首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In the pairing reaction between circular gapped and fully duplex DNA, RecA protein first polymerizes on the gapped DNA to form a nucleoprotein filament. Conditions that removed the formation of secondary structure in the gapped DNA, such as addition of Escherichia coli single-stranded DNA binding protein or preincubation in 1 mM-MgCl2, optimized the binding of RecA protein and increased the formation of joint molecules. The gapped duplex formed stable joints with fully duplex DNA that had a 5' or 3' terminus complementary to the single-stranded region of the gapped molecule. However, the joints formed had distinct properties and structures depending on whether the complementary terminus was at the 5' or 3' end. Pairing between gapped DNA and fully duplex linear DNA with a 3' complementary terminus resulted in strand displacement, symmetric strand exchange and formation of complete strand exchange products. By contrast, pairing between gapped and fully duplex DNA with a 5' complementary terminus produced a joint that was restricted to the gapped region; there was no strand displacement or symmetric strand exchange. The joint formed in the latter reaction was likely a three-stranded intermediate rather than a heteroduplex with the classical Watson-Crick structure. We conclude that, as in the three-strand reaction, the process of strand exchange in the four-strand reaction is polar and progresses in a 5' to 3' direction with respect to the initiating strand. The present study provides further evidence that in both three-strand and four-strand systems the pairing and strand exchange reactions share a common mechanism.  相似文献   

2.
We have developed a new assay to characterize the double-stranded DNA (dsDNA) binding properties of RecA protein. This assay is based on measurement of changes in the fluorescence of a 4',6-diamidino-2-phenylindole (DAPI)-dsDNA complex upon RecA protein binding. The binding of RecA protein to a complex of DAPI and dsDNA results in displacement of the bound DAPI, producing a decrease in the observed fluorescence. DAPI displacement is dependent on both RecA protein and ATP; dATP and, to a lesser extent, UTP and dCTP also support the DAPI displacement reaction, but dGTP, GTP, dITP and TTP do not. Binding stoichiometry for the RecA protein-dsDNA complex measured by DAPI displacement is 3 bp per RecA protein monomer in the presence of ATP. These results, taken together with data for mutant RecA proteins, suggest that this DAPI displacement assay monitors formation of the high affinity DNA binding state of RecA protein. Since this state of RecA protein defines the form of the nucleoprotein filament that is active in DNA strand exchange, these findings raise the possibility that the RecA protein-dsDNA filament may possess a homologous pairing capacity.  相似文献   

3.
S A Chow  S K Chiu  B C Wong 《Biochimie》1991,73(2-3):157-161
RecA protein promotes homologous pairing and symmetrical strand exchange between partially single-stranded duplex DNA and fully duplex molecules. We constructed circular gapped DNA with a defined gap length and studied the pairing reaction between the gapped substrate and fully duplex DNA. RecA protein polymerizes onto the single-stranded and duplex regions of the gapped DNA to form a nucleoprotein filament. The formation of such filaments requires a stoichiometric amount of RecA protein. Both the rate and yield of joint molecule formation were reduced when the pairing reaction was carried out in the presence of a sub-saturating amount of RecA protein. The amount of RecA protein required for optimal pairing corresponds to the binding site size of RecA protein at saturation on duplex DNA. The result suggests that in the 4-stranded system the single-stranded as well as the duplex regions are involved in pairing. By using fully duplex DNA that shares different lengths and regions of homology with the gapped molecule, we directly showed that the duplex region of the gapped DNA increased both the rate and yield of joint molecule formation. The present study indicates that even though strand exchange in the 4-stranded system must require the presence of a single-stranded region, the pairing that occurs in duplex regions between DNA molecules is functionally significant and contributes to the overall activity of the gapped DNA.  相似文献   

4.
The effect of the Escherichia coli single-stranded DNA binding (SSB) protein on the stability of complexes of E. coli RecA protein with single-stranded DNA has been investigated through direct DNA binding experiments. The effect of each protein on the binding of the other to single-stranded DNA, and the effect of SSB protein on the transfer rate of RecA protein from one single-stranded DNA molecule to another, were studied. The binding of SSB protein and RecA protein to single-stranded phage M13 DNA is found to be competitive and, therefore, mutually exclusive. In the absence of a nucleotide cofactor, SSB protein binds more tightly to single-stranded DNA than does RecA protein, whereas in the presence of ATP-gamma-S, RecA protein binds more tightly than SSB protein. In the presence of ATP, an intermediate result is obtained that depends on the type of DNA used, the temperature, and the magnesium ion concentration. When complexes of RecA protein, SSB protein and single-stranded M13 DNA are formed under conditions of slight molar excess of single-stranded DNA, no effect of RecA protein on the equilibrium stability of the SSB protein-single-stranded DNA complex is observed. Under similar conditions, SSB protein has no observed effect on the stability of the RecA protein-etheno M13 DNA complex. Finally, measurements of the rate of RecA protein transfer from RecA protein-single-stranded DNA complexes to competing single-stranded DNA show that there is no kinetic stabilization of the RecA protein-etheno M13 DNA complex by SSB protein, but that a tenfold stabilization is observed when single-stranded M13 DNA is used to form the complex. However, this apparent stabilizing effect of SSB protein can be mimicked by pre-incubation of the RecA protein-single-stranded M13 DNA complex in low magnesium ion concentration, suggesting that this effect of SSB protein is indirect and is mediated through changes in the secondary structure of the DNA. Since no direct effect of SSB protein is observed on either the equilibrium or dissociation properties of the RecA protein-single-stranded DNA complex, it is concluded that the likely effect of SSB protein in the strand assimilation reaction is on a slow step in the association of RecA protein with single-stranded DNA. Direct evidence for this conclusion is presented in the accompanying paper.  相似文献   

5.
We have prepared a mutant RecA protein in which proline 67 and glutamic acid 68 in the NTP binding site were replaced by a glycine and alanine residue, respectively. The [P67G/E68A]RecA protein catalyzes the single-stranded DNA-dependent hydrolysis of ATP and is able to promote the standard ATP-dependent three-strand exchange reaction between a circular bacteriophage phiX174 (phiX) single-stranded DNA molecule and a homologous linear phiX double-stranded (ds) DNA molecule (5.4 kilobase pairs). The strand exchange activity differs from that of the wild type RecA protein, however, in that it is (i) completely inhibited by an ATP regeneration system, and (ii) strongly stimulated by the addition of high concentrations of ADP to the reaction solution. These results indicate that the strand exchange activity of the [P67G/E68A]RecA protein is dependent on the presence of both ATP and ADP. The ADP dependence of the reaction is reduced or eliminated when (i) a shorter linear phiX dsDNA fragment (1.1 kilobase pairs) is substituted for the full-length linear phiX dsDNA substrate, or (ii) the Mg(2+) concentration is reduced to a level just sufficient to complex the ATP present in the reaction solution. These results indicate that it is the branch migration phase (and not the initial pairing step) of the [P67G/E68A]RecA protein-promoted strand exchange reaction that is dependent on ADP. It is likely that the [P67G/E68A]RecA mutation has revealed a requirement for ADP that also exists (but is not as readily apparent) in the strand exchange reaction of the wild type RecA protein.  相似文献   

6.
M C Whitby  R G Lloyd 《The EMBO journal》1995,14(14):3302-3310
RecG protein is required for normal levels of recombination and DNA repair in Escherichia coli. This 76 kDa polypeptide is a junction-specific DNA helicase that acts post-synaptically to drive branch migration of Holliday junction intermediates made by RecA during the strand exchange stage of recombination. To gain further insight into the role of RecG, we studied its activity on three-strand intermediates formed by RecA between circular single-stranded and linear duplex DNAs. Once RecA is removed, RecG drives branch migration of these intermediates by a junction-targeted activity that depends on hydrolysis of ATP. RuvAB has a similar activity. However, when RecG is added to a RecA strand exchange reaction it severely reduces the accumulation of joint molecule intermediates by driving branch migration of junctions in the reverse direction to that catalysed by RecA strand exchange. In comparison, RuvAB has little effect on the reaction. We discuss how reverse branch migration by RecG, which acts counter of the 5'-->3' polarity of RecA binding and strand exchange, could serve to promote or abort the early stages of recombination, depending on the orientation of the single DNA strand initiating the exchange relative to the adjacent duplex region.  相似文献   

7.
When the recA protein (RecA) of Escherichia coli promotes strand exchange between single-stranded DNA (ssDNA) circles and linear double-stranded DNAs (dsDNA) with complementary 5' or 3' ends a polarity is observed. This property of RecA depends on ATP hydrolysis and the ssDNA that is displaced in the reaction since no polarity is observed in the presence of the non-hydrolyzable ATP analog, ATP gamma S, or in the presence of single-strand specific exonucleases. Based on these results a model is presented in which both the 5' and 3' complementary ends of the linear dsDNA initiate pairing with the ssDNA circle but only one end remains stably paired. According to this model, the association/dissociation of RecA in the 5' to 3' direction on the displaced strand determines the polarity of strand exchange by favoring or blocking its reinvasion into the newly formed dsDNA. Reinvasion is favored when the displaced strand is coated with RecA whereas it is blocked when it lacks RecA, remains covered by single-stranded DNA binding protein or is removed by a single-strand specific exonuclease. The requirement for ATP hydrolysis is explained if the binding of RecA to the displaced strand occurs via the dissociation and/or transfer of RecA, two functions that depend on ATP hydrolysis. The energy for strand exchange derives from the higher binding constant of RecA for the newly formed dsDNA as compared with that for ssDNA and not from ATP hydrolysis.  相似文献   

8.
A role for RNA synthesis in homologous pairing events.   总被引:2,自引:0,他引:2  
  相似文献   

9.
BACKGROUND: ATP-mediated cooperative assembly of a RecA nucleoprotein filament activates the protein for catalysis of DNA strand exchange. RecA is a classic allosterically regulated enzyme in that ATP binding results in a dramatic increase in ssDNA binding affinity. This increase in ssDNA binding affinity results almost exclusively from an ATP-mediated increase in cooperative filament assembly rather than an increase in the inherent affinity of monomeric RecA for DNA. Therefore, certain residues at the subunit interface must play an important role in transmitting allosteric information across the filament structure of RecA. RESULTS: Using electron microscopic analysis of RecA polymer formation in the absence of DNA, we show that while wild-type RecA undergoes a slight decrease in filament length in the presence of ATP, a Phe217Tyr substitution results in a dramatic ATP-induced increase in cooperative filament assembly. Biosensor DNA binding measurements reveal that the Phe217Tyr mutation increases ATP-mediated cooperative interaction between RecA subunits by more than 250-fold. CONCLUSIONS: These studies represent the first identification of a subunit interface residue in RecA (Phe217) that plays a critical role in regulating the flow of ATP-mediated information throughout the protein filament structure. We propose a model by which conformational changes that occur upon ATP binding are propagated through the structure of a RecA monomer, resulting in the insertion of the Phe217 side chain into a pocket in the neighboring subunit. This event serves as a key step in intersubunit communication leading to ATP-mediated cooperative filament assembly and high affinity binding to ssDNA.  相似文献   

10.
A protein with DNA binding, renaturation, and strand-transfer activities has been purified to homogeneity from broccoli (Brassica oleracea var italica). The enzyme, broccoli DNA strand transferase, has a native molecular mass of at least 200 kD and an apparent subunit molecular mass of 95 kD and is isolated as a set of isoforms differing only in charge. All three activities are saturated at very low stoichiometry, one monomer per approximately 1000 nucleotides of single-stranded DNA. Strand transfer is not effected by nuclease activity and reannealing, is only slightly dependent on ATP, and is independent of added Mg2+. Transfer requires homologous single- and double-stranded DNA and at higher enzyme concentrations results in very high molecular mass complexes. As with Escherichia coli RecA, transfer by broccoli DNA strand transferase depends strongly on the presence of 3' homologous ends.  相似文献   

11.
Efficient homologous pairing de novo of linear duplex DNA with a circular single strand (plus strand) coated with RecA protein requires saturation and extension of the single strand by the protein. However, strand exchange, the transfer of a strand from duplex DNA to the nucleoprotein filament, which follows homologous pairing, does not require the stable binding of RecA protein to single-stranded DNA. When RecA protein was added back to isolated protein-free DNA intermediates in the presence of sufficient ADP to inhibit strongly the binding of RecA protein to single-stranded DNA, strand exchange nonetheless resumed at the original rate and went to completion. Characterization of the protein-free DNA intermediate suggested that it has a special site or region to which RecA protein binds. Part of the nascent displaced plus strand of the deproteinized intermediate was unavailable as a cofactor for the ATPase activity of RecA protein, and about 30% resisted digestion by P1 endonuclease, which acts preferentially on single-stranded DNA. At the completion of strand exchange, when the distal 5' end of the linear minus strand had been fully incorporated into heteroduplex DNA, a nucleoprotein complex remained that contained all three strands of DNA from which the nascent displaced strand dissociated only over the next 50 to 60 minutes. Deproteinization of this intermediate yielded a complex that also contained three strands of DNA in which the nascent displaced strand was partially resistant to both Escherichia coli exonuclease I and P1 endonuclease. The deproteinized complex showed a broad melting transition between 37 degrees C and temperatures high enough to melt duplex DNA. These results show that strand exchange can be subdivided into two stages: (1) the exchange of base-pairs, which creates a new heteroduplex pair in place of a parental pair; and (2) strand separation, which is the physical displacement of the unpaired strand from the nucleoprotein filament. Between the creation of new heteroduplex DNA and the eventual separation of a third strand, there exists an unusual DNA intermediate that may contain three-stranded regions of natural DNA that are several thousand bases in length.  相似文献   

12.
The RecA protein of Deinococcus radiodurans (RecA(Dr)) is essential for the extreme radiation resistance of this organism. The RecA(Dr) protein has been cloned and expressed in Escherichia coli and purified from this host. In some respects, the RecA(Dr) protein and the E. coli RecA (RecA(Ec)) proteins are close functional homologues. RecA(Dr) forms filaments on single-stranded DNA (ssDNA) that are similar to those formed by the RecA(Ec). The RecA(Dr) protein hydrolyzes ATP and dATP and promotes DNA strand exchange reactions. DNA strand exchange is greatly facilitated by the E. coli SSB protein. As is the case with the E. coli RecA protein, the use of dATP as a cofactor permits more facile displacement of bound SSB protein from ssDNA. However, there are important differences as well. The RecA(Dr) protein promotes ATP- and dATP-dependent reactions with distinctly different pH profiles. Although dATP is hydrolyzed at approximately the same rate at pHs 7.5 and 8.1, dATP supports an efficient DNA strand exchange only at pH 8.1. At both pHs, ATP supports efficient DNA strand exchange through heterologous insertions but dATP does not. Thus, dATP enhances the binding of RecA(Dr) protein to ssDNA and the displacement of ssDNA binding protein, but the hydrolysis of dATP is poorly coupled to DNA strand exchange. The RecA(Dr) protein thus may offer new insights into the role of ATP hydrolysis in the DNA strand exchange reactions promoted by the bacterial RecA proteins. In addition, the RecA(Dr) protein binds much better to duplex DNA than the RecA(Ec) protein, binding preferentially to double-stranded DNA (dsDNA) even when ssDNA is present in the solutions. This may be of significance in the pathways for dsDNA break repair in Deinococcus.  相似文献   

13.
The Escherichia coli RdgC protein is a potential negative regulator of RecA function. RdgC inhibits RecA protein-promoted DNA strand exchange, ATPase activity, and RecA-dependent LexA cleavage. The primary mechanism of RdgC inhibition appears to involve a simple competition for DNA binding sites, especially on duplex DNA. The capacity of RecA to compete with RdgC is improved by the DinI protein. RdgC protein can inhibit DNA strand exchange catalyzed by RecA nucleoprotein filaments formed on single-stranded DNA by binding to the homologous duplex DNA and thereby blocking access to that DNA by the RecA nucleoprotein filaments. RdgC protein binds to single-stranded and double-stranded DNA, and the protein can be visualized on DNA using electron microscopy. RdgC protein exists in solution as a mixture of oligomeric states in equilibrium, most likely as monomers, dimers, and tetramers. This concentration-dependent change of state appears to affect its mode of binding to DNA and its capacity to inhibit RecA. The various species differ in their capacity to inhibit RecA function.  相似文献   

14.
Effect of RecF protein on reactions catalyzed by RecA protein.   总被引:12,自引:1,他引:11       下载免费PDF全文
RecF protein is one of at least three single strand DNA (ssDNA) binding proteins which act in recombination and repair in Escherichia coli. In this paper we show that our RecF protein preparation complexes with ssDNA so as to retard its electrophoretic movement in an agarose gel. The apparent stoichiometry of RecF-ssDNA-binding measured in this way is one RecF molecule for every 15 nucleotides and the binding appears to be cooperative. Interaction of the other two ssDNA-binding proteins, RecA and Ssb proteins, has been studied extensively; so in this paper we begin the study of the interaction of RecF and RecA proteins. We found that the RecF protein preparation inhibits the activity of RecA protein in the formation of joint molecules whether added before or after addition of RecA protein to ssDNA. It, therefore, differs from Ssb protein which stimulates joint molecule formation when added to ssDNA after RecA protein. We found that our RecF protein preparation inhibits two steps prior to joint molecule formation: RecA protein binding to ssDNA and coaggregate formation between ssDNA-RecA complexes and dsDNA. We found that it required a much higher ratio of RecF to RecA protein than normally occurs in vivo to inhibit joint molecule formation. The insight that these data give to the normal functioning of RecF protein is discussed.  相似文献   

15.
Two proteins encoded by bacteriophage T7, the gene 2.5 single-stranded DNA binding protein and the gene 4 helicase, mediate homologous DNA strand exchange. Gene 2.5 protein stimulates homologous base pairing of two DNA molecules containing complementary single-stranded regions. The formation of a joint molecule consisting of circular, single-stranded M13 DNA, annealed to homologous linear, duplex DNA having 3'- or 5'-single-stranded termini of approximately 100 nucleotides requires stoichiometric amounts of gene 2.5 protein. In the presence of gene 4 helicase, strand transfer proceeds at a rate of > 120 nucleotides/s in a polar 5' to 3' direction with respect to the invading strand, resulting in the production of circular duplex M13 DNA. Strand transfer is coupled to the hydrolysis of a nucleoside 5'-triphosphate. The reaction is dependent on specific interactions between gene 2.5 protein and gene 4 protein.  相似文献   

16.
The helical filament formed by RecA protein on single-stranded DNA plays an important role in homologous recombination and pairs with a complementary single strand or homologous duplex DNA. The RecA nucleoprotein filament also recognizes an identical single strand. The chimeric protein, RecAc38, forms a nucleoprotein filament that recognizes a complementary strand but is defective in recognition of duplex DNA, and is associated with phenotypic defects in repair and recombination. As described here, RecAc38 nucleoprotein filament is also defective in recognition of an identical strand, either when the filament has within it a single strand or duplex DNA. A model that postulates three DNA binding sites rationalizes these observations and suggests that the third binding site mediates non-Watson-Crick interactions that are instrumental in recognition of homology in duplex DNA.  相似文献   

17.
Using gapped circular DNA and homologous duplex DNA cut with restriction nucleases, we show that E. coli RecA protein promotes strand exchanges past double-strand breaks. The products of strand exchange are heteroduplex DNA molecules that contain nicks, which can be sealed by DNA ligase, thereby effecting the repair of double-strand breaks in vitro. These results show that RecA protein can promote pairing interactions between homologous DNA molecules at regions where both are duplex. Moreover, pairing leads to strand exchanges and the formation of heteroduplex DNA. In contrast, strand exchanges are unable to pass a double-strand break in the gapped substrate. This apparent paradox is discussed in terms of a model for RecA-DNA interactions in which we propose that each RecA monomer contains two nonequivalent DNA-binding sites.  相似文献   

18.
Purified human Rad51 protein (hRad51) catalyses ATP-dependent homologous pairing and strand transfer reactions, characteristic of a central role in homologous recombination and double-strand break repair. Using single-stranded circular and partially homologous linear duplex DNA, we found that the length of heteroduplex DNA formed by hRad51 was limited to approximately 1.3 kb, significantly less than that observed with Escherichia coli RecA and Saccharomyces cerevisiae Rad51 protein. Joint molecule formation required the presence of a 3' or 5'-overhang on the duplex DNA substrate and initiated preferentially at the 5'-end of the complementaryx strand. These results are consistent with a preference for strand transfer in the 3'-5' direction relative to the single-stranded DNA. The human single-strand DNA-binding protein, hRP-A, stimulated hRad51-mediated joint molecule formation by removing secondary structures from single-stranded DNA, a role similar to that played by E. coli single-strand DNA-binding protein in RecA-mediated strand exchange reactions. Indeed, E. coli single-strand DNA-binding protein could substitute for hRP-A in hRad51-mediated reactions. Joint molecule formation by hRad51 was stimulated or inhibited by hRad52, dependent upon the reaction conditions. The inhibitory effect could be overcome by the presence of hRP-A or excess heterologous DNA.  相似文献   

19.
The recA protein (RecA) promotes DNA pairing and strand exchange optimally in the presence of single-stranded binding protein (SSB). Under these conditions, 3' homologous ends are essential for stable joint molecule formation between linear single-stranded DNA (ssDNA) and supercoiled DNA (i.e. 3' ends are 50-60 times more reactive than 5' ends). Linear ssDNAs with homology at the 5' end do not participate in pairing. In the absence of SSB, the strand exchange reaction is less efficient; however, linear ssDNAs with 3' end homology are still 5- to 10-fold more reactive than those with 5' end homology. The preference for a 3' homologous end in the absence of SSB suggests that this is an intrinsic property of RecA-promoted strand exchange. The preferential reactivity of 3' homologous ends is likely to be a consequence of the polarity of polymerization of RecA on ssDNA. Specifically, since RecA polymerizes in the 5'----3' direction, 3' ends are more likely to be coated with RecA and, hence, will be more reactive than 5' ends.  相似文献   

20.
In this study, the double-stranded DNA-dependent activities of Deinococcus radiodurans RecA protein (Dr RecA) were characterized. The interactions of the Dr RecA protein with double-stranded DNA were determined, especially dsDNA-dependent ATP hydrolysis by the Dr RecA protein and the DNA strand exchange reaction, in which multiple branch points exist on a single RecA protein-DNA complex. A nucleotide cofactor (ATP or dATP ) was required for the Dr RecA protein binding to duplex DNA. In the presence of dATP, the nucleation step in the binding process occurred more rapidly than in the presence of ATP. Salts inhibited the binding of the Dr RecA protein to double-stranded DNA. Double-stranded DNA-dependent ATPase activities showed a different sensitivity to anion species. Glutamate had only a minimal effect on the double-stranded DNA-dependent ATPase activities, up to a concentration of 0.7 M. In the competition experiment for Dr RecA protein binding, the Dr RecA protein manifested a higher affinity to double-stranded DNA than was observed for single-stranded DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号