首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Incorporation of tritiated thymidine into acid-precipitable material was used to measure the rate of DNA synthesis in secondary cultures of human diploid fibroblasts. Confluent cultures of human diploid fibroblasts, which are synchronized in the G1 phase due to contact inhibition, were released from growth inhibition either by the addition of fresh medium to the cultures or by trypsinization and replating at nonconfluent densities. Either treatment resulted in a synchronous wave of DNA synthesis beginning 10–15 h after treatment and peaking at 20–25 h. In confluent cultures stimulated by fresh medium, either the addition of 0.25 mM N6, O2-dibutyryl-adenosine 3',5'-cyclic monophosphate (db-cAMP) to the medium in the interval 4–8 h after stimulation or the replacement of the fresh medium in that same 4 h interval with the depleted medium present on the cells for the 2 day period before stimulation delayed the synchronous onset of DNA synthesis in the cultures by about 4 h. In nonconfluent cultures freshly seeded from trypsinized confluent cultures, this same depleted medium obtained after a 2 day incubation of fresh medium on confluent cultures is shown to support the progress of the cells into S phase; however, the addition of 0.25 mM db-cAMP to the medium 3½ h after replating still partially prevented the initiation of DNA synthesis in the cultures. The results are discussed in terms of the role of serum and cAMP in the control of cell growth in fibroblast cultures.  相似文献   

2.
Previous studies have shown that initiation of proliferation of density-inhibited fibroblasts by fresh serum is accompanied by a rapid increase in phosphate uptake. This increase might be a key event in the initiation of DNA synthesis. The present studies examined this possibility. Mouse 3T3, secondary chick embryo, or human diploid foreskin cultures were grown to quiescence in medium containing varying levels of serum. When proliferation of the cultures was initiated by addition of fresh serum, the changes in phosphate uptake were inversely related to the final increases in cell number. Additional experiments showed that the change in phosphate uptake following serum addition was determined by the level of phosphate uptake prior to serum addition. Addition of dexamethasone to quiescent 3T3 cultures caused them to proliferate but did not increase phosphate uptake. Similarly, trypsin or insulin stimulated proliferation of quiescent secondary chick embryo cultures, but caused little or no change in phosphate uptake. Quiescent 3T3 cultures switched to medium containing fresh serum and reduced levels of phosphate showed a decrease in both phosphate uptake and intracellular phosphate pool size. Cell proliferation in these cultures, however, was stimulated to the same degree as cultures switched to medium containing fresh serum and the normal amount of phosphate. In addition, quiescent secondary chick embryo cultures switched to medium containing fresh serum and no phosphate showed a decrease in the intracellular phosphate pool size. Thymidine incorporation and final cell number in these cultures, however, was stimulated to the same or higher degree than in cultures switched to medium containing fresh serum and the normal amount of phosphate. These results demonstrate that the rapid increase in phosphate uptake following addition of fresh serum to quiescent fibroblasts is not a necessary event for the initiation of proliferation.  相似文献   

3.
We have proposed that two of the endogenously synthesized endometrial prostaglandins, prostaglandin F2 alpha (PGF2 alpha) and prostaglandin E1 (PGE1), play a regulatory role in growth control of the endometrium. PGF2 alpha increases DNA synthesis and PGE1 inhibits that effect. Primary cultures of rabbit endometrial cells were used here to examine the effects of the tumor-promoting, diacylglycerol mimicking, phorbol ester, 12-O-tetradecanoyl phorbol-13-acetate (TPA), on the prostaglandin control of cell proliferation. TPA treatment of these cultures results in: a decrease in control levels of proliferation and complete inhibition by TPA of PGF2 alpha stimulated DNA synthesis; a reduction in [3H]PGF2 alpha binding with short term treatment but an increase to above control binding level with long term treatment; an inhibition of the normal PGF2 alpha stimulated inositol polyphosphate synthesis; and a small increase in accumulation of PGF2 alpha in the culture media. Furthermore, in this culture system, TPA does not down regulate [3H]PGE1 binding; it does not alter the normal PGE1 stimulation of cAMP synthesis; and it has no effect on the normal endogenous PGE1 synthesis by these cultures. The above results are consistent with our previous observations that PGF2 alpha works through the intracellular messengers inositol polyphosphate/diacylglycerol whereas PGE1 works through cAMP.  相似文献   

4.
The growth rate of normal cells multiplied in vitro decreases as the cell density of the culture increases. Previous results suggested that this density-dependent inhibition of growth in nontransformed cells was due to the diffusion of growth inhibitory substances in the medium of dense cultures. In this paper, we demonstrate that dense cultures of 3T3 cells secrete inhibitory and stimulatory factors. Macromolecules of conditioned medium were fractionated on Biogel P150 and the different fractions were tested on quiescent cultures of 3T3 cells stimulated or not to proliferate by addition of alpha globulin. When target cells were not stimulated to proliferate by addition of exocrine growth factors, we observed the inhibitory activity of a large molecular weight inhibitor (IDF45) and the stimulatory activity of autocrine growth factors (fraction about 35 and 10 K molecular weight), on the incorporation of 14C inosine into nucleotide pool and RNA. However, DNA synthesis was significantly stimulated with fraction 10 K only. This discrepancy between the stimulation of RNA and DNA synthesis may be explained by the presence, simultaneously, of inhibitory and stimulatory factors in fraction 35 and 10 K molecular weight. The presence of inhibitory factor was demonstrated when the fractions were tested on target cells stimulated to proliferate by alpha globulin addition and labeled with 14C thymidine. In these conditions, the stimulatory activity of autocrine growth factors was not observable, and only the inhibitory activity on DNA synthesis of fractions 35 and 10 K appeared. It is tempting to assume that the regulation of in vitro cell proliferation is determined by the balance between these antagonist stimulatory and inhibitory autocrine growth factors.  相似文献   

5.
Administration of the thymidine analog 5-bromodeoxyuridine to exponentially growing cultures of Tetrahymena pyriformis GL in chemically defined medium results in inhibition of cell multiplication by at least one generation before DNA synthesis stops. Cell multiplication can be restored in these cultures, if they are transferred to fresh growth medium, but although most of the cells in the culture contain close to a G2-amount of DNA, a full DNA replication round is a prerequisite for renewed cell multiplication. Large extrusion bodies are found at the first division after transfer to fresh growth medium. Autoradiographic analysis has revealed that the DNA in the extrusion body is a representative of the DNA in the macronucleus indicating a random distribution of DNA between daughter nuclei and extrusion body.  相似文献   

6.
Human blood derived mononuclear cell (MC) cultures required concanavalin A (Con A) stimulation to synthesize and secrete into the medium high levels of a protease-resistant proteoglycan (PG) containing predominantly chondroitin sulfate (CS), which was elaborated largely by T-cells in culture. PG and DNA synthesis were studied in MC cultures in the absence and presence of Con A as well as serum and some biologically active polypeptide factors. In the presence of Con A, stimulation of PG synthesis was substantially greater in T-cell enriched cultures than in B-cell enriched cultures. DNA synthesis was also stimulated in the presence of Con A. This stimulation was concentration-dependent, but required the presence of serum for additional responses. DNA and cell proliferation were stimulated by interleukin-2 (IL-2), but PG production was not stimulated by conditioned media, IL-1, IL-2, IL-3, or transforming growth factor-beta (TGF-beta). Our results indicate that the elaboration of PG from T-cells of human MC is independent of the effects of regulatory peptides on cell proliferation and DNA synthesis.  相似文献   

7.
Addition of 1 mm dibutyryl cyclic AMP (Bt2cAMP) to cultures of mouse hepatoma cells, Hepa, specifically stimulates the synthesis of serum proteins including albumin. This stimulation is accompanied by an inhibition of cell proliferation. We have investigated these phenomena in synchronous cultures of Hepa. Proliferation of Hepa was arrested by isoleucine starvation. Synchronous growth was initiated by addition of complete growth medium or complete growth medium supplemented with 1 mm Bt2cAMP. S phase and mitosis were estimated by determinations of [3H]thymidine incorporation and by cell numbers. The rate of albumin synthesis relative to total protein synthesis was measured by pulse labeling cultures for 30 min with [3H]leucine and comparing amounts of immunoprecipitable label with trichloroacetic acid-precipitable label. Treatment of synchronous cultures with Bt2cAMP did not alter the duration of S phase or the onset of mitosis. The relative rate of albumin synthesis in Bt2cAMP-treated culture began increasing after mitosis. The timing of the Bt2cAMP stimulation of albumin synthesis was further investigated by adding Bt2cAMP to cultures of Hepa at various times after the initiation of synchronous growth. The relative rate of albumin synthesis was then measured at a fixed postmitotic time. An increased relative rate of albumin synthesis was observed only in cultures exposed to Bt2cAMP before or during S phase. Thus the postmitotic increase in the synthesis of albumin requires the presence of Bt2cAMP during S phase.  相似文献   

8.
cGMP and cAMP concentrations were studied in cultures of two strains of normal human diploid lung fibroblasts, WI38 and KL-2, under various conditions which alter growth rate. Higher levels of cAMP were found in fibroblasts grown in medium with low (0.1 – 1.0%) serum concentration and thus exhibiting a decreased rate of growth. A rise in cAMP also preceded the decreased growth rate when medium was not changed for 4 days or longer (starvation). The reinitiation of cell growth by addition of fresh medium containing the standard 10% serum to either starved or serum-restricted cells was preceded by a rapid drop in cAMP level. Cellular cAMP levels increased to a moderate extent as sparse cultures first increased in density, but did not continue to rise as the culture approached saturation density. cGMP levels were inversely related to cell density: much higher cellular cGMP levels were found at low density than at higher cell density, whether cells were rapidly proliferating under standard growth conditions or had their growth arrested by omission of medium change or restriction of serum. Thus, under these conditions the steady state levels of cGMP appear to be related to cell density rather than rate of cell proliferation. However, a transient but appreciable increase in cGMP did occur upon the addition of fresh medium containing 10% serum to starved or serum-restricted cells, a condition leading to reinitiation of cell proliferation. Smaller but significant increases in cGMP were also evident following routine addition of fresh medium with serum to growing cells fed every other day and following mild EDTA-trypsin treatment of confluent WI38 fibroblasts. Thus, at least dual control mechanisms appear to be involved in the regulation of cGMP levels. Comparison of mid- and late-passage WI38 cells revealed no significant differences either in the levels of cGMP at sparse densities or in the density-dependent change in levels. These results suggest that levels of both cAMP and cGMP are influenced by cell density and also by conditions which alter the rate of cell proliferation.  相似文献   

9.
SYNOPSIS Administration of the thymidine analog 5-bromodeoxyuridine to exponentially growing cultures of Tetrahymena pyriformis GL in chemically defined medium results in inhibition of cell multiplication by at least one generation before DNA synthesis stops. Cell multiplication can be restored in these cultures, if they are transferred to fresh growth medium, but although most of the cells in the culture contain close to a G2-amount of DNA, a full DNA replication round is a prerequisite for renewed cell multiplication. Large extrusion bodies are found at the first division after transfer to fresh growth medium. Autoradiographic analysis has revealed that the DNA in the extrusion body is a representative of the DNA in the macronucleus indicating a random distribution of DNA between daughter nuclei and extrusion body.  相似文献   

10.
The effect of prostaglandin E2 (PGE2) on osteoblastic cell proliferation was investigated using osteoblastic clone MC3T3-E1 cells cultured in serum-free medium. PGE2 at 2 micrograms/ml increased the number of the cells by 2 days after its addition. PGE2 raised the level of DNA synthesis in a dose-related fashion after a constant lag time, the maximal effect being at 2-10 micrograms/ml and the level about fourfold over that of the control at 36 hr after its addition. However, at low doses (below 0.2 microgram/ml), PGE2 rather depressed DNA synthesis. Isobutyl methylxanthine counteracted the stimulation of DNA synthesis by PGE2, and forskolin depressed the synthesis, which was inversely correlated with increasing intracellular cAMP content. These results indicate that an increase in cAMP content inhibits DNA synthesis. In addition, 2',5'-dideoxyadenosine did not negate the stimulatory effect of PGE2 on DNA synthesis, suggesting that PGE2 increases DNA synthesis, probably via a pathway different from the adenylate cyclase/cAMP system. Moreover, at a high dose, PGE2 stimulated both the production and degradation of cAMP; the elevation of cAMP content was rapidly depressed by the stimulated degradation system. Consequently, the stimulatory effect of PGE2 on DNA synthesis would be released from the inhibition by cAMP, resulting in an increase in DNA synthesis. Taken together with data from our previous reports, these results indicate that PGE2 enhances both the proliferation and differentiation of osteoblastic cells in vitro, which are probably mediated by two different second messengers dependent on the concentration of PGE2.  相似文献   

11.
In the developing peripheral nerve, Schwann cells proliferate rapidly and then become quiescent, an essential step in control of Schwann cell differentiation. Cell proliferation is controlled by growth factors that can exert positive or inhibitory influences on DNA synthesis. It has been well established that neonatal Schwann cells divide very slowly in culture when separated from neurons but here we show that when culture was continued for several months some cells began to proliferate rapidly and non-clonal lines of immortalised Schwann cells were established which could be passaged for over two years. These cells had a similar molecular phenotype to short-term cultured Schwann cells, except that they expressed intracellular and cell surface fibronectin. The difference in proliferation rates between short- and long-term cultured Schwann cells appeared to be due in part to the secretion by short-term cultured Schwann cells of growth inhibitory activity since DNA synthesis of long-term, immortalised Schwann cells was inhibited by conditioned medium from short-term cultures. This conditioned medium also inhibited DNA synthesis in short-term Schwann cells stimulated to divide by glial growth factor or elevation of intracellular cAMP. The growth inhibitory activity was not detected in the medium of long-term immortalised Schwann cells, epineurial fibroblasts, a Schwannoma (33B), astrocytes or a fibroblast-like cell-line (3T3) and it did not inhibit serum-induced DNA synthesis in epineurial fibroblasts, 33B cells or 3T3 cells. The activity was apparently distinct from transforming growth factor-beta, activin, IL6, epidermal growth factor, atrial natriuretic peptide and gamma-interferon and was heat and acid stable, resistant to collagenase and destroyed by trypsin treatment. We raise the possibility that loss of an inhibitory autocrine loop may contribute to the rapid proliferation of long-term cultured Schwann cells and that an autocrine growth inhibitor may have a role in the cessation of Schwann cell division that precedes differentiation in peripheral nerve development.  相似文献   

12.
The effect of forskolin on collagen production in osteoblasts was investigated by using clonal osteoblastic MC3T3-E1 cells cultured in a-minimum essential medium containing 0.1% bovine serum albumin. Forskolin increased the adenylate cyclase activity in membranes pelleted from homogenates of the cell line in a dose-dependent manner. The drug caused a 13-fold stimulation at 10(-4) M, indicating that the compound directly acts on adenylate cyclase, leading to an increase in the intracellular cAMP content of the cells. Collagen accumulation in the cultures was elevated by one-day treatment with 5 X 10(-5) M forskolin to about twice that in the controls. The stimulation was mainly due to an elevation in collagen synthesis but not to an inhibition of intracellular collagen degradation because forskolin dose-dependently increased collagen synthesis; it also significantly increased the amount of low-molecular-weight hydroxyproline found in the cultures. Cells treated with forskolin produced mainly type I collagen, as found in bone matrix in situ, with only small amounts of other types of collagen. Furthermore, forskolin time-dependently inhibited DNA synthesis in the cells, indicating that the increase in type I collagen synthesis by forskolin was not due to stimulated cell proliferation. These results suggest that cAMP is closely linked to the differentiation of osteoblasts in vitro.  相似文献   

13.
The effects of platelet-derived growth factor and plasma components on saturation density in cultures of 3T3 cells were investigated. Both of these components of whole blood serum affect saturation density; however, when 3T3 cells become quiescent at high density in medium containing whole blood serum, only platelet-derived growth factor and fresh whole blood serum are capable of stimulating proliferation. Addition of fresh plasma- derived serum has little effect on cell growth. These results suggest that the platelet factor is the major determinant of saturation density in cultures of 3T3 cells maintained in medium supplemented with whole blood serum. Experiments were performed to investigate the mechanism by which platelet-derived growth factor regulates saturation density. We investigated the possibilities of inactivation of growth factors by proliferating cells, and the effects of cell density on the response of 3T3 cells to platelet-derived growth factor. The amount of platelet- derived growth factor required to initiated DNA synthesis increases with increasing cell density. Some inactivation of growth factors by growing cells was detected, but this depletion was only evident at high cell density. We propose that density-dependent inhibition in cultured 3T3 cells is the result both of an increased requirement for the platelet- derived growth factor as the cultures become more crowded and of inactivation of growth factor activity by growing cells.  相似文献   

14.
Synthesis of DNA-binding proteins during the cell cycle of WI-38 cells   总被引:1,自引:0,他引:1  
Synthesis of DNA-binding proteins was investigated in WI-38 human diploid fibroblast cultures after stimulation with serum containing medium. Density-inhibited confluent monolayers of young (phase II) and aging (phase III) WI-38 cells can be stimulated to synthesize DNA by replacing the medium with fresh medium containing 10% fetal calf serum. Of the phase II cells, 35–50% showed a partially synchronized burst of DNA-synthesizing activity between 15 and 24 h whereas only 4–6% of phase III cells showed DNA-synthesizing activity at 20 h, and that cell fraction was increasing even at 38 h. This suggests either an extremely prolonged G 1 in stimulated phase III cells, or a heterogeneity of the population (e.g., a mixed population of pre- and postmitotic cells) for phase III cells. At various times after the change of medium, DNA-binding protein synthesis was examined in these stimulated cultures. Protein of mol. wt 20 000–25 000 D accumulated rapidly during early G 1 and declined thereafter, whereas larger protein (40 000 and 68 000 D) accumulated during the late G 1 or G 1-S transition period indicating that accumulation of these proteins is associated with the onset of DNA synthesis in the serum-stimulated cells. In cultures where the DNA synthesis has been reduced or inhibited by an excess of thymidine, hydroxyurea or dibutyryl cAMP, the accumulation of the larger proteins (40 000 and 68 000 D) was neglible as compared with non-stimulated cultures. Hydrocortisone did not exert any effect on the DNA-binding protein synthesis in phase II cells. However, it seems to increase the cell fraction which can respond to the serum factor in phase III cells as evidenced from the pattern of DNA-binding proteins synthesis.  相似文献   

15.
《FEBS letters》1997,407(1):73-77
Stimulation of DNA and protein synthesis in brown preadipocytes by 1 μM neokyotorphin in serum-containing media was comparable with the effect of 1 μM norepinephrine. In serum-free medium a decrease and a shift of the maximal effect to lower concentration of neokyotorphin were observed. Kyotorphin had no effect on cell proliferation in either medium; however, 0.01–1 μM kyotorphin inhibited the cell proliferation stimulated by 1 μM norepinephrine. Norepinephrine and both peptides stimulated comparable Ca2+ rise in freshly isolated brown preadipocytes. The effects of neokyotorphin and norepinephrine were additive, whereas 0.03–0.3 μM kyotorphin blocked the action of 3 μM norepinephrine. The peptides did not affect the cAMP level in non-stimulated or norepinephrine-stimulated cultured cells. The effects of the peptides on the brown fat cell cultures indicate that peripheral tissue cells contain receptors for these neuropeptides.  相似文献   

16.
The effect of PGE2 on the activation of quiescent lung fibroblasts   总被引:2,自引:0,他引:2  
The effect of prostaglandin E2 (PGE2) on fibroblast proliferation was examined. The presence of PGE2 for 24 h inhibited the growth of quiescent cells stimulated with serum, platelet-derived growth factor and macrophage-derived factors. Maximal inhibition of nuclear labeling with [3H]thymidine occurred at concentrations greater than 10(-7) M. The inhibitory effect of PGE2 was less potent in exponentially growing cells and was not the result of conversion of PGE2 to PGA2 during incubation in growth medium. The G1 phase was determined to be 12-14 h in untreated cultures. The extent of growth inhibition by PGE2 was similar with addition of PGE2 at 0, 3, 6, or 9 h following restimulation of quiescent cell cultures. Approximately 25% of the cells that enter S phase are refractory to PGE2-induced growth inhibition. Short-term exposure to PGE2 (5 min and 30 min) caused substantial growth inhibition. The serum-induced proliferation was also inhibited by the cAMP analogue, dibutyrl cAMP. Our results suggest that PGE2 affects a distinct subpopulation of cells. Restimulation of quiescent cells treated with PGE2 for 24 h, indicated that release from PGE2 exposure is associated with prolongation of the G1 phase of the cell cycle.  相似文献   

17.
Treatment of quiescent cells with serum results concomitantly in an increase in cellular glutathione (GSH) content and growth stimulation. A possible association between the GSH increase and the growth response was examined by studying separately the effects of nutrients and growth factors on the levels of cellular GSH and proliferation of quiescent NRK-49F cells. The addition of fresh medium with 10% calf serum was found to result in both a twofold increase in cellular GSH and growth stimulation (DNA synthesis and cell proliferation). 10% calf serum alone, without fresh medium, stimulated cell growth but failed to cause a comparable increase in cellular GSH. The addition of fresh medium without 10% serum, and of 0.5 mM cysteine and glutamate, resulted in both instances in a marked increase in cellular GSH, but failed to stimulate cell growth. EGF, in contrast, induced a complete mitogenic response but did not increase cellular GSH. Finally, pretreatment with L-buthionine-(S,R)-sulfoximine (BSO), a specific inhibitor of GSH synthesis, decreased cellular GSH and inhibited EGF-induced DNA synthesis, but these two responses do not, in their dose dependency, correlate. The results obtained thus show that the increase in cellular GSH that occurs in quiescent, serum-stimulated NRK-49F cells is a result of nutrient repletion rather than mitogenic stimulation, and increased GSH levels do not necessarily precede DNA synthesis and mitosis.  相似文献   

18.
The distribution of Chinese hamster cells with respect to the compartments of the cell generation cycle was studied in cultures in the stationary phase of growth in two different media. A measure of the state of depletion of the nutrient medium was formulated by defining a quantity termed the nutritive capacity of the medium. This quantity was used to verify that the cessation of cell proliferation is due to nutrient deficiencies and not to density dependent growth inhibition. Cell cultures in stationary phase were diluted into fresh medium and as growth resumed, mitotic index, cumulative mitotic index, label index and viability were measured as a function of time. The distribution of cells with respect to compartments of the cell generation cycle in stationary phase populations was reconstructed from these data. Stationary phase populations of Chinese hamster cells that retained the capacity for renewed growth when diluted into fresh medium were found to be arrested in the G1 and G2 portions of the cycle; the relative proportion of these cells in G1 increased with time in the stationary phase, but the sequence differs in the two media. In early stationary phase, in the less rich medium, more cells are in G2 than in G1. Also in this medium a fraction of the population was observed to be synthesizing DNA during stationary phase, but this fraction was not stimulated to renewed growth by dilution into fresh medium.  相似文献   

19.
In Friend leukemic cells cultured in the presence of 5 mM hexamethylene bisacetamide, a potent differentiation-inducer, poly(ADP-ribose) synthesis was reduced to about one-third of that in control cells. Replacing the original culture medium with fresh medium resulted in a decrease of poly(ADP-ribose) synthesis in confluent control cultures, while cells induced to differentiate were not affected by the medium change. This is not attributable to the difference of the level of poly(ADP-ribose) synthesis in different cell cycle stages, since DNA synthesis and cell growth in differentiating cells were maintained at the same level with those of control cells. In control cultures, a medium change during the log-phase effected a prolongation in the rise of poly(ADP-ribose) synthesis. When conditioned medium was substituted during log-phase growth, poly(ADP-ribose) synthesis was stimulated in control cells. This stimulating effect was not lost by dialysis but was lost by heat-treatment or trypsin-digestion. Results suggest that poly(ADP-ribose) synthesis is regulated by some factor(s) released into the culture medium.  相似文献   

20.
Asparagine and cAMP caused differential activation of ornithine decarboxylase activity that was dependent upon the cell cycle phase of Chinese Hamster Ovary cells maintained with a salts/glucose medium. Prior to incubation in the salts/glucose medium, stationary phase cultures were stimulated to proliferate by refeeding with fresh complete growth medium. Induction of ornithine decarboxylase activity was dependent upon two conditions: (1) the salts/ glucose medium required supplementation with an appropriate amino acid and cAMP; (2) cultures had to be in late G1/early S phase when placed in the salts/glucose medium. Cultures in G0 phase had moderate capacity for ornithine decarboxylase enhancement but lost this capacity as they traversed into early G1 or into mid S phase. These results demonstrate the importance of the cell cycle in modulating the activation of ornithine decarboxylase by asparagine and cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号