首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian neuroglobin (Ngb) protects neuronal cells under conditions of oxidative stress. The mechanism underlying this function is only partly understood. Here, we report that human Ngb exists in lipid rafts only during oxidative stress and that lipid rafts are crucial for neuroprotection by Ngb. The ferrous oxygen-bound form of Ngb, which exists under normoxia, is converted to the ferric bis-His conformation during oxidative stress, inducing large tertiary structural changes. We clarified that ferric bis-His Ngb, but not ferrous ligand-bound Ngb, specifically binds to flotillin-1, a lipid raft microdomain-associated protein, as well as to α-subunits of heterotrimeric G proteins (Gα(i/o)). Moreover, we found that human ferric bis-His Ngb acts as a guanine nucleotide dissociation inhibitor for Gα(i/o) that has been modified by oxidative stress. In addition, our data shows that Ngb inhibits the decrease in cAMP concentration that occurs under oxidative stress, leading to protection against cell death. Furthermore, by using a mutated Ngb protein that cannot form the bis-His conformation, we demonstrate that the oxidative stress-induced structural changes of human Ngb are essential for its neuroprotective activity.  相似文献   

2.
Wakasugi K  Morishima I 《Biochemistry》2005,44(8):2943-2948
Neuroglobin (Ngb) is a recently discovered vertebrate heme protein that is expressed in the brain and can reversibly bind oxygen. We previously demonstrated that ferric human Ngb binds to the alpha-subunits of heterotrimeric G proteins (Galpha) and acts as a guanine nucleotide dissociation inhibitor (GDI) for Galpha. Here we have investigated the interaction between Ngb and Galpha in more detail. We report that zebrafish Ngb, which shares about 50% amino acid sequence identity with human Ngb, does not have a GDI activity for Galpha. By carrying out exon swapping between zebrafish and human Ngb and site-directed mutagenesis, we have identified several residues that are crucial for the GDI activity of human Ngb.  相似文献   

3.
Oxidized human neuroglobin (Ngb), a heme protein expressed in the brain, has been proposed to act as a guanine nucleotide dissociation inhibitor (GDI) for the GDP-bound form of the heterotrimeric G protein alpha-subunit (Galpha(i)). Here, to elucidate the molecular mechanism underlying the GDI activity of Ngb, we used an glutathione-S-transferase pull-down assay to confirm that Ngb competes with G-protein betagamma-subunits (Gbetagamma) for binding to Galpha(i), and identified the Galpha(i)-binding site in Ngb by chemical cross-linking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and sulfo-N-hydroxysuccinimide, coupled with mass spectrometry (MS). Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS analysis for tryptic peptides derived from the cross-linked Ngb-Galpha(i) complex revealed several binding regions in Ngb. Furthermore, MALDI-TOF/TOF MS analysis of the cross-linked Ngb and Galpha(i) peptides, together with the MS/MS scoring method, predicted cross-linking between Glu60 (Ngb) and Ser206 (Galpha(i)), and between Glu53 (Ngb) and Ser44 (Galpha(i)). Because Ser206 of Galpha(i) is located in the region that contacts Gbetagamma, binding of Ngb could facilitate the release of Gbetagamma from Galpha(i). Binding of Ngb to Galpha(i) would also inhibit the exchange of GDP for GTP, because Ser44 (Galpha(i)) is adjacent to the GDP-binding site and Glu53 (Ngb), which is cross-linked to Ser44 (Galpha(i)), could be located close to GDP. Thus, we have identified, for the first time, the sites of interaction between Ngb and Galpha(i), enabling us to discuss the functional significance of this binding on the GDI activity of Ngb.  相似文献   

4.
Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes   总被引:1,自引:0,他引:1  
Flotillin-1 was recently shown to be enriched on detergent-resistant domains of the plasma membrane called lipid rafts. These rafts, enriched in sphingolipids and cholesterol, sequester certain proteins while excluding others. Lipid rafts have been implicated in numerous cellular processes including signal transduction, membrane trafficking, and molecular sorting. In this study, we demonstrate both morphologically and biochemically that lipid rafts are present on phagosomes. These structures are enriched in flotillin-1 and devoid of the main phagosomes membrane protein lysosomal-associated membrane protein (LAMP1). The flotillin-1 present on phagosomes does not originate from the plasma membrane during phagocytosis but accumulates gradually on maturing phagosomes. Treatment with bafilomycin A1, a compound that inhibits the proton pump ATPase and prevents the fusion of phagosomes with late endocytic organelles, prevents the acquisition of flotillin-1 by phagosomes, indicating that this protein might be recruited on phagosomes from endosomal organelles. A proteomic characterization of the lipid rafts of phagosomes indicates that actin, the alpha- and beta-subunits of heterotrimeric G proteins, as well as subunits of the proton pump V-ATPase are among the constituents of these domains. Remarkably, the intracellular parasite Leishmania donovani can actively inhibit the acquisition of flotillin-1-enriched lipid rafts by phagosomes and the maturation of these organelles. These results indicate that specialized functions required for phagolysosome biogenesis may occur at focal points on the phagosome membrane, and therefore represent a potential target of intracellular pathogens.  相似文献   

5.
To assess intestinal lipid rafts functions through the characterization of their protein markers, we have isolated lipid rafts of rat mucosa either from the total membrane or purified brush-border membrane (BBM) by sucrose gradient fractionation after detergent treatment. In both membrane preparations, the floating fractions (4-5) were enriched in cholesterol, ganglioside GM1, and N aminopeptidase (NAP) known as intestinal lipid rafts markers. Based on MALDI-TOF/MS identification and simultaneous detection by immunoblotting, 12 proteins from BBM cleared from contaminants were selected as rafts markers. These proteins include several signaling/trafficking proteins belonging to the G protein family and the annexins as well as GPI-anchored proteins. Remarkably GP2, previously described as the pancreatic granule GPI-anchored protein, was found in intestinal lipid rafts. The proteomic strategy assayed on the intestine leads to the characterization of known (NAP, alkaline phosphatase, dipeptidyl aminopeptidase, annexin II, and galectin-4) and new (GP2, annexin IV, XIIIb, Galpha(q), Galpha(11), glutamate receptor, and GPCR 7) lipid rafts markers. Together our results indicate that some digestive enzymes, trafficking and signaling proteins may be functionally distributed in the intestine lipid rafts.  相似文献   

6.
Antisecretory factor (AF) also named S5a/Rpn10 was originally identified through its capacity to inhibit intestinal hypersecretion and was later shown to be a component in the proteasome complex. AF is also a potent anti-inflammatory agent and can act as a neuromodulator. In this study we used yeast two-hybrid screens, with yeast strain PJ692A transformed with the bait vector pGBKT7 (AF aa 1-105) against yeast strain Y187 pretransformed with human brain or placenta cDNA libraries, to identify AF-binding proteins. Flotillin-1 was identified as a specific interacting factor with AF. Immunohistochemistry showed co-localization of AF and flotillin-1 in nervous tissue. Flotillin-1 is an integral membrane protein and a component of lipid rafts, a membrane specialization involved in transport processes. Intracellular AF may affect secretory processes by regulating the localization of signal proteins to lipid rafts.  相似文献   

7.
Large scale production of recombinant human flotillin-2 (reggie-1) is desirable for structural and biochemical studies. However, as the major lipid rafts specific hydrophobic protein, flotillin-2 was difficult to be expressed as soluble and functional form in prokaryotic system. In this study, we first cloned and expressed human flotillin-2 in Escherichia coli with five different fusion tags: poly-histidine, glutathione S-transferase (GST), thioredoxin (TRX), N-Utilization substance (NusA) and maltose binding protein (MBP). We screened the expression level and solubility of the five flotillin-2 fusion proteins, the best MBP tagged flotillin-2 was then large scale produced. The optimized purification procedure included two steps of chromatography: Ni-NTA affinity chromatography and anion exchange chromatography. The typical yield was 36.0 mg soluble and functional recombinant flotillin-2 from 1 L of culture medium with purity above 97%. The activity of recombinant flotillin-2 was verified by pull-down assay with flotillin-1, showing that the purified recombinant flotillin-2 can specifically interact with flotillin-1. The circular dichroism (CD) spectroscopy showed that recombinant flotillin-2 had a very stable secondary structure dominated by α-helix, β-turn and random structure.  相似文献   

8.
Flotillins and caveolins represent two types of resident proteins associated with lipid rafts in mammalian cells, however, their possible cross-talk in regulating lipid raft functions remains poorly understood. In this report, we observed that siRNA-mediated down-regulation of flotillin-1 expression which disrupted lipid raft-mediated endocytosis of BODIPY FL C5-lactosylceramide also substantially decreased caveolin-1 level in SK-CO15 human intestinal epithelial cells. The decrease in caveolin-1 expression appeared to be specific for flotillin-1 knock-down and was not observed after down-regulation of flotillin-2. The decrease in caveolin-1 level in flotillin-1-depleted cells was not due to suppression of its mRNA synthesis and was not mimicked by cholesterol depletion of SK-CO15 cells. Furthermore, flotillin-1 dependent down-regulation of caveolin-1 was reversed after cell exposure to lysosomal inhibitor, chloroquine but not proteosomal inhibitor, MG262. Our data suggest that flotillin-1 regulates caveolin-1 level by preventing its lysosomal degradation in intestinal epithelial cells.  相似文献   

9.
Pig coronary artery smooth muscle expresses, among many other proteins, Na+-Ca2+-exchanger NCX1 and sarcoplasmic reticulum Ca2+ pump SERCA2. NCX1 has been proposed to play a role in refilling the sarcoplasmic reticulum Ca2+ pool suggesting a functional linkage between the two proteins. We hypothesized that this functional linkage may require close apposition of SERCA2 and NCX1 involving regions of plasma membrane like lipid rafts. Lipid rafts are specialized membrane microdomains that appear as platforms to co-localize proteins. To determine the distribution of NCX1, SERCA2 and lipid rafts, we isolated microsomes from the smooth muscle tissue, treated them with non-ionic detergent and obtained fractions of different densities by sucrose density gradient centrifugal flotation. We examined the distribution of NCX1; SERCA2; non-lipid raft plasma membrane marker transferrin receptor protein; lipid raft markers caveolin-1, flotillin-2, prion protein, GM1-gangliosides and cholesterol; and cytoskeletal markers clathrin, actin and myosin. Distribution of markers identified two subsets of lipid rafts that differ in their components. One subset is rich in caveolin-1 and flotillin-2 and the other in GM1-gangliosides, prion protein and cholesterol. NCX1 distribution correlated strongly with SERCA2, caveolin-1 and flotillin-2, less strongly with the other membrane markers and negatively with the cytoskeletal markers. These experiments were repeated with a non-detergent method of treating microsomes with sonication at high pH and similar results were obtained. These observations are consistent with the observed functional linkage between NCX1 and SERCA2 and suggest a role for NCX1 in supplying Ca2+ for refilling the sarcoplasmic reticulum.  相似文献   

10.
The heterotrimeric G proteins, G(12) and G(13), are closely related in their sequences, signaling partners, and cellular effects such as oncogenic transformation and cytoskeletal reorganization. Yet G(12) and G(13) can act through different pathways, bind different proteins, and show opposing actions on some effectors. We investigated the compartmentalization of G(12) and G(13) at the membrane because other G proteins reside in lipid rafts, membrane microdomains enriched in cholesterol and sphingolipids. Lipid rafts were isolated after cold, nonionic detergent extraction of cells and gradient centrifugation. Galpha(12) was in the lipid raft fractions, whereas Galpha(13) was not associated with lipid rafts. Mutation of Cys-11 on Galpha(12), which prevents its palmitoylation, partially shifted Galpha(12) from the lipid rafts. Geldanamycin treatment, which specifically inhibits Hsp90, caused a partial loss of wild-type Galpha(12) and a complete loss of the Cys-11 mutant from the lipid rafts and the appearance of a higher molecular weight form of Galpha(12) in the soluble fractions. These results indicate that acylation and Hsp90 interactions localized Galpha(12) to lipid rafts. Hsp90 may act as both a scaffold and chaperone to maintain a functional Galpha(12) only in discrete membrane domains and thereby explain some of the nonoverlapping functions of G(12) and G(13) and control of these potent cell regulators.  相似文献   

11.
Zebrafish neuroglobin is a cell-membrane-penetrating globin   总被引:1,自引:0,他引:1  
Watanabe S  Wakasugi K 《Biochemistry》2008,47(19):5266-5270
Neuroglobin (Ngb) is a recently discovered vertebrate heme protein that is expressed in the brain and can reversibly bind oxygen. Mammalian Ngb is involved in neuroprotection under oxidative stress conditions, such as ischemia and reperfusion. We previously demonstrated that human ferric Ngb binds to the alpha subunit of heterotrimeric G proteins (Galphai) and acts as a guanine nucleotide dissociation inhibitor (GDI) for Galphai. Recently, we used a protein delivery reagent, Chariot, and demonstrated that the GDI activity of human Ngb is tightly correlated with its neuroprotective activity. In the present study, we found that chimeric ZHHH Ngb, in which module M1 of human Ngb is replaced by that of zebrafish Ngb, protects PC12 cells against oxidative stress-induced cell death even in the absence of Chariot. Using fluorescein isothiocyanate (FITC)-labeled Ngb proteins, we demonstrated that both zebrafish and chimeric ZHHH Ngb can penetrate cell membranes in the absence of Chariot, suggesting that module M1 of zebrafish Ngb can translocate into cells. This is the first report of a native cell-membrane-penetrating globin.  相似文献   

12.
The heterotrimeric G protein alpha q subunit (Galphaq) mediates a variety of cell functions by activating the effector molecule phospholipase Cbeta. Galphaq activity is regulated by G protein betagamma subunits, G protein-coupled receptors, RGS proteins, and Ric-8. In this study, we identified the lipid raft resident proteins, flotillin-1/reggie-2 and flotillin-2/reggie-1, as Galphaq-binding proteins. The interactions of Galphaq and flotillins were independent of the nucleotide-binding state of Galphaq, and the N-terminal portion of flotillins was critical for the interaction. A short interfering RNA-mediated knockdown of flotillins, particularly flotillin-2, attenuated the UTP-induced activation of p38 mitogen-activated protein kinase (MAPK) but not that of ERK1/2. The activation of p38 MAPK was inhibited by the Src family tyrosine kinase inhibitor PP2 and the cholesterol-depleting agent methyl-beta-cyclodextrin, which is generally used for the disruption of lipid rafts. In contrast, the activation of ERK1/2 was not inhibited by these compounds. These lines of evidence suggested that a Gq-coupled receptor activates specifically p38 MAPK through lipid rafts and Src kinase activation, in which flotillins positively modulate the Gq signaling.  相似文献   

13.
Transduction of many cellular signals is mediated by special plasma membrane microdomains that are called lipid rafts. Lipid rafts are dynamic and transient structures; however, they can be stabilized by lipid raft proteins, including the family of flotillins which is represented by flotillin-1 and flotillin-2. Flotillins are expressed in different tissues and may regulate many signalling pathways. However, their role in carcinogenesis remains unclear. The aim of this work was to investigate variations of flotillin-2 expression on mRNA and protein level in lung adenocarcinoma specimens. We also studied the influence of flotillin-2 expression on the characteristics of A549 lung cancer cell line. The level of flotillin-2 mRNA was reduced in the vast majority of investigated adenocarcinoma specimens in comparison to corresponding normal tissues. However, the amount of protein varied widely and was preferentially increased (40%) than decreased (15%). Flotillin-2 overexpression in A549 cell line did not change proliferation but stimulated migration of cultivated cells. Conversely, knockdown of flotillin-2 using small hairpin RNA (shRNA) downregulated proliferation as well as migration of tumor cells. These results indicate that the expression of flotillin-2 changes in human lung adenocarcinoma and that this protein may influence the key characteristics of tumor cells.  相似文献   

14.
Lipid rafts are liquid ordered platforms that dynamically compartmentalize membranes. Caveolins and flotillins constitute a group of proteins that are enriched in these domains. Caveolin-1 has been shown to be an essential component of caveolae. Flotillins were also discovered as an integral component of caveolae and have since been suggested to interact with caveolins. However, flotillins are also expressed in non-caveolae-containing cells such as lymphocytes and neuronal cells. Hence, a discrepancy exists in the literature regarding the caveolin dependence of flotillin expression and their subcellular localization. To address this controversy, we used mouse embryonic fibroblasts (MEFs) from caveolin-1 knockout (Cav-1(-/-)) and wild-type mice to study flotillin expression and localization. Here we show that both membrane association and lipid raft partitioning of flotillins are not perturbed in Cav-1(-/-) MEFs, whereas membrane targeting and raft partitioning of caveolin-2, another caveolin family protein, is severely impaired. Moreover, we demonstrate that flotillin-1, but not flotillin-2, associates with lipid droplets upon oleic acid treatment and that this association is completely independent of caveolin. Taken together, our results show that flotillins are localized in lipid rafts independent of caveolin-1 and that translocation of flotillin-1 to lipid droplets is a caveolin-independent process.  相似文献   

15.
Lipid rafts are detergent-resistant, liquid-ordered microdomains in plasma membranes that are enriched in cholesterol and sphingolipids and involved in intracellular signal transduction, membrane trafficking, and molecular sorting. In this study, we investigated the possibility that lipid rafts on Eimeria tenella sporozoites may act as platforms for host cell invasion. Flotillin-1, a resident protein of lipid rafts, was identified on E. tenella sporozoites and was prominently expressed at the apex of the cells, a region mediating host cell invasion. Pretreatment of sporozoites with antibody against flotillin-1 blocked parasite invasion. Furthermore, the anticoccidial drug, monensin, disrupted the localization of flotillin-1 within raft structures resulting in loss of invasion. We conclude that Eimeria sporozoites utilize lipid rafts containing flotillin-1 for internalization into host cells.  相似文献   

16.
Cross-linking of high-affinity IgE receptors by multivalent Ag on mast cells (rat basophilic leukemia (RBL)-2H3) induces the phosphorylation of ITAM motifs of an IgE receptor by Src family tyrosine kinase, Lyn. The phosphorylation of IgE receptors is followed by a series of intracellular signals, such as Ca(2+) mobilization, MAPK activation, and degranulation. Therefore, Lyn is a key molecule in the activation of mast cells, but the molecular mechanisms for the activation of Lyn are still unclear. Recently, it is suggested that the localization of Lyn in lipid rafts is critical for its activation in several cell lines, although the precise mechanism is still unknown. In this study, we found that flotillin-1, which is localized in lipid rafts, is involved in the process of Lyn activation. We obtained flotillin-1 knockdown (KD)(2) rat basophilic leukemia (RBL)-2H3 cells, which express a low level of flotillin-1. In the flotillin-1 KD cells, we observed a significant decrease in Ca(2+) mobilization, the phosphorylation of ERKs, tyrosine phosphorylation of the gamma-subunit of IgE receptor, and IgE receptor-mediated degranulation. We also found that flotillin-1 is constitutively associated with Lyn in lipid rafts in RBL-2H3 cells, and Ag stimulation induced the augmentation of flotillin-1 binding to Lyn, resulting in enhancement of kinase activity of Lyn. These results suggest that flotillin-1 is an essential molecule in IgE receptor-mediated mast cell activation, and regulates the kinase activity of Lyn in lipid rafts.  相似文献   

17.
Several studies suggest that the plasma membrane is composed of micro-domains of saturated lipids that segregate together to form lipid rafts. Lipid rafts have been operationally defined as cholesterol- and sphingolipid-enriched membrane micro-domains resistant to solubilization by non-ionic detergents at low temperatures. Here we report a biophysical approach aimed at investigating lipid rafts of MDA-MB-231 human breast cancer cells by coupling an atomic force microscopy (AFM) study to biochemical assays namely Western blotting and high performance thin layer chromatography. Lipid rafts were purified by ultracentrifugation on discontinuous sucrose gradient using extraction with Triton X-100. Biochemical analyses proved that the fractions isolated at the 5% and 30% sucrose interface (fractions 5 and 6) have a higher content of cholesterol, sphingomyelin and flotillin-1 with respect to the other purified fractions. Tapping mode AFM imaging of fraction 5 showed membrane patches whose height corresponds to the one awaited for a single lipid bilayer as well as the presence of micro-domains with lateral dimensions in the order of a few hundreds of nanometers. In addition, an AFM study using specific antibodies suggests the presence, in these micro-domains, of a characteristic marker of lipid rafts, the protein flotillin-1.  相似文献   

18.
Neuroglobin (Ngb) is a newly discovered vertebrate heme protein that is expressed in the brain and can reversibly bind oxygen. It has been reported that Ngb expression levels increase in response to oxygen deprivation and that it protects neurons from hypoxia in vitro and in vivo. However, the mechanism of this neuroprotection remains unclear. In the present study, we tried to clarify the neuroprotective role of Ngb under oxidative stress in vitro. By surface plasmon resonance, we found that ferric Ngb, which is generated spontaneously as a result of the rapid autoxidation, binds exclusively to the GDP-bound form of the alpha subunit of heterotrimeric G protein (Galphai). In GDP dissociation assays or guanosine 5'-O-(3-thio)triphosphate binding assays, ferric Ngb behaved as a guanine nucleotide dissociation inhibitor (GDI), inhibiting the rate of exchange of GDP for GTP. The interaction of GDP-bound Galphai with ferric Ngb will liberate Gbetagamma, leading to protection against neuronal death. In contrast, ferrous ligand-bound Ngb under normoxia did not have GDI activities. Taken together, we propose that human Ngb may be a novel oxidative stress-responsive sensor for signal transduction in the brain.  相似文献   

19.
Wakasugi K  Nakano T  Morishima I 《Biochemistry》2004,43(18):5119-5125
Neuroglobin (Ngb) is a newly discovered globin that is expressed in vertebrate brain. It has been reported that Ngb levels increase in neurons in response to oxygen deprivation, and that Ngb protects neurons from hypoxia. However, the mechanism of this neuroprotection remains unclear. In the present study, we identified human cystatin C, a cysteine proteinase inhibitor, as an Ngb-binding protein by using a yeast two-hybrid system. Surface plasmon resonance experiments verified that Ngb binds to cystatin C dimers, not to the monomers. Because both intracellular cystatin C and the amyloidogenic variant of cystatin C form dimers, Ngb may modulate the intracellular transport (or secretion) of cystatin C to protect against neuronal death under conditions of oxidative stress and/or it may have a role in the development of neurodegenerative diseases.  相似文献   

20.
Watanabe S  Wakasugi K 《PloS one》2011,6(2):e16808
Neuroglobin (Ngb) is a recently discovered vertebrate globin that is expressed in the brain and can reversibly bind oxygen. Mammalian Ngb is involved in neuroprotection during oxidative stress that occurs, for example, during ischemia and reperfusion. Recently, we found that zebrafish, but not human, Ngb can translocate into cells. Moreover, we demonstrated that a chimeric ZHHH Ngb protein, in which the module M1 of human Ngb is replaced by the corresponding region of zebrafish Ngb, can penetrate cell membranes and protect cells against oxidative stress-induced cell death, suggesting that module M1 of zebrafish Ngb is important for protein transduction. Furthermore, we recently showed that Lys7, Lys9, Lys21, and Lys23 in module M1 of zebrafish Ngb are crucial for protein transduction activity. In the present study, we have investigated whether module M1 of zebrafish Ngb can be used as a building block to create novel cell-membrane-penetrating folded proteins. First, we engineered a chimeric myoglobin (Mb), in which module M1 of zebrafish Ngb was fused to the N-terminus of full-length human Mb, and investigated its functional and structural properties. Our results showed that this chimeric Mb protein is stable and forms almost the same heme environment and α-helical structure as human wild-type Mb. In addition, we demonstrated that chimeric Mb has a cell-membrane-penetrating activity similar to zebrafish Ngb. Moreover, we found that glycosaminoglycan is crucial for the cell-membrane-penetrating activity of chimeric Mb as well as that of zebrafish Ngb. These results enable us to conclude that such module substitutions will facilitate the design and production of novel functional proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号