首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of divalent cations--Co2+, Cu2+, Mn2+ and Ni2+ (5 mM) on the activity of actomyosin complex ATPase and ATPase of subfragment-1 (S1,head) of myosin from smooth muscle of the uterus was studied. It has been shown that Co2+, Mn2+ and Ni2+ inhibited, while Cu2+ activates the enzyme activity of both actomyosin and myosin S1. Mg and Mn ions had practically no effect on the emission intensity of eosin Y associated with actomyosin, while one could observe the most marked suppression of emission of related fluorescent probe in the presence of Cu cations and less pronounced suppression in the presence of Co2+. In the presence of Mn, Co and Ni cations the average hydrodynamic diameter (HD) of actomyosin complex and of subfragment-1 of the smooth muscle of the uterus is virtually identical to the HD in the presence of Mg2+. In the presence of Cu cations there is a considerable (ten-fold) increase in the size of the protein particles that may be a result of their aggregation. The results obtained evidence for the significant changes in the structure and function of the actomyosin complex of the myometrium in the presence of heavy metals and allow us to assume that the target of the effect of these metals on the contractile proteins is a subfragment-1 of myosin, where the active site of ATPase and actin-binding sites are localized.  相似文献   

2.
The eosin Y inhibitory effect on the activity of smooth muscle plasma membrane Ca(2+)-transporting ATPase was studied: effect of this inhibitor on the maximal initial rate of ATP-hydrolase reaction, catalyzed by Ca2+, Mg(2+)-ATPase, on the affinity of enzyme for the reaction reagents (Ca2+, Mg2+, ATP). Dependence of eosin Y inhibitory effect on some physicochemical factors of incubation medium was studied too. It was determined that eosin Y inhibited reversibly and with high specificity purified Ca2+, Mg(2+)-ATPase solubilized from myometrial cell plasma membrane (Ki--0.8 microM), decreased the turnover rate of this enzyme determined both by Mg2+, ATP and Ca2+. This inhibitor had no effect on the enzyme affinity for Ca2+, increased affinity for Mg2+ and decreased affinity for ATP. It was determined that inhibition of Ca2+, Mg(2+)-ATPase by eosin Y depended on pH and dielectric permeability of the incubation medium: increasing of pH from 6.5 to 8.0 reduced the apparent Ki, decreasing of dielectric permeability from 74.07 to 71.19 increased the apparent Ki.  相似文献   

3.
Investigation the influence of calyx[4]arenes C-90, C-91, C-97 and C-99 (codes are indicated) on the enzymatic activity of four functionally different Mg2+ -dependent ATPases from smooth muscle of the uterus: actomyosin ATPase, transporting Ca2+, Mg2+ -ATPase, ouabain-sensible Na+, K+ -ATPase and basal Mg2+ -ATPase. It was shown that calixarenes C-90 and C-91 in concentration 100 microM act multidirectionally on the functionally different Mg2+ -dependent ATP-hydrolase enzymatic systems. These compounds activate effectively the actomyosin ATPase (Ka = 52 +/- 11 microM [Ukrainian character: see text] 8 +/- 2 microM, accordingly), at the same time calixarene C-90 inhibited effectively activity of transporting Ca2+, Mg2+ -ATPase of plasmatic membranes (I(0,5) = 34.6 +/- 6.4 microM), but influence on membrane-bound Na+, K+ -ATPase and basal Mg2+ -ATPase. Calixarene C-91 reduce effectively basal Mg2+ -ATPase activity, insignificantly activating Na+, K+ -ATPase but has no influence on transporting Ca2+, Mg2+ -ATPase activity of plasmatic membranes. Calixarenes C-97 and C-99 (100 microM), which have similar structure, have monodirectional influence on activity of three functionally different Mg2+-dependent ATPases of the myometrium: actomyosin ATPase and two ATPases, that related to the ATP-hydrolases of P-type--Ca2+, Mg2+ -ATPase and Na+, K+ -ATPase of plasmatic membranes. Basal Mg2+ -ATPase is resistant to the action of these two connections. Results of comparative experiments that were obtained by catalytic titration of calixarenes C-97 and C-99 by actomyosin ATPase (I(0,5) = 88 +/- 9 and 86 +/- 8 microM accordingly) and Na+, K+ -ATPase from plasmatic membranes (I(0,5) = 33 +/- 4 and 98 +/- 8 nM accordingly) indicate to the considerably more sensitiveness of Na+, K+ -ATP-ase to these calixarenes than ATPase of contractile proteins. Thus, it is shown that calixarenes have influence on activity of a number of important enzymes, involved in functioning of the smooth muscle of the uterus and related to energy-supplies of the process of the muscle contracting and support of intracellular ionic homeostasis. The obtained results can be useful in further researches, directed at the use of calixarenes as pharmaceutical substance, able to normalize the contractile function of the uterus at some pregnancy pathologies in women's.  相似文献   

4.
Research of pH-dependence of inhibitory action of eosin Y (2',4',5',7'-tetrabromofluorescin) on ATPase of contractile proteins of smooth muscles of the uterus has shown that the increase of concentration of this inhibitor (from 0.1 to 10 microM) influenced the profile of pH-dependence of ATPase activity of actomyosin: in the presence of 0.1 microM eosin Y the change of optimal value of pH has been observed in more sour side in relation to the control; at the increase of concentration of eosin Y (from 0.5 to 10 microM) the strongly pronounced optimum of pH is absents in general. The ability of eosin Y to inhibit the ATPase activity of contractile complex is dependent on pH of incubation environment. The change of pH from 6.0 to 7.2 results in a 9-fold decrease of magnitude of apparent constant of inhibition Ki (from 6.5 +/- 0.8 microM to 0.74 +/- 0.07 microM). The obtained results indicate that the diminishing of concentration of H+ in an incubation environment favors the increase of affinity ATPase of actomyosin for eosin Y and prove the important role of ionization processes in the system "enzyme-substrate-inhibitor" for realization of inhibitory action of eosin Y.  相似文献   

5.
Eosin Y was studied with the aim to elucidate the mechanism of its inhibitory effect on the activity of Ca(2+)-transporting ATPase of myometrium cell plasma membrane. The inhibitor was studied for its effect on the maximal rate of the ATP-hydrolase reaction catalyzed by Ca2+, Mg(2+)-ATPase, on the enzyme affinity for the substrate and a possibility of enzyme activity protection under the inhibitor effect by the main reagents of ATP-hydrolase reaction. It was established that eosin Y decreased the turnover rate of this enzyme and his affinity for ATP. Preincubation of ATPase with ATP (or ATP plus MgCl2) had no effect on the extent of enzyme inhibition by eosin Y. This result proves that eosin Y and ATP do not compete for the site of binding on the enzyme.  相似文献   

6.
The effect of eosin Y (2,4,5,7 - tetrabromofluorescein; 0.1-100 microM) on ATPase activity smooth muscle actomyosine was studied. The inhibition coefficient i50 of ATPase activity with eosin Y was 0.74 +/- 0.07 microM. The inhibitor decreased V(max) of actomyosine ATPase for ATP, but no influence on affinity of actomyosine for ATP was observed. It is suggested that eosin Y inhibits actomyosine ATPase activity noncompetitively in respect of ATP.  相似文献   

7.
With the aim of comparative estimation of efficacy of well-known inhibitors of energy-dependent Ca(2+)-transporting systems their effects were investigated on the activity of purified Ca2+, Mg(2+)-ATPase of the myometrium cell plasma membranes. From the approved inhibitors (eosin Y, o-vanadate, thapsigargin, cyclopiazonic acid, ruthenium red, sodium azide) only eosin Y and o-vanadate are potent inhibitors of myometrium sarcolemma Ca(2+)-pump: the values of Ki equal 0.8 and 4.7 microM, respectively. Thapsigargin and cyclopiazonic acid as well as ruthenium red in concentrations inhibiting, respectively, endo(sarco)plasmic reticulum Ca(2+)-pump and energy-dependent Ca(2+)-transport in mitochondria had no effect on the Ca2+, Mg(2+)-ATPase of the uterus smooth muscle cell plasma membrane. Sodium azide (10 mM) blocking completely Ca(2+)-transport in mitochondria inhibited activity of the plasma membrane Ca(2+)-transporting ATPase by 14%.  相似文献   

8.
1. The enzymic properties of myosin isolated from chicken gizzard by three different methods have been compared. 2. Although the specific Ca2+-stimulated ATPases of all preparations were similar and high, there were significant differences in the specific activities of the Mg2+-stimulated actomyosin ATPases. 3. There was no direct correlation between the Mg2+-stimulated actomyosin ATPase activity and the extent of P-light-chain phosphorylation in any of the three myosin preparations. 4. A fraction that activates the Mg2+-stimulated actomyosin ATPase of gizzard muscle has been isolated from a gizzard muscle filament preparation. 5. The activator was specific for the Mg2+-activated actomyosin ATPase of smooth muscle. 6. The activator required the addition of calmodulin for full effect.  相似文献   

9.
The investigation of pH-dependence of superprecipitation reaction and ATPase activity of myometrium actomyosin in the interval of pH 5.5-8.0 has detected cupola-shaped curves with maximal activity of both processes by pH 6.5. On the basis of calculating the constants of ionization it was supposed that in the case of actomyosin ATPase imidazole groups of two histidins had an essential role in reaction of ATP hydrolysis and in superprecipitation process--imidazol group of histidine and carboxyl group of asparagin acid. The investigation of [ATP]- and [Mg2+]-dependence of superprecipitation reaction by pH 6.0, 6.5 and 7.0 has demonstrated different pH-sensitiveness of Michaelis constants and maximal speeds relatively Mg2+ and ATP for both processes. It was shown that pH-optimum of ATPase activity of myometrium actomyosin coincided with maximal affinity of actomyosin with ATP and Mg2+ while as for superprecipitation reaction the correlation between value of process by certain pH and affinity with ATP and Mg2+ was not detected.  相似文献   

10.
The effect of eosin Y (2',4',5',7'-tetrabromofluorescin) on basic kinetic parameters of the reaction of Mg2+ -dependent hydrolysis of ATP catalysed "basal" Mg2+ -ATPase myometrial cells plasma membrane has been studied. The eosin Y (10-100 microM) inhibited initial maximal velocity of the "basal" Mg2+ -ATPase of plasma membrane assayed for Mg2+ and ATP. At the same time the given inhibitor reduces the affinity of Mg2+ -ATPase for ATP. However, the difficult effect of the inhibitor action is observed for Mg ions: eosin Y in concentration of 10-50 microM increases the enzyme affinity for the ion-activator, while in concentration of 100 microM the affinity of Mg2+ -ATPase for Mg2+ is reduced. An analysis of eosin Y effect on catalytic efficiency of "basal" Mg2+ -ATPase of plasma membrane has shown, that at saturating concentrations of ATP (1 mM) the enzyme activity is less sensitive to the action of inhibitor. On this basis the conclusion is made that ATP in high concentrations can compete with eosin Y for active centre of Mg2+ -ATPase of smooth muscle cells plasma membrane.  相似文献   

11.
Effect of endogenous polyamine spermine, a relaxant of smooth muscle, on the activity of myometrium cell plasma membrane Ca2+, Mg(2+)-ATPase was studied. It was observed a tendency to activation of enzyme at the spermine concentrations 0.1-0.5 mM, the increase of the polyamine concentrations up to 10 mM inhibited. ATPase by 80% (I50 = 5.5 +/- 0.3 mM). Spermine inhibited enzyme decreasing its turnover rate and affinity for Ca2+. The ATPase affinity for Mg2+ increased in the presence of spermine. It was revealed, that the inhibitory effect of spermine is changed by the stimulatory effect under the increase of Ca2+ concentration (up to 2.6 microM), that correlates with the relaxing effect of this polyamine on the smooth muscle.  相似文献   

12.
With the aim to elucidate mechanism of eosin Y inhibitory effect on the Ca(2+)-transporting ATPase activity of myometrial cell plasma membrane effect of this inhibitor on the maximal initial rate of ATP hydrolysis reaction, catalyzed by Ca2+, Mg(2+)-ATPase, and on the enzyme affinity for Ca2+ was studied. It was established that eosin Y decreased the rate of Ca2+, Mg(2+)-ATPase catalitic turnover determined by Ca2+ and had no effect on enzyme affinity for this cation.  相似文献   

13.
Myosin was purified from ovine uterine smooth muscle. The 20,000 dalton myosin light chain was phosphorylated to varying degrees by an endogenous Ca2+ dependent kinase. The kinase and endogenous phosphatases were then removed via column chromatography. In the absence of actin neither the size of the initial phosphate burst nor the steady state Mg2+-dependent ATPase activity were affected by phosphorylation. However, phosphorylation was required for actin to increase the Mg2+-dependent ATPase activity and for the myosin to superprecipitate with actin. Ca2+ did not affect the Mg2+-dependent ATPase activity in the presence or absence of action or the rate or extent of superprecipitation with actin once phosphorylation was obtained. These data indicate that: 1) phosphorylation of the 20,000 dalton myosin light chain controls the uterine smooth muscle actomyosin interaction, 2) in the absence of actin, phosphorylation does not affect either the ATPase of myosin or the size of the initial burst of phosphate and, 3) Ca2+ is important in controlling the light chain kinase but not the actomyosin interaction.  相似文献   

14.
H Miyata  S Chacko 《Biochemistry》1986,25(9):2725-2729
The binding of gizzard tropomyosin to gizzard F-actin is highly dependent on free Mg2+ concentration. At 2 mM free Mg2+, a concentration at which actin-activated ATPase activity was shown to be Ca2+ sensitive, a molar ratio of 1:3 (tropomyosin:actin monomer) is required to saturate the F-actin with tropomyosin to the stoichiometric ratio of 1 mol of tropomyosin to 7 mol of actin monomer. Increasing the Mg2+ could decrease the amount of tropomyosin required for saturating the F-actin filament to the stoichiometric level. Analysis of the binding of smooth muscle tropomyosin to smooth muscle actin by the use of Scatchard plots indicates that the binding exhibits strong positive cooperativity at all Mg2+ concentrations. Calcium has no effect on the binding of tropomyosin to actin, irrespective of the free Mg2+ concentration. However, maximal activation of the smooth muscle actomyosin ATPase in low free Mg2+ requires the presence of Ca2+ and stoichiometric binding of tropomyosin to actin. The lack of effect of Ca2+ on the binding of tropomyosin to actin shows that the activation of actomyosin ATPase by Ca2+ in the presence of tropomyosin is not due to a calcium-mediated binding of tropomyosin to actin.  相似文献   

15.
We could show an ATPase in mitochondrial and microsomal fractions of sheep arteria carotis communis and arteria coronaria of cattle which can be stimulated by Ca2+ of Mg2+, respectively. The enzyme has a higher affinity for Ca2+ than for Mg2+. The maximum activity of the Mg(Ca)-ATPase was found at 2-4 mM Ca2+ or Mg2+, respectively. Higher concentrations of these ions inhibit the enzyme. Mn2+, Sr2+ and Co2+ can substitute Ca2+ in splitting of ATP by the ATPase of both fractions of ateria coronaria of cattle. The ions K+ and Na+, variation of temperature and pH and a variety of pharmacological active compounds has the same effect on the ATPase stimulated by Ca2+ or Mg2+. These findings prove that Ca2+ and Mg2+ act at the same site of the ATPase of the mitochondrial and microsomal fraction of vascular smooth muscle.  相似文献   

16.
The apparent Mg2+-activated ATPase activity measured by the continuous NADH-coupled enzyme assay was studied in a number of microsomal preparations obtained from smooth muscle of the myometrium from pregnant or 17 beta-oestradiol-pretreated rats, the bovine aorta, the guinea-pig taenia coli, the rabbit ear artery and pig antrum. It was shown that this ATPase assay is prone to the effects of a number of artefacts that are tissue-dependent. The apparent Mg2+-ATPase activity in microsomes (microsomal fractions) from myometrium, aorta and taenia coli declines non-linearly during the assay. Its initial high rate gradually diminishes over 15-60 min, depending on the type of smooth muscle, to a constant value. This decline depends on the presence of ATP and can be partially prevented by concanavalin A. The non-linearity is limited in microsomes from rabbit ear artery. In microsomes from antrum the apparent Mg2+-ATPase activity actually increases with time, albeit gradually. Storage on ice of the microsomes of the aorta, and especially of myometrium of pregnant rats and of taenia coli, is accompanied over a few hours after their preparation by a gradual suppression of the component of the Mg2+-ATPase activity that is inhibited by ATP. The Mg2+-ATPase activity in microsomes from antrum remains constant. NADH oxidase activity accounts for 10% of the Mg2+-ATPase activity in microsomes from stomach smooth muscle. The apparent initial non-linearity of the Mg2+-ATPase activity in that tissue is due to a time-dependent decrease of a rotenone-sensitive NADH oxidase activity. The adenylate kinase activity, as deduced from the effect of the adenylate kinase inhibitor P1,P5-di(adenosine-5') pentaphosphate, could account for 45.0, 35.0 and 31.0% respectively of the Mg2+-ATPase activity in microsomes from stomach, myometrium and aorta. No adenylate kinase activity could be detected in microsomes from ear artery and taenia coli. When microsomes from stomach smooth muscle were separated on a sucrose gradient, the contribution of adenylate kinase and NADH oxidase to the Mg2+-ATPase activity was most pronounced in the higher-density fractions. Part of the NADH oxidase activity and of the Mg2+-ATPase activity, and most of the adenylate kinase activity, are not sedimented at 224000 gmax. for 30 min and may therefore be present as soluble enzymes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Approximately 8-10 mg of highly actin-activatable, CA2+-sensitive Acanthamoeba myosin II can be isolated in greater than 98% purity from 100 g of amoeba by the new procedure described in detail in this paper. The enzyme isolated by this procedure can be activated by actin because its heavy chains are not fully phosphorylated (Collins, J. H., and Korn, E. D. (1980) J. Biol Chem. 255, 8011-8014). We now show that Acanthamoeba myosin II Mg2+-ATPase activity is more highly activated by Acanthamoeba actin than by muscle actin. Also, actomyosin II ATPase is inactive at concentrations of free Mg2+ lower than about 3 mM and fully active at Mg2+ concentrations greater than 4 mM. Actomyosin II Mg2+-ATPase activity is stimulated by micromolar Ca2+ when assayed over the narrow range of about 3-4 mM Mg2+ but is not affected by Ca2+ at either lower or higher concentrations of Mg2+. The specific activity of te actomyosin II Mg2+-ATPase also increases with increasing concentrations of myosin II when the free Mg2+ concentration is in the range of 3-4 mM but is independent of the myosin II concentration at lower or higher concentrations of Mg2+ . This marked effect of the Mg2+ concentration on the Ca2+-sensitivity and myosin concentration-dependence of th specific activity of actomyosin II ATPase activity does not seem to be related to the formation of myosin filaments, and to be related to the formation of myosin filaments, and myosin II is insoluble only at high concentrations of free Mg2+ (6-7 mM) were neither of these effects is observed. Also, the Mg2+ requirements for actomyosin II ATPase activity and myosin II insolubility can be differentially modified by EDTA and sucrose.  相似文献   

18.
The contractile system of smooth muscle exhibits distinctive responses to varying Mg2+ concentrations in that maximum adenosine-5'-triphosphatase (ATPase) activity of actomyosin requires relatively high concentrations of Mg2+ and also that tension in skinned smooth muscle fibers can be induced in the absence of Ca2+ by high Mg2+ concentrations. We have examined the effects of MgCl2 on actomyosin ATPase activity and on tension development in skinned gizzard fibers and suggest that the MgCl2-induced changes may be correlated to shifts in myosin conformation. At low concentrations of free Mg2+ (less than or equal to 1 mM) the actin-activated ATPase activity of phosphorylated turkey gizzard myosin is reduced and is increased as the Mg2+ concentration is raised. The increase in Mg2+ (over a range of 1-10 mM added MgCl2) induces the conversion of 10S phosphorylated myosin to the 6S form, and it was found that the proportion of myosin as 10S is inversely related to the level of actin-activated ATPase activity. Activation of the actin-activated ATPase activity also occurs with dephosphorylated myosin but at higher MgCl2 concentrations, between 10 and 40 mM added MgCl2. Viscosity and fluorescence measurements indicate that increasing Mg2+ levels over this concentration range favor the formation of the 6S conformation of dephosphorylated myosin, and it is proposed that the 10S to 6S transition is a prerequisite for the observed activation of ATPase activity. With glycerinated chicken gizzard fibers high MgCl2 concentrations (6-20 mM) promote tension in the absence of Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Plasma membrane enriched fraction isolated from the fundus smooth muscle of rat stomach displayed Ca2+-stimulated ATPase activity in the absence of Mg2+. The Ca2+ dependence of such an ATPase activity can be resolved into two hyperbolic components with a high affinity (Km = 0.4 microM) and a low affinity (Km = 0.6 mM) for Ca2+. Distribution of these high-affinity and low-affinity Ca2+-ATPase activities parallels those of several plasma membrane marker enzyme activities but not those of endoplasmic reticulum and mitochondrial membrane marker enzyme activities. Mg2+ also stimulates the ATPase in the absence of Ca2+. Unlike the Mg2+-ATPase and low-affinity Ca2+-ATPase, the plasmalemmal high-affinity Ca2+-ATPase is not sensitive to the inhibitory effect of sodium azide or Triton X-100 treatment. The high-affinity Ca2+-ATPase is noncompetitively inhibited by Mg2+ with respect to Ca2+ stimulation. Such an inhibitory effect of Mg2+ is potentiated by Triton X-100 treatment of the membrane fraction. Calmodulin has little effect on the high-affinity Ca2+-ATPase activity of the plasma membrane enriched fraction with or without EDTA pretreatment. Findings of this novel, Mg2+-independent, high-affinity Ca2+-ATPase activity in the rat stomach smooth muscle plasma membrane are discussed with those of Mg2+-dependent, high-affinity Ca2+-ATPase activities previously reported in other smooth muscle plasma membrane preparations in relation to the plasma membrane Ca2+-pump.  相似文献   

20.
The ability of the aliphatic polyamines to inhibit [figure: see text] the ATPase activity of smooth muscle actomyosine satisfies the succession: spermine > spermidine > putrescine that is correlated with magnitude of positive charge at physiological value of pH. The most effective inhibitor of the ATP hydrolysis process is the spermine, which highest inhibitory action is manifested at 10(-3) M concentration, in lesser concentration (10(-5) M) activates the actomyosine ATPase. While defining the kinetic parameters of the ATP hydrolysis reaction catalyzed by uterus myometrium the correlation between inhibiting the ATPase activity of myometrium contractile complex under introduction into the incubation medium of 10(-3) M spermine and decreasing the affinity of actomyosine for ATP was made; the activating effect of spermine on ATPase activity of actomyosine complex in the presence of 10(-5) M spermine correlated with the increase of actomyosine affinity for Mg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号