首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current methods of determining the rotational diffusion tensors of proteins in solution byNMR spectroscopy exclusively utilize relaxation rate constants for backbone amide 15N spins.However, the distributions of orientations of N-H bond vectors are not isotropic in manyproteins, and correlations between bond vector orientations reduce the accuracy and precisionof rotational diffusion tensors extracted from 15N spin relaxation data. The inclusion of both13C and 15N spin relaxation rate constants increases the robustness of the diffusiontensor analysis because the orientations of the C-H bond vectors differ from theorientations of the N-H bond vectors. Theoretical and experimental results for calbindin D9k,granulocyte colony stimulating factor, and ubiquitin, three proteins with different distributionsof N-H and C-H bond vectors, are used to illustrate the advantages of thesimultaneous utilization of 13C and 15N relaxation data.  相似文献   

2.
The interference between conformational exchange-induced time-dependent variations of chemical shifts in a pair of scalar coupled 1H and 15N spins is used to construct novel TROSY-type NMR experiments to suppress NMR signal loss in [15N,1H]-correlation spectra of a 14-mer DNA duplex free in solution and complexed with the Antp homeodomain. An analysis of double- and zero-quantum relaxation rates of base 1H–15N moieties showed that for certain residues the contribution of conformational exchange-induced transverse relaxation might represent a dominant relaxation mechanism, which, in turn, can be effectively suppressed by TROSY. The use of the new TROSY method for exchange-induced transverse relaxation optimization is illustrated with two new experiments, 2D h1 J HN,h2 J NN-quantitative [15N,1H]-TROSY to measure h1 J HN and h2 J NN scalar coupling constants across hydrogen bonds in nucleic acids, and 2D (h2 J NN+h1 J NH)-correlation-[15N,1H]-TROSY to correlate 1HN chemical shifts of bases with the chemical shifts of the tertiary 15N spins across hydrogen bonds using the sum of the trans-hydrogen bond coupling constants in nucleic acids.  相似文献   

3.
Dynamic properties of electron transfer pathways in a small blue copper cupredoxin are explored using an extensive 15N NMR relaxation study of reduced Pseudomonas aeruginosa azurin at four magnetic fields (500-900 MHz) and at two temperatures chosen well below the melting point of the protein. Following a careful model-free analysis, several protein regions with different dynamic regimes are identified. Nanosecond time-scale mobility characterizes various residues of the hydrophobic surface patch believed to mark the natural entry point for electrons, notably the surface-exposed copper-ligand His117. These findings are consistent with a gated electron transfer process according to the "dynamic docking" model. Residues 47-49 along intramolecular pathways of electrons show rigidity that is remarkably conserved when increasing the temperature. Three different conformational exchange processes were observed in the millisecond range, one near the only disulfide bridge in the molecule and two near the copper ion. The latter two processes are consistent with previous data such as crystal structures at various pH values and NMR relaxation dispersion experiments; they may indicate an additional gated electron transfer mechanism at slower time-scales.  相似文献   

4.
The systematic difference between T 2 values obtained from CPMG and T 1 experiments was observed for backbone 15N nuclei of bacterial ribonuclease barnase. Theoretical consideration suggests that the observed difference is caused by off-resonance effects of 180° pulses of the CPMG pulse train. Namely, at off-resonance conditions T 1-dependent secondary echo coherence pathways considerably contribute to the signal decay in the CPMG experiment and result in systematic (up to 10%) offset-dependent overestimation of 15N T 2 measured by the CPMG technique. Under certain circumstances off-resonance effects result in dependence of 15N T 2 on CPMG frequency, which might be erroneously interpreted as conformational exchange on the millisecond time-scale. A procedure for numerical correction of 15N T 2 (CPMG) data is proposed.  相似文献   

5.
The construction of hydraulically operated upward pressure-jump is described. Previous instruments with a comparable rate of pressration used helium gas to pressurize an observation cell to approximately half of the operating pressure reached with the present design. The above instrument, which can pressurize the observation cell in 1.8–3.8 ms. is safe to use and has a maximum working pressure of 30 MPa (300 atm). The device is compact in design and can easily be fitted to any observation cell capable of withstanding the transient change in pressure and of effectivekt damping cell resonances. The instrument finds specific application in the study of macromolecular equilibria with a large difference in volume between the equilibrium partners. This allow the system to be perturbed far from the equilibrium position at atmospheric pressure; the relaxations obtained can be analysed as essentially unidirectional processes. Kinetic data for the reaction would be obtained from experiments in a conventional downward pressure-jump. A study on the kinetics of the self-assembly of the myosin thick-filament is presented as a practical example.  相似文献   

6.
NMR spin relaxation in the rotating frame (R) is a unique method for atomic-resolution characterization of conformational (chemical) exchange processes occurring on the microsecond time scale. Here, we use amide 1H off-resonance R relaxation experiments to determine exchange parameters for processes that are significantly faster than those that can be probed using 15N or 13C relaxation. The new pulse sequence is validated using the E140Q mutant of the C-terminal domain of calmodulin, which exhibits significant conformational exchange contributions to the transverse relaxation rates. The 1H off-resonance R data sample the entire relaxation dispersion profiles for the large majority of residues in this protein, which exchanges between conformations with a time constant of approximately 20 μs. This is in contrast to the case for 15N, where additional laboratory-frame relaxation data are required to determine the exchange parameters reliably. Experiments were performed on uniformly 15N-enriched samples that were either highly enriched in 2H or fully protonated. In the latter case, dipolar cross-relaxation with aliphatic protons were effectively decoupled to first order using a selective inversion pulse. Deuterated and protonated samples gave the same results, within experimental errors. The use of deuterated samples increases the sensitivity towards exchange contributions to the 1H transverse relaxation rates, since dipolar relaxation is greatly reduced. The exchange correlation times determined from the present 1H off-resonance R experiments are in excellent agreement with those determined previously using a combination of 15N laboratory-frame and off-resonance R relaxation data, with average values of and 21 ± 3 μs, respectively.  相似文献   

7.
Spectrin repeats are three-helix bundle structures which occur in a large number of diverse proteins, either as single copies or in tandem arrangements of multiple repeats. They can serve structural purposes, by coordination of cytoskeletal interactions with high spatial precision, as well as a 'switchboard' for interactions with multiple proteins with a more regulatory role. We describe the structure of the alpha-actinin spectrin repeats as a prototypical example, their assembly in a defined antiparallel dimer, and the interactions of spectrin repeats with multiple other proteins. The alpha-actinin rod domain shares several features common to other spectrin repeats. (1) The rod domain forms a rigid connection between two actin-binding domains positioned at the two ends of the alpha-actinin dimer. The exact distance and rigidity are important, for example, for organizing the muscle Z-line and maintaining its architecture during muscle contraction. (2) The spectrin repeats of alpha-actinin have evolved to make tight antiparallel homodimer contacts. (3) The spectrin repeats are important interaction sites for multiple structural and signalling proteins. The interactions of spectrin repeats are, however, diverse and defy any simple classification of their preferred interaction sites, which is possible for other domains (e.g. src-homology domains 3 or 2). Nevertheless, the binding properties of the repeats perform important roles in the biology of the proteins where they are found, and lead to the assembly of complex, multiprotein structures involved both in cytoskeletal architecture as well as in forming large signal transduction complexes.  相似文献   

8.
    
Transitions to conformational states with very low populations were detected for the reduced blue copper protein azurin from Pseudomonas aeruginosa by applying constant relaxation time CPMG measurements to the backbone (15)N nuclei at three magnetic fields (11.7, 14.1, and 18.8 T) and three temperatures (25.7, 35.4, and 44.8 degrees C). Two exchange processes with different rate constants could be discriminated despite populations of the excited states below 1% and spatial neighborhood of the two processes. The group of (15)N nuclei involved in the faster process exhibits at 44.8 degrees C a forward rate constant of 11.7+/-2.4 s(-1) and a population of the exited state of 0.39+/-0.07%. They surround the aromatic ring of histidine 35 whose protonation state is coupled to the flipping of a neighboring peptide plane. For the slower process, the forward rate constant and population of the exited state at 44.8 degrees C are 4.1+/-0.1 s(-1) and 0.45+/-0.02%, respectively. The residues involved cluster nearby the copper ion, which is separated from the protonation site of histidine 35 by about 8 A, indicating conformational rearrangements involving the copper coordinating loops. The dependence of the equilibrium constant on the temperature is consistent with an enthalpy-dominated transition around the copper, but an entropy-controlled transition near histidine 35. The detection by nuclear magnetic resonance of millisecond to second conformational transitions near the copper ion suggests a low energy-cost rearrangement of the copper-binding site that may be necessary for efficient electron transfer.  相似文献   

9.
The kinetics of dark reduction of chlorophyll P700 oxidized by continuous light in preparations of photosystem I reaction centers from cyanobacterium Synechosystis spharoides cooled in the dark to 160 K is essentially nonexponential. The characteristic times of the components range from fractions of a second to minutes or more. During the cooling of reaction center preparations under illumination with actinic light, most of the chlorophyll P700 molecules are fixed in the oxidized state at 160 K. The kinetics of dark reduction of P700+ in the fraction of reaction centers that retain photochemical activity under these conditions is somewhat faster compared to the samples cooled in the dark. A theoretical analysis of substantial deceleration of P700+ dark recovery kinetics was done for preparations of photosystem I reaction centers oxidized by continuous light at 160 K in comparison to the experiments where reaction centers were oxidized by short single light flashes. This slowing down of the kinetics in samples excited by continuous illumination can be explained by microconformational relaxation processes related to proton shifts in the reaction center.  相似文献   

10.
Analysing the self-association behaviour of human erythrocyte spectrin is complicated by a large degree of nonideality. Adams and Fujita [1] proposed that, as a first order approximation, the logarithm of the activity coefficient of the protomer of a self-associating system can be considered to be linearly dependent on the total concentration of the protein, and that the same second virial coefficient could be considered to apply to all species. As a consequence of the Adams and Fujita approximation, the apparent equilibrium constant is equal to the thermodynamic equilibrium constant. The equilibrium concentrations at 30°C of each oligomer spectrin species up to the 14-mer were determined after electrophoresis at low temperature. An apparent equilibrium constant for forming tetramer (K2,4) of (1.2 ± 0.1) × 106 l/mol was obtained, a value of (9.4 ± 0.7) × 104 l/mol was obtained for K4,6 and for all reactions forming oligomers higher than the hexamer an average approximate value of (2.7 ± 0.4) × 105 l/mol was obtained. The apparent equilibrium constants for the formation of all oligomer species of spectrin up to the tetrakaidecamer (14-mer) remain relatively independent of total spectrin concentration, and indicate that within the precision of the measurements a single virial coefficient is sufficient to account for the nonideality of spectrin self-association over the range 2–42 g/l, thus further justifying the use of the Adams and Fujita approximation for this protein over this concentration range.  相似文献   

11.
12.
NMR relaxation measurements of 15N spin-lattice relaxation rate (R(1)), spin-spin relaxation rate (R(2)), and heteronuclear nuclear Overhauser effect (NOE) have been carried out at 11.7T and 14.1T as a function of temperature for the side-chains of the tryptophan residues of 15N-labeled and/or (2H,15N)-labeled recombinant human normal adult hemoglobin (Hb A) and three recombinant mutant hemoglobins, rHb Kempsey (betaD99N), rHb (alphaY42D/betaD99N), and rHb (alphaV96W), in the carbonmonoxy and the deoxy forms as well as in the presence and in the absence of an allosteric effector, inositol hexaphosphate (IHP). There are three Trp residues (alpha14, beta15, and beta37) in Hb A for each alphabeta dimer. These Trp residues are located in important regions of the Hb molecule, i.e. alpha14Trp and beta15Trp are located in the alpha(1)beta(1) subunit interface and beta37Trp is located in the alpha(1)beta(2) subunit interface. The relaxation experiments show that amino acid substitutions in the alpha(1)beta(2) subunit interface can alter the dynamics of beta37Trp. The transverse relaxation rate (R(2)) for beta37Trp can serve as a marker for the dynamics of the alpha(1)beta(2) subunit interface. The relaxation parameters of deoxy-rHb Kemspey (betaD99N), which is a naturally occurring abnormal human hemoglobin with high oxygen affinity and very low cooperativity, are quite different from those of deoxy-Hb A, even in the presence of IHP. The relaxation parameters for rHb (alphaY42D/betaD99N), which is a compensatory mutant of rHb Kempsey, are more similar to those of Hb A. In addition, TROSY-CPMG experiments have been used to investigate conformational exchange in the Trp residues of Hb A and the three mutant rHbs. Experimental results indicate that the side-chain of beta37Trp is involved in a relatively slow conformational exchange on the micro- to millisecond time-scale under certain experimental conditions. The present results provide new dynamic insights into the structure-function relationship in hemoglobin.  相似文献   

13.
    
The preferred conformations and conformational flexibilities of the trisaccharides alpha-D-Glcp-(1-->2)-beta-D-Glcp-(1-->3)-alpha-D-Glcp-OMe (I) and alpha-D-Glcp-(1-->3)[beta-D-Glcp-(1-->4)]-alpha-D-Glcp-OMe (II) in aqueous solution were determined using nuclear magnetic resonance (NMR) spectroscopy, molecular dynamics (MD) and Langevin dynamics (LD) simulations, and hydrodynamics calculations. Both trisaccharides have a vicinal substitution pattern in which long range (nonsequential) interactions may play an important role. LD simulation at 600 K indicated that the all-syn conformation predominated, though other conformations were apparent. NOE data and MD and LD simulations at 298 K all indicated that trisaccharide I is a single all-syn conformer in solution. Given that previous studies showed evidence of anti-conformers in beta-D-Glcp-(1-->2)-beta-D-Glcp-(1-->3)-alpha-D-Glcp-OMe, this result provides an example of how changing the anomeric configuration of one residue from beta to alpha can make an oligosaccharide more rigid. Discrepancies in inter-ring distances obtained by experiment and by simulation of the all-syn conformer suggest the presence of an anti-psi conformation at the beta-(1-->4)-linkage for II. A combined analysis of measured and calculated translational diffusion constants and (13)C T(1) relaxation times yield order parameters of 0.9 for each trisaccharide. This implies that any interconversion among conformations is significantly slower than tumbling. Anisotropies of approximately 1.6 and 1.3 calculated for I and II, respectively, are consistent with the observed relatively flat T(1) profiles because the tumbling is not in the motional narrowing regime.  相似文献   

14.
15.
    
In Discoglossus pictus eggs, only the dimple contains ionic channels active at fertilization; in particular, chloride channels are found in the central portion of the dimple, which is also the site of sperm penetration. Moreover the dimple hosts an imposing cytoskeleton, consisting of a cortical network and bundles of microfilaments extending from the microvilli. Since spectrin cross links actin and is connected through ankyrin to anion transporters in the plasma membrane of erythrocytes as well as to anion channels in other cells, we studied, in D. pictus egg, the relationship between the localization of spectrin and the high polarization of ionic channels and cytoskeletal organization. By means of immunocytochemistry, we localized spectrin exclusively in the egg dimple. In an attempt to trace back the source of spectrin localization, we immunostained sections of D. pictus ovary and localized spectrin in the nuclei of previtellogenic oocytes, where actin is also present. Antispectrin staining remained until germinal vesicle breakdown. By contrast, a cortical localization was found only when the oocytes divided into two hemispheres and into the germinative area (GA), which, after germinal vesicle breakdown, gives rise to the dimple. At this stage the antispectrin signal was particularly strong in the GA. Using Rho-pialloidin, we also established that spectrin is generally present where F-actin is found. However, spectrin and F-actin do not have the same pattern of fluorescence. In conclusion, our data suggest that spectrin may play a role in oocyte and egg polarity. In eggs, it could be instrumental in anchoring to the cytoskeleton membrane proteins such as receptors and ionic channels, including chloride-permeable channels.  相似文献   

16.
The N-terminal region of non-erythroid alpha spectrin (SpαII) is responsible for interacting with its binding partner, beta spectrin, to form functional spectrin tetramers. We used a yeast-two-hybrid system, with an N-terminal segment of alpha spectrin representing the functional tetramerization site, as a bait to screen human brain c-DNA library for proteins that interact with the alpha spectrin segment. In addition to several beta spectrin isoforms, we identified 14 proteins that interact with SpαII. Seven of the 14 were matched to 6 known proteins: Duo protein, Lysyl-tRNA synthetase, TBP associated factor 1, two isoforms (b and c) of a protein kinase A interacting protein and Zinc finger protein 333 (2 different segments). Four of the 6 proteins are located primarily in the nucleus, suggesting that spectrin plays important roles in nuclear functions. The remaining 7 proteins were unknown to the protein data base. Structural predictions show that many of the 14 proteins consist of a large portion of unstructured regions, suggesting that many of these proteins fold into a rather flexible conformation. It is interesting to note that all but 3 of the 14 proteins are predicted to consist of one to four coiled coils (amphiphilic helices). A mutation in SpαII, V22D, which interferes with the coiled coil bundling of SpαII with beta spectrin, also affects SpαII interaction with Duo protein, TBP associated factor 1 and Lysyl-tRNA synthetase, suggesting that they may compete with beta spectrin for interaction with SpαII. Future structural and functional studies of these proteins to provide interaction mechanisms will no doubt lead to a better understanding of brain physiology and pathophysiology.  相似文献   

17.
    
Weikl TR  Boehr DD 《Proteins》2012,80(10):2369-2383
Protein function often involves changes between different conformations. Central questions are how these conformational changes are coupled to the binding or catalytic processes during which they occur, and how they affect the catalytic rates of enzymes. An important model system is the enzyme dihydrofolate reductase (DHFR) from Escherichia coli, which exhibits characteristic conformational changes of the active‐site loop during the catalytic step and during unbinding of the product. In this article, we present a general kinetic framework that can be used (1) to identify the ordering of events in the coupling of conformational changes, binding, and catalysis and (2) to determine the rates of the substeps of coupled processes from a combined analysis of nuclear magnetic resonance R2 relaxation dispersion experiments and traditional enzyme kinetics measurements. We apply this framework to E. coli DHFR and find that the conformational change during product unbinding follows a conformational‐selection mechanism, that is, the conformational change occurs predominantly prior to unbinding. The conformational change during the catalytic step, in contrast, is an induced change, that is, the change occurs after the chemical reaction. We propose that the reason for these conformational changes, which are absent in human and other vertebrate DHFRs, is robustness of the catalytic rate against large pH variations and changes to substrate/product concentrations in E. coli. Proteins 2012;. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
In this paper it is demonstrated that cross-correlated time modulation of isotropic chemical shifts (`conformational exchange') leads to differential relaxation of double- and zero-quantum coherences, respectively. Quantitative information can be obtained from the time dependence of the interconversion between the two two-spin coherences 2IxSx and 2IySy, induced by the differential relaxation. The effect is illustrated with an application to 13C,15N-labeled quail CRP2(LIM2), by studying 15N-1HN multiple-quantum relaxation. Significant cross-correlated fluctuations of isotropic chemical shifts were observed for residues which are part of a disordered loop region connecting two -strands in CRP2(LIM2). Differential 1HN and 15N exchange contributions to multiple-quantum relaxation observed at these sites illustrate the complex interplay between hydrogen bonding events and conformational reorientations in proteins.  相似文献   

19.
Microscopic self-organization phenomena inside a living cell should not represent merely a reduced copy of self-organization in macroscopic systems. A cell is populated by active protein machines that communicate via small molecules diffusing through the cytoplasm. Mutual synchronization of machine cycles can spontaneously develop in such networks – an effect which is similar to coherent laser generation. On the other hand, an interplay between reactions, diffusion and phase transitions in biological soft matter may lead to the formation of stationary or traveling nonequilibrium nanoscale structures.  相似文献   

20.
  总被引:7,自引:5,他引:7  
The in vitro degradation of microtubule-associated protein 2 (MAP-2) and spectrin by the calcium-dependent neutral protease calpain was studied. Five major results are reported. First, MAP-2 isolated from twice-cycled microtubules (2 X MT MAP-2) was extremely sensitive to calpain-induced hydrolysis. Even at an enzyme-to-substrate ratio (wt/wt) of 1:200, 2 X MT MAP-2 was significantly degraded by calpain. Second, MAP-2 purified from the total brain heat-stable fraction (total MAP-2) was significantly more resistant to calpain-induced hydrolysis compared with 2 X MT MAP-2. Third, MAP-2a and MAP-2b were proteolyzed similarly by calpain, although some relative resistance of MAP-2b was observed. Fourth, the presence of calmodulin significantly increased the extent of calpain-induced hydrolysis of the alpha-subunit of spectrin. Fifth, the two neuronal isoforms of brain spectrin (240/235 and 240/235E, referred to as alpha/beta N and alpha/beta E, respectively) showed different sensitivities to calpain. alpha N-spectrin was significantly more sensitive to calpain-induced degradation compared to alpha E-spectrin. Among other things, these results suggest a role for the calpain-induced degradation of MAP-2, as well as spectrin, in such physiological processes as alterations in synaptic efficacy, dendritic remodeling, and in pathological processes associated with neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号