首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glioma stem-like cells constitute one of the potential origins of gliomas, and therefore, their elimination is an essential factor for the development of efficient therapeutic strategies. Cannabinoids are known to exert an antitumoral action on gliomas that relies on at least two mechanisms: induction of apoptosis of transformed cells and inhibition of tumor angiogenesis. However, whether cannabinoids target human glioma stem cells and their potential impact in gliomagenesis are unknown. Here, we show that glioma stem-like cells derived from glioblastoma multiforme biopsies and the glioma cell lines U87MG and U373MG express cannabinoid type 1 (CB(1)) and type 2 (CB(2)) receptors and other elements of the endocannabinoid system. In gene array experiments, CB receptor activation altered the expression of genes involved in the regulation of stem cell proliferation and differentiation. The cannabinoid agonists HU-210 and JWH-133 promoted glial differentiation in a CB receptor-dependent manner as shown by the increased number of S-100beta- and glial fibrillary acidic protein-expressing cells. In parallel, cannabinoids decreased the cell population expressing the neuroepithelial progenitor marker nestin. Moreover, cannabinoid challenge decreased the efficiency of glioma stem-like cells to initiate glioma formation in vivo, a finding that correlated with decreased neurosphere formation and cell proliferation in secondary xenografts. Gliomas derived from cannabinoid-treated cancer stem-like cells were characterized with a panel of neural markers and evidenced a more differentiated phenotype and a concomitant decrease in nestin expression. Overall, our results demonstrate that cannabinoids target glioma stem-like cells, promote their differentiation, and inhibit gliomagenesis, thus giving further support to their potential use in the management of malignant gliomas.  相似文献   

2.
The transmembrane chemokine CXCL16 is expressed by dendritic and vascular cells and mediates chemotaxis and adhesion of activated T cells via the chemokine receptor CXCR6/Bonzo. Here we describe the expression and shedding of this chemokine by glioma cells in situ and in vitro. By quantitative RT-PCR and immunohistochemistry, we show that CXCL16 is highly expressed in human gliomas, while expression in normal brain is low and mainly restricted to brain vascular endothelial cells. In cultivated human glioma cells as well as in activated mouse astroglial cells, CXCL16 mRNA and protein is constitutively expressed and further up-regulated by tumour necrosis factor alpha (TNFalpha) and interferon-gamma (IFNgamma). CXCL16 is continuously released from glial cells by proteolytic cleavage which is rapidly enhanced by stimulation with phorbol-12-myristate-13-acetate (PMA). As shown by inhibitor studies, two distinct members of the disintegrin-like metalloproteinase family ADAM10 and 17 are involved in the constitutive and PMA-induced shedding of glial CXCL16. In addition to the chemokine, its receptor CXCR6 could be detected by quantitative RT-PCR in human glioma tissue, cultivated murine astrocytes and at a lower level in microglial cells. Functionally, recombinant soluble CXCL16 enhanced proliferation of CXCR6-positive murine astroglial and microglial cells. Thus, the transmembrane chemokine CXCL16 is expressed in the brain by malignant and inflamed astroglial cells, shed to a soluble form and targets not only activated T cells but also glial cells themselves.  相似文献   

3.
4.
Impairment of working memory is one of the most important deleterious effects of marijuana intoxication in humans, but its underlying mechanisms are presently unknown. Here, we demonstrate that the impairment of spatial working memory (SWM) and in vivo long-term depression (LTD) of synaptic strength at hippocampal CA3-CA1 synapses, induced by an acute exposure of exogenous cannabinoids, is fully abolished in conditional mutant mice lacking type-1 cannabinoid receptors (CB(1)R) in brain astroglial cells but is conserved in mice lacking CB(1)R in glutamatergic or GABAergic neurons. Blockade of neuronal glutamate N-methyl-D-aspartate receptors (NMDAR) and of synaptic trafficking of glutamate α-amino-3-hydroxy-5-methyl-isoxazole propionic acid receptors (AMPAR) also abolishes cannabinoid effects on SWM and LTD induction and expression. We conclude that the impairment of working memory by marijuana and cannabinoids is due to the activation of astroglial CB(1)R and is associated with astroglia-dependent hippocampal LTD in vivo.  相似文献   

5.
Recently, we have shown that treatment of rat C6 glioma cells with the raft disruptor methyl-beta-cyclodextrin (MCD) doubles the binding of anandamide (AEA) to type-1 cannabinoid receptors (CB1R), followed by CB1R-dependent signaling via adenylate cyclase and p42/p44 MAPK activity. In the present study, we investigated whether type-2 cannabinoid receptors (CB2R), widely expressed in immune cells, also are modulated by MCD. We show that treatment of human DAUDI leukemia cells with MCD does not affect AEA binding to CB2R, and that receptor activation triggers similar [35S]guanosine-5'-O-(3-thiotriphosphate) binding in MCD-treated and control cells, similar adenylate cyclase and MAPK activity, and similar MAPK-dependent protection against apoptosis. The other AEA-binding receptor transient receptor potential channel vanilloid receptor subunit 1, the AEA synthetase N-acyl-phosphatidylethanolamine-phospholipase D, and the AEA hydrolase fatty acid amide hydrolase were not affected by MCD, whereas the AEA membrane transporter was inhibited (approximately 55%) compared with controls. Furthermore, neither diacylglycerol lipase nor monoacylglycerol lipase, which respectively synthesize and degrade 2-arachidonoylglycerol, were affected by MCD in DAUDI or C6 cells, whereas the transport of 2-arachidonoylglycerol was reduced to approximately 50%. Instead, membrane cholesterol enrichment almost doubled the uptake of AEA and 2-arachidonoylglycerol in both cell types. Finally, transfection experiments with human U937 immune cells, and the use of primary cells expressing CB1R or CB2R, ruled out that the cellular environment could account per se for the different modulation of CB receptor subtypes by MCD. In conclusion, the present data demonstrate that lipid rafts control CB1R, but not CB2R, and endocannabinoid transport in immune and neuronal cells.  相似文献   

6.
Aquaporin-4 (AQP4), the main water channel of the brain, is highly expressed in animal glioma and human glioblastoma in situ. In contrast, most cultivated glioma cell lines don't express AQP4, and primary cell cultures of human glioblastoma lose it during the first passages. Accordingly, in C6 cells and RG2 cells, two glioma cell lines of the rat, and in SMA mouse glioma cell lines, we found no AQP4 expression. We confirmed an AQP4 loss in primary human glioblastoma cell cultures after a few passages. RG-2 glioma cells if grafted into the brain developed AQP4 expression. This led us consider the possibility of AQP4 expression depends on brain microenvironment. In previous studies, we observed that the typical morphological conformation of AQP4 as orthogonal arrays of particles (OAP) depended on the extracellular matrix component agrin. In this study, we showed for the first time implanted AQP4 negative glioma cells in animal brain or flank to express AQP4 specifically in the intracerebral gliomas but neither in the extracranial nor in the flank gliomas. AQP4 expression in intracerebral gliomas went along with an OAP loss, compared to normal brain tissue. AQP4 staining in vivo normally is polarized in the astrocytic endfoot membranes at the glia limitans superficialis and perivascularis, but in C6 and RG2 tumors the AQP4 staining is redistributed over the whole glioma cell as in human glioblastoma. In contrast, primary rat or mouse astrocytes in culture did not lose their ability to express AQP4, and they were able to form few OAPs.  相似文献   

7.
Exploring the role of cannabinoid CB(2) receptors in the brain, we present evidence of CB(2) receptor molecular and functional interaction with cannabinoid CB(1) receptors. Using biophysical and biochemical approaches, we discovered that CB(2) receptors can form heteromers with CB(1) receptors in transfected neuronal cells and in rat brain pineal gland, nucleus accumbens, and globus pallidus. Within CB(1)-CB(2) receptor heteromers expressed in a neuronal cell model, agonist co-activation of CB(1) and CB(2) receptors resulted in a negative cross-talk in Akt phosphorylation and neurite outgrowth. Moreover, one specific characteristic of CB(1)-CB(2) receptor heteromers consists of both the ability of CB(1) receptor antagonists to block the effect of CB(2) receptor agonists and, conversely, the ability of CB(2) receptor antagonists to block the effect of CB(1) receptor agonists, showing a bidirectional cross-antagonism phenomenon. Taken together, these data illuminate the mechanism by which CB(2) receptors can negatively modulate CB(1) receptor function.  相似文献   

8.
Nebane NM  Kellie B  Song ZH 《FEBS letters》2006,580(22):5392-5398
Charge-neutralizing mutation D6.30N of the human cannabinoid receptor subtype 1 (CB1) and cannabinoid receptor subtype 2 (CB2) cannabinoid receptors was made to test two hypotheses: (1) D6.30 may be crucial for the functions of CB1 and CB2 receptors. (2) D6.30 may participate in an ionic lock with R3.50 that keeps the receptors in an inactive conformation. Specific ligand binding and ligand-induced inhibition of forskolin-stimulated cAMP accumulation were observed with human embryonic kidney epithelial cell line (HEK293) cells expressing wild-type CB1 and CB2, as well as CB1D6.30N and CB2D6.30N mutant receptors. There was however a decrease in maximum response of the mutant receptors compared to their wild-type counterparts, suggesting that D6.30 is essential for full activation of both CB1 and CB2 receptors. Both CB1D6.30N and CB2D6.30N demonstrated a level of constitutive activity no greater than that of their wild-type counterparts, indicating that either D6.30 does not participate in a salt bridge with R3.50, or the salt bridge is not critical for keeping cannabinoid receptors in the inactive conformation.  相似文献   

9.
A substantial amount of lysophosphatidic acid (LPA) (15.66 nmol/g tissue) was found to occur in the brain isolated from rats killed in liquid nitrogen. We found that a significant portion of brain LPA was accounted for by the arachidonic acid-containing species (5.4%). We obtained evidence that both 2-arachidonoyl species and 1-arachidonoyl species of LPA are present. The occurrence of 2-arachidonoyl LPA in the brain (0.53 nmol/g tissue) is a notable observation, because of its structural resemblance to 2-arachidonoyl-sn-glycerol (2-AG), an endogenous cannabinoid receptor ligand. We then examined the biological activity of 2-arachidonoyl LPA and compared it with that of 2-AG using neuroblastoma x glioma hybrid NG108-15 cells which express both the LPA receptor and cannabinoid CB1 receptor. We found that 2-arachidonoyl LPA interacts with the LPA receptor(s) to elicit the elevation of intracellular free Ca(2+) concentrations, whereas 2-AG interacts exclusively with the cannabinoid CB1 receptor. Next, we examined the possible metabolic relationship between 2-arachidonoyl LPA and 2-AG and obtained clear evidence that rapid enzymatic conversion of 2-arachidonoyl LPA to 2-AG took place in the brain homogenate. It is noteworthy that two types of endogenous ligands, that interact with different types of receptors, are closely related metabolically and rapidly interconvert.  相似文献   

10.
2-Arachidonoylglycerol is an endogenous ligand for the cannabinoid receptors (CB1 and CB2). Previously, we provided evidence that 2-arachidonoylglycerol, but not anandamide (N-arachidonoylethanolamine), is the true natural ligand for the cannabinoid receptors. In the present study, we examined in detail the effects of 2-arachidonoylglycerol on the production of chemokines in human promyelocytic leukemia HL-60 cells. We found that 2-arachidonoylglycerol induced a marked acceleration in the production of interleukin 8. The effect of 2-arachidonoylglycerol was blocked by treatment of the cells with SR144528, a cannabinoid CB2 receptor antagonist, indicating that the effect of 2-arachidonoylglycerol is mediated through the CB2 receptor. Augmented production of interleukin 8 was also observed with CP55940, a synthetic cannabinoid, and an ether-linked analog of 2-arachidonoylglycerol. On the other hand, neither anandamide nor the free arachidonic acid induced the enhanced production of interleukin 8. A similar effect of 2-arachidonoylglycerol was observed in the case of the production of macrophage-chemotactic protein-1. The accelerated production of interleukin 8 by 2-arachidonoylglycerol was observed not only in undifferentiated HL-60 cells, but also in HL-60 cells differentiated into macrophage-like cells. Noticeably, 2-arachidonoylglycerol and lipopolysaccharide acted synergistically to induce the dramatically augmented production of interleukin 8. These results strongly suggest that the CB2 receptor and its physiological ligand, i.e., 2-arachidonoylglycerol, play important regulatory roles such as stimulation of the production of chemokines in inflammatory cells and immune-competent cells. Detailed studies on the cannabinoid receptor system are thus essential to gain a better understanding of the precise regulatory mechanisms of inflammatory reactions and immune responses.  相似文献   

11.
The enantiomeric resolution of a racemic novel cannabinoid receptor ligand conformationally restricted at the southern aliphatic chain was accomplished using a ChiralPak AD column. Both enantiomers were tested for their competitive binding to the rat brain CB1, mouse spleen CB2 and human CB2 receptors. The levorotatory isomer showed exceptionally high affinity for the CB1 receptor with a seven-fold selectivity over CB2.  相似文献   

12.
Cannabinoid receptors and their endogenous ligands   总被引:1,自引:0,他引:1  
Delta9-Tetrahydrocannabinol, a major psychoactive component of marijuana, has been shown to interact with specific cannabinoid receptors, thereby eliciting a variety of pharmacological responses in experimental animals and human. In 1990, the gene encoding a cannabinoid receptor (CB1) was cloned. This prompted the search for endogenous ligands. In 1992, N-arachidonoylethanolamine (anandamide) was isolated from pig brain as an endogenous ligand, and in 1995, 2-arachidonoylglycerol was isolated from rat brain and canine gut as another endogenous ligand. Both anandamide and 2-arachidonoylglycerol exhibit various cannabimimetic activities. The results of structure-activity relationship experiments, however, revealed that 2-arachidonoylglycerol, but not anandamide, is the intrinsic natural ligand for the cannabinoid receptor. 2-Arachidonoylglycerol is a degradation product of inositol phospholipids that links the function of cannabinoid receptors with the enhanced inositol phospholipid turnover in stimulated tissues and cells. The possible physiological roles of cannabinoid receptors and 2-arachidonoylglycerol in various mammalian tissues such as those of the nervous system are discussed.  相似文献   

13.
CB1-type cannabinoid receptors in the brain mediate effects of the drug cannabis. Anandamide and sn-2 arachidonylglycerol (2-AG) are putative endogenous ligands for CB1 receptors, but it is not known which cells in the brain produce these molecules. Recently, an enzyme which catalyses hydrolysis of anandamide and 2-AG, known as fatty acid amide hydrolase (FAAH), was identified in mammals. Here we have analysed the distribution of FAAH in rat brain and compared its cellular localization with CB1-type cannabinoid receptors using immunocytochemistry. High concentrations of FAAH activity were detected in the cerebellum, hippocampus and neocortex, regions of the rat brain which are enriched with cannabinoid receptors. Immunocytochemical analysis of these brain regions revealed a complementary pattern of FAAH and CB1 expression with CB1 immunoreactivity occurring in fibres surrounding FAAH-immunoreactive cell bodies and/or dendrites. In the cerebellum, FAAH was expressed in the cell bodies of Purkinje cells and CB1 was expressed in the axons of granule cells and basket cells, neurons which are presynaptic to Purkinje cells. The close correspondence in the distribution of FAAH and CB1 in rat brain and the complementary pattern of FAAH and CB1 expression at the cellular level provides important new evidence that FAAH may participate in cannabinoid signalling mechanisms of the brain.  相似文献   

14.
Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2   总被引:13,自引:0,他引:13  
Primary brain tumors (gliomas) have the unusual ability to diffusely infiltrate the normal brain thereby evading surgical treatment. Chlorotoxin is a scorpion toxin that specifically binds to the surface of glioma cells and impairs their ability to invade. Using a recombinant His-Cltx we isolated and identified the principal Cltx receptor on the surface of glioma cells as matrix metalloproteinase-2 (MMP-2). MMP-2 is specifically up-regulated in gliomas and related cancers, but is not normally expressed in brain. We demonstrate that Cltx specifically and selectively interacts with MMP-2 isoforms, but not with MMP-1, -3, and -9, which are also expressed in malignant glioma cells. Importantly, we show that the anti-invasive effect of Cltx on glioma cells can be explained by its interactions with MMP-2. Cltx exerts a dual effect on MMP-2: it inhibits the enzymatic activity of MMP-2 and causes a reduction in the surface expression of MMP-2. These findings suggest that Cltx is a specific MMP-2 inhibitor with significant therapeutic potential for gliomas and other diseases that invoke the activity of MMP-2.  相似文献   

15.
Elphick MR  Satou Y  Satoh N 《Gene》2003,302(1-2):95-101
The G-protein coupled cannabinoid receptors CB(1) and CB(2) are activated by Delta(9)-tetrahydrocannabinol, the psychoactive ingredient of cannabis, and mediate physiological effects of endogenous cannabinoids ('endocannabinoids'). CB(1) genes have been identified in mammals, birds, amphibians and fish, whilst CB(2) genes have been identified in mammals and in the puffer fish Fugu rubripes. Therefore, both CB(1) and CB(2) receptors probably occur throughout the vertebrates. However, cannabinoid receptor genes have yet to be identified in any invertebrate species and the evolutionary origin of cannabinoid receptors is unknown. Here we report the identification of CiCBR, a G-protein coupled receptor in a deuterostomian invertebrate - the urochordate Ciona intestinalis - that is orthologous to vertebrate cannabinoid receptors. The CiCBR cDNA encodes a protein with a predicted length (423 amino-acids) that is the intermediate of human CB(1) (472 amino-acids) and human CB(2) (360-amino-acid) receptors. Interestingly, the protein-coding region of the CiCBR gene is interrupted by seven introns, unlike in vertebrate cannabinoid receptor genes where the protein-coding region is typically intronless. Phylogenetic analysis revealed that CiCBR forms a clade with vertebrate cannabinoid receptors but is positioned outside the CB(1) and CB(2) clades of a phylogenetic tree, indicating that the common ancestor of CiCBR and vertebrate cannabinoid receptors predates a gene (genome) duplication event that gave rise to CB(1)- and CB(2)-type receptors in vertebrates. Importantly, the discovery of CiCBR and the absence of orthologues of CiCBR in protostomian invertebrates such as Drosophila melanogaster and Caenorhabditis elegans indicate that the ancestor of vertebrate CB(1) and CB(2) cannabinoid receptors originated in a deuterostomian invertebrate.  相似文献   

16.
2-Arachidonoylglycerol (2-AG) is a unique molecular species of monoacylglycerol isolated from rat brain and canine gut as an endogenous cannabinoid receptor ligand (Sugiura, T., Kondo, S., Sukagawa, A., Nakane, S., Shinoda, A., Itoh, K., Yamashita, A., Waku, K., 1995. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89-97; Mechoulam, R., Ben-Shabat, S., Hanus, L., Ligumsky, M., Kaminski, N. E., Schatz, A.R., Gopher, A., Almog, S., Martin, B.R., Compton, D.R., Pertwee, R.G., Giffin, G., Bayewitch, M., Brag, J., Vogel, Z., 1995. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50, 83-90). 2-AG binds to the cannabinoid receptors (CB1 and CB2) and exhibits a variety of cannabimimetic activities in vitro and in vivo. Recently, we found that 2-AG induces Ca(2+) transients in NG108-15 cells, which express the CB1 receptor, and in HL-60 cells, which express the CB2 receptor, through a cannabinoid receptor- and Gi/Go-dependent mechanism. Based on the results of structure-activity relationship experiments, we concluded that 2-AG but not anandamide is the natural ligand for both the CB1 and the CB2 receptors and both receptors are primarily 2-AG receptors. Evidences are gradually accumulating that 2-AG is a physiologically essential molecule, although further detailed studies appear to be necessary to determine relative importance of 2-AG and anandamide in various animal tissues. In this review, we described mainly our previous and current experimental results, as well as those of others, concerning the tissue levels, bioactions and metabolism of 2-AG.  相似文献   

17.
Malignant astrocytomas are common human primary brain tumors that result from neoplastic transformation of astroglia or their progenitors. Here we show that deregulation of the c-Myc pathway in developing astroglia predisposes mice to malignant astrocytomas within 2-3 weeks of age. The genetically engineered murine (GEM) gliomas harbor a molecular signature resembling that of human primary glioblastoma multiforme, including up-regulation of epidermal growth factor receptor and Mdm2. The GEM gliomas seem to originate in an abnormal population of glial fibrillary acidic protein-expressing cells in the ventricular zone and, analogous to human glioblastomas, exhibit molecular and morphological heterogeneity. Levels of connexin 43 in the majority of the tumors are unaltered from normal tissue, indicating that GEM tumors have retained the capacity to establish syncytial networks. In line with this, individual glioma foci are composed of a mixture of actively proliferating cells expressing c-Myc and proliferating cell nuclear antigen and less dividing bystander cells that express glial fibrillary acidic protein and the broad complex tramtrack bric-a-brac/poxvirus and zinc finger domain protein HOF. A subset of the transgenic mice harbored, in addition to brain tumors, vestigial cerebellums in which granule cell migration and radial Bergman glial cell differentiation were disturbed. These observations argue for a window of vulnerability during astrocyte development where c-Myc overexpression is sufficient to trigger the neoplastic process, presumably by inducing the sustained growth of early astroglial cells. This is in contrast to most other transgenic studies in which c-Myc overexpression requires co-operating transgenes for rapid tumor induction.  相似文献   

18.
Cannabinoids modulate nitric oxide (NO) levels in cells of the central nervous system. Here we studied the effect of cannabinoid CB(1) and CB(2) receptor agonists on the release of NO and cell toxicity induced by the human immuno-deficiency virus-1 Tat protein (HIV-1 Tat) in rat glioma C6 cells. The CB(1) and CB(2) agonist WIN 55,212-2 inhibited the expression of inducible NO synthase (iNOS) and NO release caused by treatment of C6 cells with HIV-1 Tat and interferon-gamma (IFN-gamma). The effect of WIN 55,212-2 was uniquely due to CB(1) receptors, as shown by experiments carried out with selective CB(1) and CB(2) receptor agonists and antagonists. CB(1) receptor stimulation also inhibited HIV-1 Tat + IFN-gamma-induced and NO-mediated cell toxicity. Moreover, cell treatment with HIV-1 Tat + IFN-gamma induced a significant inhibition of CB(1), but not CB(2), receptor expression. This effect was mimicked by the NO donor GSNO, suggesting that the inhibition of CB(1) expression was due to HIV-1 Tat + IFN-gamma-induced NO overexpression. HIV-1 Tat + IFN-gamma treatment also induced a significant inhibition of the uptake of the endocannabinoid anandamide by C6 cells with no effect on anandamide hydrolysis. These findings show that the endocannabinoid system, through the modulation of the l-arginine/NO pathway, reduces HIV-1 Tat-induced cytotoxicity, and is itself regulated by HIV-1 Tat.  相似文献   

19.
Six monoclonal antibodies (mABs) against human glioma cells (T2) were produced. T2 cells grown as solid tumors in nude mice, were dissociated and used to immunize Balb/c mice. After fusion of splenocytes with myeloma cells, eight hybrids secreting mABs were selected according to their ability to react immunohistochemically with T2 cells, but not with normal adult human brain. Cytotoxicity of mABs was tested using (3H)-thymidine incorporation assays in vitro. Four mABs showed complement-mediated cytotoxicity for T2 cells, other human glioma cells (T1), and a human melanoma cell line. Incubation with one antibody, mAb2A1, lowered (3H)-thymidine incorporation in the T2 and T1 cells to ca. 10%, and in melanoma cells to ca. 35% of control levels. Another antibody, mAb3B2, displayed a similar cytotoxicity for T2 and T1 cells, but did not show measurable cytotoxicity for melanoma cells and rat primary astrocyte cultures. Moreover, this antibody did not crossreact with haematopoietic cells from patients bearing CNS tumors or normal subjects. MAb3B2, therefore, appears to recognize and epitope associated to human gliomas, will be a useful glioma tumor marker and may have some potential therapeutical value.  相似文献   

20.
The endocannabinoid system (ECS) is composed of cannabinoid receptors, their endogenous ligands, and the enzymes involved in endocannabinoid turnover. Modulating the activity of the ECS may influence a variety of physiological and pathophysiological processes. A growing body of evidence indicates that activation of cannabinoid receptors by endogenous, plant-derived, or synthetic cannabinoids may exert beneficial effects on gastrointestinal inflammation and visceral pain. The present ex vivo study aimed to investigate immunohistochemically the distribution of cannabinoid receptors CB1, CB2, G protein-coupled receptor 55 (GPR55), and peroxisome proliferation activation receptor alpha (PPARα) in the canine gastrointestinal tract. CB1 receptor immunoreactivity was observed in the lamina propria and epithelial cells. CB2 receptor immunoreactivity was expressed by lamina propria mast cells and immunocytes, blood vessels, and smooth muscle cells. Faint CB2 receptor immunoreactivity was also observed in neurons and glial cells of the submucosal plexus. GPR55 receptor immunoreactivity was expressed by lamina propria macrophages and smooth muscle cells. PPARα receptor immunoreactivity was expressed by blood vessels, smooth muscle cells, and glial cells of the myenteric plexus. Cannabinoid receptors showed a wide distribution in the gastrointestinal tract of the dog. Since cannabinoid receptors have a protective role in inflammatory bowel disease, the present research provides an anatomical basis supporting the therapeutic use of cannabinoid receptor agonists in relieving motility disorders and visceral hypersensitivity in canine acute or chronic enteropathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号