assembly of a functional NGF-NGFR signal cascade in a permissive extracellular environment.  相似文献   

4.
Summary The co-localization of arginine vasopressin-and enkephalin-like immunoreactivities in nerve cells of the rat paraventricular hypothalamic nucleus and adjacent areas was investigated by the simultaneous application of immuno--galactosidase staining and the peroxidase-antiperoxidase method to sections. Arginine vasopressin-like immunoreactive cells were stained blue with immuno--galactosidase staining and enkephalin-like immunoreactive cells brown with the peroxidase-antiperoxidase method. Double-labeled cells with overlap of blue and brown immunoreaction products were identified in the anterior, medial, and lateral parvocellular parts of the paraventricular hypothalamic nucleus as well as in the previously indicated posterior magnocellular part. Other regions that contained double-labeled cells were the lateral hypothalamic area, anterior hypothalamic nucleus, area between the lateral hypothalamic area and anterior hypothalamic nucleus, suprachiasmatic nucleus, and bed nucleus of the stria terminalis, medial division, posterolateral part. These findings suggest that nerve cells with both arginine vasopressin- and enkephalin-like immunoreactivities may be more actively involved in neuroendocrine regulation and neural transmission than previously considered. They may provide a morphological basis for an increase in enkephalin-like immunoreactivity within the anterior pituitary in cases of hemorrhagic shock which is presumably accompanied by arginine vasopressin hypersecretion.Abbreviations AH anterior hypothalamic nucleus - ap anterior parvocellular part of the paraventricular hypothalamic nucleus - BSTMPL bed nucleus of the stria terminalis, medial division, posterolateral part - dp dorsal parvocellular part of the paraventricular hypothalamic nucleus - f fornix - LH lateral hypothalamic area - lp lateral paryocellular part of the paraventricular hypothalamic nuclcus - mp medial parvocellular part of the paraventricular hypothalamic nucleus - MPA medial preoptic area - pm posterior magnocellular part of the paraventricular hypothalamic nucleus - pv periventricular part of the paraventricular hypothalamic nucleus - SC suprachiasmatic nucleus - Zi zona incerta  相似文献   

5.
The nerve growth factor (NGF) is a signaling protein, discovered by Rita Levi-Montalcini in the early 1950's for its effect on growth and differentiation of specific populations of neurons of the peripheral nervous system. Originally identified as neurite outgrowth-stimulating factor, later studies revealed that the purified molecule has a number of target cells in the central nervous system and on nonneuronal cells. Moreover, recent studies showed the potential therapeutic properties of NGF in neuropathies of the central and peripheral nervous system and diseases of the eye and skin. Here I briefly describe the discovery of NGF, the early studies of Rita LeviMontalcini, a pioneer in modern neuroscience, and my scientific and human experience working in her laboratory for over 40 years.  相似文献   

6.
The neurosteroid dehydroepiandrosterone (DHEA), produced by neurons and glia, affects multiple processes in the brain, including neuronal survival and neurogenesis during development and in aging. We provide evidence that DHEA interacts with pro-survival TrkA and pro-death p75(NTR) membrane receptors of neurotrophin nerve growth factor (NGF), acting as a neurotrophic factor: (1) the anti-apoptotic effects of DHEA were reversed by siRNA against TrkA or by a specific TrkA inhibitor; (2) [(3)H]-DHEA binding assays showed that it bound to membranes isolated from HEK293 cells transfected with the cDNAs of TrkA and p75(NTR) receptors (K(D): 7.4 ± 1.75 nM and 5.6 ± 0.55 nM, respectively); (3) immobilized DHEA pulled down recombinant and naturally expressed TrkA and p75(NTR) receptors; (4) DHEA induced TrkA phosphorylation and NGF receptor-mediated signaling; Shc, Akt, and ERK1/2 kinases down-stream to TrkA receptors and TRAF6, RIP2, and RhoGDI interactors of p75(NTR) receptors; and (5) DHEA rescued from apoptosis TrkA receptor positive sensory neurons of dorsal root ganglia in NGF null embryos and compensated NGF in rescuing from apoptosis NGF receptor positive sympathetic neurons of embryonic superior cervical ganglia. Phylogenetic findings on the evolution of neurotrophins, their receptors, and CYP17, the enzyme responsible for DHEA biosynthesis, combined with our data support the hypothesis that DHEA served as a phylogenetically ancient neurotrophic factor.  相似文献   

7.
—Dorsal root ganglia from 8-day- and 14-day-old chick embryos contained gangliosides with a pattern qualitatively similar to that of embryonic chick brain. The pattern of gangliosides from dorsal root ganglia changed with age, there being a decrease in polysialogangliosides with increasing age. When isolated, dorsal root ganglia were incubated in the presence of a concentration of nerve growth factor (NGF) sufficient to promote the outgrowth of nerve fibres, there was increased incorporation of d -[1-14C]glucosamine into gangliosides. There was, however, no difference in the pattern of incorporation into gangliosides by control ganglia and those exposed to NGF.  相似文献   

8.
Two types of nerve growth factor (NGF) receptors have been described: high affinity (class I) and low affinity (class II). Biological responses to NGF are thought to be mediated by class I receptors, whereas the role of class II receptors is less clear. While some neuronal cells express both receptor types, only class II receptors have been detected on glial cells. Two glial cell lines, peripheral Schwannoma D6P2T and central 33B glioma cells, were employed to investigate the properties of class II receptors in the absence of class I receptors. These cell lines were found to express NGF receptors identified as class II by a low nanomolar dissociation constant, rapid dissociation kinetics at 4 degrees C, and trypsin sensitivity. The receptor was found to bind brain-derived neurotrophic factor with similar affinity as NGF. The responsible binding molecule appeared in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a heterogeneously glycosylated protein of 60-80 kDa with a tendency to aggregate. All receptor bands affinity-labeled with radioiodinated NGF were immunoprecipitated with anti-p75NGFR antibody, but not with anti-p140prototrk antiserum. In these cells, which express p75NGFR as only NGF receptor, a time- and temperature-dependent appearance of a nondisplaceable, trypsin-resistant, acid wash-stable ligand fraction, followed by an increase of trichloroacetic acid-soluble radiolabel in the medium was observed. This sequestration resembled receptor-mediated internalization with subsequent degradation of NGF. Whether this ligand processing indicates a functional role of p75NGFR in glial cells remains to be shown.  相似文献   

9.
Chronic neurodegenerative disorders are having an increasing impact on public health as human longevity increases. Parkinson’s disease (PD) is a degenerative disorder of the central nervous system and is characterized by motor system disorders resulting in loss of dopamine-producing brain cells. Pueraria thomsonii Benth. (Fabaceae) is an herbal medicine that has traditionally been used as an antipyretic agent. In the present study, the active constituents, daidzein and genistein, were isolated from P. thomsonii. Both compounds exhibited neurocytoprotective effects against 6-hydroxydopamine (6-OHDA)-induced cytotoxicity in nerve growth factor (NGF)-differentiated PC12 cells. Neither daidzein nor genistein affected 6-OHDA-induced cellular reactive oxygen species (ROS) generation according to flow cytometric analysis. Rather, they inhibited caspase-8 and partially inhibited caspase-3 activation, providing a protective mechanism against 6-OHDA-induced cytotoxicity in NGF-differentiated PC12 cells. The present results imply that daidzein and genistein may be useful in the development of future strategies for the treatment of PD.  相似文献   

10.
Addition of serum to the culture medium of murine L cells increased both the cellular level of NGF mRNA and the secretion of mature factor. Stimulation of NGF production by the serum was dose-dependent and appeared mediated by some specific factor(s). After gel filtration chromatography of serum, most of the biological activity formed a major peak with an apparent MW of about 160 kDa. This promoting factor was sensitive to heat at neutral pH, but resisted after heating at pH4. An activity inducing NGF synthesis, and displaying a comparable thermal sensitivity was also detected in Cohn fraction IV of human or bovine plasma.  相似文献   

11.
Nerve growth factor (NGF) is a well established target-derived trophic factor supporting sympathetic and sensory innervation in the peripheral tissues as well as cholinergic innervation in the brain. Despite its name, NGF may have broader biological functions early in development in a wide range of non-neuronal differentiating cells. The many effects of NGF are directly dependent on initial binding of NGF to specific plasma membrane receptors on target cells. Here we use immunohistochemical methods to show that NGF and its receptor (NGF-R) are localized in a variety of embryonic epithelial and mesenchymal cells in the rat developing molar tooth. Dental cells known to play important roles in morphogenesis and inductive tissue interactions show NGF-like reactivity. Thus, labelling is seen in epithelial preameloblasts and mesenchymal odontoblasts. We also show a transient expression of NGF-R in restricted parts of the dental epithelium (inner dental epithelium) and dental mesenchyme differentiating cells (post-mitotic, polarizing odontoblasts). The expression patterns of NGF are different to those of NGF-R during embryogenesis and this is illustrated in detail in the developing tooth. The histochemical findings reported here support the notion that NGF may have multiple roles during morphogenetic and cytodifferentiation events in the tooth.  相似文献   

12.
The proliferative activity of thymocytes cultured with IL-2 and submitogenic concentrations of PHA is increased by 3- to 10-fold in the presence of IL-4. In contrast, IL-4 alone is unable to induce proliferative activity in thymocyte cultures and its synergistic activity is only apparent to concentrations of IL-2 above 1 U/ml. The costimulatory activity of IL-4 is abrogated by the monoclonal anti-IL-4 antibody 11B11. Furthermore, potentiation of the IL-2-mediated thymocyte proliferation is not seen with IL-1, IL-3, IFN-gamma, and granulocyte-macrophage CSF. Thymocytes are at least as responsive to IL-4 as B cells and the IL-4 costimulatory activity in fractionated thymocytes appears to be restricted mainly to the Lyt-2+/L3T4- population. In contrast, purified resting mature T cells do not respond to IL-4 plus IL-2, although they did proliferate in response to IL-4 in combination with PMA. These findings indicate that thymocytes and mature T cells are responsive to the costimulatory activity of IL-4 under quite different conditions, and that IL-4 may play an important role in thymocyte maturation in the thymus.  相似文献   

13.
During alpaca testis development and spermatogenesis, nerve growth factor (NGF) may play an important role. The main aim of this study was to determine the expression and localization of NGF in the alpaca testis, and to discuss the important role of NGF in alpaca reproductive characteristics. Immunohistochemical staining technique and real-time PCR were used. The expression of NGF in the same cells one-month old (newborn) alpacas 12-month, and 24-month old alpacas showed significant differences (p < 0.05); 12- and 24-month old alpacas showed no significant differences (p > 0.05); NGF at different cell stages showed no significant differences (p > 0.05). It suggests that NGF may be involved in the regulation of spermatogenesis, which provides direct evidence for NGF action in the alpaca testis during postnatal development and spermatogenesis.  相似文献   

14.
15.
16.
17.
The developmental expression of nerve growth factor (NGF) receptor was quantitated in either homogenates or plasma membrane-enriched preparations from whole rat embryos or from isolated tissues. The assay involved crosslinking 125I-NGF to receptors followed by immunoprecipitation with a monoclonal antibody to rat NGF receptor. In some cases, the pellet was resuspended and subjected to a sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) autoradiographic analysis. The NGF receptor was found in whole embryo homogenates as early as embryonic Day 10 (E10) (earliest age examined). The NGF receptor content in whole embryos per milligram protein increased about 3-fold from E11 to E18 and decreased slightly at E20. SDS-PAGE autoradiography showed that the molecular weights of 125I-NGF-bound receptors did not vary with age. The NGF receptor content in sciatic nerve homogenates decreased 23-fold from newborn to adulthood. The change of NGF receptor level in hindleg muscle had a profile similar to that seen in sciatic nerve. The NGF receptor content in superior cervical ganglion (SCG) or dorsal root ganglion (DRG) homogenate preparations was expressed in two ways. On a per milligram protein basis, in SCG, the receptor density was decreased slightly from E20 to adulthood; in DRG, it was relatively constant from E15 through postnatal Day 0 (PND-0) and then dropped 6.7-fold in adults. On a per ganglion basis, in SCG, it increased 4.4-fold from E20 to adult; in DRG, it increased 9-fold from E15 to PND-0 and then stayed constant through adulthood. In brain membrane preparations, the NGF receptor level decreased 11-fold from E15 to adulthood. In spinal cord membrane preparations, it decreased 7-fold from E18 to adulthood. Levels of receptor in cord were always greater than in brain. These data suggest that alterations in the NGF receptor density may have a role in changes in tissue responsiveness to NGF during development.  相似文献   

18.
Ganglioside GM1 has been considered to have a neurotrophic factor-like activity. To analyze the effects of endogenously generated GM1, the rat pheochromocytoma cell line PC12 was transfected with the GM1/GD1b/GA1 synthase gene and showed increased expression levels of GM1. To our surprise, GM1+-transfectant cells (GM1+ cells) showed no neurite formation after stimulation with nerve growth factor (NGF). Autophosphorylation of NGF receptor TrkA and activation of ERK1/2 after NGF treatment were scarcely detected in GM1+ cells. Binding of 125I-NGF to PC12 cells was almost equivalent between GM1+ cells and controls. However, dimer formation of TrkA upon NGF treatment was markedly suppressed in GM1+ cells in both cross-linking analysis with Bis(sulfosuccinimidyl)suberate 3 and 125I-NGF binding assay. The sucrose density gradient fractionation of the cell lysate revealed that TrkA primarily located in the lipid raft fraction moved to the non-raft fraction in GM1+ cells. p75NTR and Ras also moved from the raft to non-raft fraction in GM1+ cells, whereas flotillin and GM1 persistently resided in the lipid raft. TrkA kinase activity was differentially regulated when GM1 was added to the kinase assay system in vitro, suggesting suppressive/enhancing effects of GM1 on NGF signals based on the concentration. Measurement of fluorescence recovery after photobleaching revealed that the membrane fluidity was reduced in GM1+ cells. These results suggested that overexpressed GM1 suppresses the differentiation signals mediated by NGF/TrkA by modulating the properties of the lipid raft and the intracellular localization of NGF receptors and relevant signaling molecules.  相似文献   

19.
Imaginal disc growth factor (IDGF) is a soluble polypeptide growth factor that was first identified from the conditioned medium of Drosophilia imaginal disc C1.8+ cells. Working with insulin, IDGF stimulated the growth of cultured imaginal disk cells, which suggested that IDGF might function as a cofactor of Drosophila insulin or insulin like peptide. Here we report a new member of the IDGF family, named MbIDGF, from the cabbage armyworm, Mamestra brassicae. Using a cloned cDNA of MbIDGF, recombinant MbIDGF protein was expressed in baculovirus-infected Sf9 cells and purified. Without insulin, the recombinant MbIDGF protein stimulated cell growth of SES-MaBr-4 and NIAS-MaBr-93 cell lines that were derived from the fat bodies and hemocytes of M. brassicae, in a dose-dependent manner. The saturation of growth stimulation by MbIDGF was attained for the two types of cells at 80 ng/ml (0.8 nM) and 300 ng/ml (6 nM), respectively. The results suggest that MbIDGF may stimulate the growth of lepidopteran cells by a new mechanism without associating with the insulin pathway.  相似文献   

20.
The arrival of sensory fibers in developing mouse skin has been demonstrated to coincide precisely with the initiation of nerve growth factor (NGF) synthesis in the skin (Davies et al., 1987). This temporal correlation suggested that the arrival of sensory fibers might initiate NGF synthesis in their target tissues. Here we have eliminated the sensory and motor neurons projecting to the chick leg by the removal of the neural primordia in 3-day-old embryos. The levels of mRNA NGF of intact and denervated leg skin were identical, indicating that the developmental regulation of NGF synthesis in the skin of chick embryos is independent of its innervation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号