共查询到6条相似文献,搜索用时 0 毫秒
1.
The nitric oxide (NO) system is involved in the regulation of the cardiovascular system in controlling central and peripheral vascular tone and cardiac functions. It was the aim of this study to investigate in wild-type C57BL/6 and endothelial nitric oxide synthase (eNOS) knock-out mice (eNOS-/-) the contribution of NO on the circadian rhythms in heart rate (HR), motility (motor activity [MA]), and body temperature (BT) under various environmental conditions. Experiments were performed in 12:12 h of a light:dark cycle (LD), under free-run in total darkness (DD), and after a phase delay shift of the LD cycle by -6 h (i.e., under simulation of a westward time zone transition). All parameters were monitored by radiotelemetry in freely moving mice. In LD, no significant differences in the rhythms of HR and MA were observed between the two strains of mice. BT, however, was significantly lower during the light phase in eNOS-/- mice, resulting in a significantly greater amplitude. The period of the free-running rhythm in DD was slightly shorter for all variables, though not significant. In general, rhythmicity was greater in eNOS-/- than in C57 mice both in LD and DD. After a delay shift of the LD cycle, HR and BT were resynchronized to the new LD schedule within 5-6 days, and resynchronization of MA occurred within 2-3 days. The results in telemetrically instrumented mice show that complete knock-out of the endothelial NO system—though expressed in the suprachiasmatic nuclei and in peripheral tissues—did not affect the circadian organization of heart rate and motility. The circadian regulation of the body temperature was slightly affected in eNOS-/- mice. 相似文献
2.
M. Arraj 《Chronobiology international》2013,30(6):1231-1240
Endothelial nitric oxide synthase knock out mice (eNOS‐/‐) are mildly hypertensive in comparison to wild‐type (WT) mice. Hypertension in eNOS‐/‐ mice is partly the result of an increase in peripheral resistance due to the absence of the vasodilatory action of NO. No data are available for these animals regarding the 24 h blood pressure profile under the 12:12 h light‐dark cycle (LD) and constant dark (DD) conditions. Therefore, this study aimed to investigate by radiotelemetry the circadian rhythms in systolic blood pressure (SBP) and diastolic blood pressure (DBP) of six eNOS‐/‐ mice and five wild‐type mice under LD and DD. Data were collected beginning 3 wks after operation (implantation of sensor) for 2 wks under LD and for another 2 wks thereafter under DD. Our results show that eNOS‐/‐ mice were hypertensive under all experimental conditions. SBP and DBP were significantly higher by about 15% in eNOS‐/‐ mice. No differences were found in the pattern of the circadian rhythms, rhythmicity, or period lengths during LD or DD. The genetic deletion of eNOS seems to lead to higher SBP and DBP, but the circadian blood pressure pattern is still preserved with higher values during the night (active phase) and lower values during the daytime (rest phase). Thus, endothelial‐derived NO plays an important role in the regulation of vascular tone and haemodynamics, but it is not important for the circadian organization of SBP and DBP. 相似文献
3.
M. Arraj 《Chronobiology international》2013,30(4):795-812
The nitric oxide (NO) system is involved in the regulation of the cardiovascular system in controlling central and peripheral vascular tone and cardiac functions. It was the aim of this study to investigate in wild‐type C57BL/6 and endothelial nitric oxide synthase (eNOS) knock‐out mice (eNOS‐/‐) the contribution of NO on the circadian rhythms in heart rate (HR), motility (motor activity [MA]), and body temperature (BT) under various environmental conditions. Experiments were performed in 12∶12 h of a light:dark cycle (LD), under free‐run in total darkness (DD), and after a phase delay shift of the LD cycle by ?6 h (i.e., under simulation of a westward time zone transition). All parameters were monitored by radiotelemetry in freely moving mice. In LD, no significant differences in the rhythms of HR and MA were observed between the two strains of mice. BT, however, was significantly lower during the light phase in eNOS‐/‐ mice, resulting in a significantly greater amplitude. The period of the free‐running rhythm in DD was slightly shorter for all variables, though not significant. In general, rhythmicity was greater in eNOS‐/‐ than in C57 mice both in LD and DD. After a delay shift of the LD cycle, HR and BT were resynchronized to the new LD schedule within 5–6 days, and resynchronization of MA occurred within 2–3 days. The results in telemetrically instrumented mice show that complete knock‐out of the endothelial NO system—though expressed in the suprachiasmatic nuclei and in peripheral tissues—did not affect the circadian organization of heart rate and motility. The circadian regulation of the body temperature was slightly affected in eNOS‐/‐ mice. 相似文献
4.
We studied emotional stress-induced modulations of the pain reaction evoked in mice of strains C57BL/6J and CBA/CaLac by subcutaneous
injections of formalin; the measurements were performed at midtimes of a “dark” and a “light” phase of the pre-set fixed circadian
rhythm. The magnitude of the pain reaction was estimated indirectly, according to characteristics of locomotion of the animal
in a running wheel (the velocity of locomotion and the distance covered were considered values inversely correlating with
the intensity of the pain response). We found that the intensity of the pain reaction within both phases of the circadian
rhythm increased under the influence of stress, and that there were significant differences between the emotional stress-modulated
intensities of the pain response observed in the examined genetic strains of mice.
Neirofiziologiya/Neurophysiology, Vol. 38, Nos. 5/6, pp. 466–471, September–December, 2006. 相似文献
5.
Neide Maria Silva Renato Martins Manzan Cristiane Maria Milanezi Eloísa Amália Vieira Ferro 《Experimental parasitology》2010,126(2):167-9193
In order to investigate the differential ALCAM, ICAM-1 and VCAM-1 adhesion molecules mRNA expression and the blood-brain barrier (BBB) permeability in C57BL/6 and BALB/c mice in Toxoplasma gondii infection, animals were infected with ME-49 strain. It was observed higher ALCAM on day 9 and VCAM-1 expression on days 9 and 14 of infection in the central nervous system (CNS) of C57BL/6 compared to BALB/c mice. The expression of ICAM-1 was high and similar in the CNS of both lineages of infected mice. In addition, C57BL/6 presented higher BBB permeability and higher IFN-γ and iNOS expression in the CNS compared to BALB/c mice. The CNS of C57BL/6 mice presented elevated tissue pathology and parasitism. In conclusion, our data suggest that the higher adhesion molecules expression and higher BBB permeability contributed to the major inflammatory cell infiltration into the CNS of C57BL/6 mice that was not efficient to control the parasite. 相似文献
6.
Showalter LA Weinman SA Østerlie M Lockwood SF 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2004,137(3):227-236
Oral bioavailability of natural and synthetic carotenoids is generally poor in rodents, and this has limited the ability to test these antioxidant compounds in well-defined rodent models of human disease. Various strategies have been employed, with variable success, to increase the percentage of the total oral dose absorbed by the rodent GI tract. In the current study, a novel carotenoid derivative (the disodium disuccinate diester of astaxanthin; Heptax) was administered by oral gavage in a lipophilic emulsion to C57BL/6 mice. Plasma appearance and tissue accumulation of non-esterified, free astaxanthin was studied by HPLC over 72 h after single- and multiple-dose regimens. One-time dosing of Heptax in emulsion at 500 mg/kg resulted in significant appearance of free astaxanthin in plasma (Cmax=0.2 mg/l; 381 nM) and accumulation in solid organs (e.g. liver Cmax=0.9 mg/l; 1735 nM), levels not previously reported after single carotenoid doses in rodents. At each point in the concentration/time curve (AUC), free astaxanthin levels in liver were greater than the corresponding concentration in plasma, suggesting concentrative uptake by the liver. As the ED50 as an antioxidant for non-esterified, free astaxanthin in model systems is approximately 200 nM, the current results suggest that hepatoprotection against oxidative insults may be achieved after a single dose of Heptax in these animals. In humans, where the bioavailability of oral carotenoids ranges from 40 to 60% of the total dose when given in lipophilic vehicle, much smaller oral doses may be utilized for therapeutic benefit in a particular clinical application. 相似文献