首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catalyzed reporter deposition fluorescence in situ hybridization combined with microautoradiography (MICRO-CARD-FISH) is increasingly being used to obtain qualitative information on substrate uptake by individual members of specific prokaryotic communities. Here we evaluated the potential for using this approach quantitatively by relating the measured silver grain area around cells taking up (3)H-labeled leucine to bulk leucine uptake measurements. The increase in the silver grain area over time around leucine-assimilating cells of coastal bacterial assemblages was linear during 4 to 6 h of incubation. By establishing standardized conditions for specific activity levels and concomitantly performing uptake measurements with the bulk community, MICRO-CARD-FISH can be used quantitatively to determine uptake rates on a single-cell level. Therefore, this approach allows comparisons of single-cell activities for bacterial communities obtained from different sites or growing under different ecological conditions.  相似文献   

2.
Aerobic anoxygenic phototrophic (AAP) bacteria are well known to be abundant in estuaries, coastal regions and in the open ocean, but little is known about their activity in any aquatic ecosystem. To explore the activity of AAP bacteria in the Delaware estuary and coastal waters, single-cell 3H-leucine incorporation by these bacteria was examined with a new approach that combines infrared epifluorescence microscopy and microautoradiography. The approach was used on samples from the Delaware coast from August through December and on transects through the Delaware estuary in August and November 2011. The percent of active AAP bacteria was up to twofold higher than the percentage of active cells in the rest of the bacterial community in the estuary. Likewise, the silver grain area around active AAP bacteria in microautoradiography preparations was larger than the area around cells in the rest of the bacterial community, indicating higher rates of leucine consumption by AAP bacteria. The cell size of AAP bacteria was 50% bigger than the size of other bacteria, about the same difference on average as measured for activity. The abundance of AAP bacteria was negatively correlated and their activity positively correlated with light availability in the water column, although light did not affect 3H-leucine incorporation in light–dark experiments. Our results suggest that AAP bacteria are bigger and more active than other bacteria, and likely contribute more to organic carbon fluxes than indicated by their abundance.  相似文献   

3.
Algal polysaccharides constitute a diverse and abundant reservoir of organic matter for marine heterotrophic bacteria, central to the oceanic carbon cycle. We investigated the uptake of alginate, a major brown macroalgal polysaccharide, by microbial communities from kelp-dominated coastal habitats. Congruent with cell growth and rapid substrate utilization, alginate amendments induced a decrease in bacterial diversity and a marked compositional shift towards copiotrophic bacteria. We traced 13C derived from alginate into specific bacterial incorporators and quantified the uptake activity at the single-cell level, using halogen in situ hybridization coupled to nanoscale secondary ion mass spectrometry (HISH-SIMS) and DNA stable isotope probing (DNA-SIP). Cell-specific alginate uptake was observed for Gammaproteobacteria and Flavobacteriales, with carbon assimilation rates ranging from 0.14 to 27.50 fg C µm−3 h−1. DNA-SIP revealed that only a few initially rare Flavobacteriaceae and Alteromonadales taxa incorporated 13C from alginate into their biomass, accounting for most of the carbon assimilation based on bulk isotopic measurements. Functional screening of metagenomic libraries gave insights into the genes of alginolytic Alteromonadales active in situ. These results highlight the high degree of niche specialization in heterotrophic communities and help constraining the quantitative role of polysaccharide-degrading bacteria in coastal ecosystems.Subject terms: Water microbiology, Microbial ecology, Marine microbiology, Biogeochemistry, Microbial ecology  相似文献   

4.
We examined the ability of different freshwater bacterial groups to take up leucine and thymidine in two lakes. Utilization of both substrates by freshwater bacteria was examined at the community level by looking at bulk incorporation rates and at the single-cell level by combining fluorescent in situ hybridization and signal amplification by catalysed reporter deposition with microautoradiography. Our results showed that leucine was taken up by 70–80% of Bacteria -positive cells, whereas only 15–43% of Bacteria -positive cells were able to take up thymidine. When a saturating substrate concentration in combination with a short incubation was used, 80–90% of Betaproteobacteria and 67–79% of Actinobacteria were positive for leucine uptake, whereas thymidine was taken up by < 10% of Betaproteobacteria and by < 1% of the R-BT subgroup that dominated this bacterial group. Bacterial abundance was a good predictor of the relative contribution of bacterial groups to leucine uptake, whereas when thymidine was used Actinobacteria represented the large majority (> 80%) of the cells taking up this substrate. Increasing the substrate concentration to 100 nM did not affect the percentage of R-BT cells taking up leucine (> 90% even at low concentrations), but moderately increased the fraction of thymidine-positive R-BT cells to a maximum of 35% of the hybridized cells. Our results show that even at very high concentrations, thymidine is not taken up by all, otherwise active, bacterial cells.  相似文献   

5.
The connections between single-cell activity properties of heterotrophic planktonic bacteria and whole community metabolism are still poorly understood. Here, we show flow cytometry single-cell analysis of membrane-intact (live), high nucleic acid (HNA) content and actively respiring (CTC+) bacteria with samples collected monthly during 2006 in northern Spain coastal waters. Bulk activity was assessed by measuring 3H-Leucine incorporation and specific growth rates. Consistently, different single-cell relative abundances were found, with 60–100% for live, 30–84% for HNA and 0.2–12% for CTC+ cells. Leucine incorporation rates (2–153 pmol L−1 h−1), specific growth rates (0.01–0.29 day−1) and the total and relative abundances of the three single-cell groups showed marked seasonal patterns. Distinct depth distributions during summer stratification and different relations with temperature, chlorophyll and bacterial biovolume suggest the existence of different controlling factors on each single-cell property. Pooled leucine incorporation rates were similarly correlated with the abundance of all physiological groups, while specific growth rates were only substantially explained by the percentage of CTC+ cells. However, the ability to reduce CTC proved notably better than the other two single-cell properties at predicting bacterial bulk rates within seasons, suggesting a tight linkage between bacterial individual respiration and biomass production at the community level.  相似文献   

6.
Summary Autoradiography was used to examine the influence of lateral ciliary activity on the pattern of leucine uptake into isolated gill tissue from the mussel,Mytilus californianus. Metachronal activity of the lateral cilia, normally absent in the in vitro gill, was reestablished by application of 10 μM 5-hydroxytryptamine (5-HT). This treatment produced a 5–7 fold stimulation in the rate of leucine uptake into isolated gills. The treatment with 5-HT did not, however, affect the fractional incorporation of leucine into alcohol insoluble vs alcohol soluble material. Autoradiograms of gills treated with 5-HT showed extensive labelling of frontal, lateral, and abfrontal surfaces of gill filaments compared to the control condition in which label was largely confined to the frontal region of the gill. Quantitative analyses of the autoradiograms revealed a 4-fold increase in the number of silver grains over lateral and abfrontal surfaces compared to control gills. Autoradiograms of gills from intact mussels exposed to3H-leucine showed a pattern of silver grain deposition similar to that observed in in vitro gills treated with 5-HT. It is concluded that the capacity for amino acid transport exists in cells from the frontal, lateral, and abfrontal surfaces of gill filaments, butaccess to dissolved substrates by transport sites on lateral and abfrontal surfaces is dependent upon lateral ciliary activity.  相似文献   

7.
Uptake of proline by the scutellum of germinating barley grain   总被引:1,自引:1,他引:0  
Scutella separated from germinating grains of barley (Hordeum vulgare L. cv Himalaya) took up 1 millimolar l-[14C]proline at an initial rate of about 6.5 micromoles gram−1 fresh weight hour−1 (pH 5, 30°C). The uptake had a pH optimum at 5. The bulk of the uptake (93%) was via carrier-mediated active transport. All of the 19 l-amino acids tested at 10 millimolar concentration inhibited the mediated uptake of 1 millimolar proline, the inhibitions varying from 18 to 76%. By studying how large a fraction of the mediated uptake was inhibitable by asparagine, alanine, glutamine, and leucine, the mediated uptake was shown to be due to three components. Two of these are most probably attributable to the two nonspecific uptake systems proposed earlier to act in the uptake of glutamine and leucine. The third component was not inhibited by glutamine, asparagine, or alanine, but was inhibited by unlabeled proline and leucine. The uptake by this system was apparently carrier-mediated active transport. d-Proline inhibited this system as strongly as l-proline. Nine of the 16 l-amino acids tested at 50 millimolar concentrations did not inhibit the uptake of 1 millimolar proline by this system. Valine, leucine, isoleucine, and the basic amino acids were inhibitory, but in spite of this, they did not appear to be taken up by this system. It seems therefore that in addition to two nonspecific amino acid uptake systems the scutella have an uptake system which is specific for proline. It is likely that this proline-specific system accounts for the bulk of proline uptake in a germinating grain.  相似文献   

8.
A new microscopic method for simultaneously determining in situ the identities, activities, and specific substrate uptake profiles of individual bacterial cells within complex microbial communities was developed by combining fluorescent in situ hybridization (FISH) performed with rRNA-targeted oligonucleotide probes and microautoradiography. This method was evaluated by using defined artificial mixtures of Escherichia coli and Herpetosiphon aurantiacus under aerobic incubation conditions with added [3H]glucose. Subsequently, we were able to demonstrate the potential of this method by visualizing the uptake of organic and inorganic radiolabeled substrates ([14C]acetate, [14C]butyrate, [14C]bicarbonate, and 33Pi) in probe-defined populations from complex activated sludge microbial communities by using aerobic incubation conditions and anaerobic incubation conditions (with and without nitrate). For both defined cell mixtures and activated sludge, the method proved to be useful for simultaneous identification and analysis of the uptake of labeled substrates under the different experimental conditions used. Optimal results were obtained when fluorescently labeled oligonucleotides were applied prior to the microautoradiographic developing procedure. For single-cell resolution of FISH and microautoradiographic signals within activated sludge flocs, cryosectioned sample material was examined with a confocal laser scanning microscope. The combination of in situ rRNA hybridization techniques, cryosectioning, microautoradiography, and confocal laser scanning microscopy provides a unique opportunity for obtaining cultivation-independent insights into the structure and function of bacterial communities.  相似文献   

9.
Mining activities create wastelands that require reclamation. The relief of abandoned opencast oil shale mining area is rugged, and the mining spoil is extremely stony and alkaline (pH 8), with low N and organic content. Planting of fast-growing deciduous tree species such as silver birch (Betula pendula) on post-mining area is the best means to accelerate the development of a new forest ecosystem in such harsh conditions. A chronosequence of silver birch stands (1, 2, 3, 5, 29, 40 years old) was investigated to reveal changes in bulk soil (S) and rhizosphere (R) properties, in rhizosphere effect on bacterial activity and diversity, and in fine-root morphological adaptations in relation to stand development. The rhizosphere effect on bacterial activity was measured as a rhizosphere/soil (R/S) ratio and on species diversity as a similarity (%) between rhizosphere and bulk soil bacterial communities. Bacterial species diversity was determined by denaturing gradient gel electrophoresis (DGGE) technique and was expressed as Shannon diversity index. Biolog EcoPlates were used to determine the summed activity of cultivable bacteria in rhizosphere and bulk soil. Short-root morphological parameters were measured using WinRHIZO™ Pro.Soil pH and available P concentration decreased logarithmically, and N% and organic matter concentration increased linearly with increasing stand age. During the first 30 years of stand development SIR increased an order, from 0.18 to 1.90 mg C g−1. Bulk soil bacterial diversity increased logarithmically with stand age. The bacterial diversity was higher in rhizosphere than in bulk soil. Rhizosphere effect on bacterial activity was low a year after planting, increased more than two times in the next 2 years, and decreased thereafter rapidly with stand age. Rhizosphere effect, indicating plant support to rhizosphere microbial communities, was highest when soil conditions were still poor, but trees had already overcome the transplant shock. All short-root morphological parameters showed certain trends with age. Specific short-root length varied between 56 and 313 m g−1 and decreased logarithmically with stand age and soil improvement. The fastest changes in short-root morphology, rhizosphere effect, and soil pH occurred during the early development of silver birch stands - in the first 5 years; P nutrition and N use efficiency improved simultaneously. Rhizosphere effect and short-root morphological adaptation have an important role in soil and stand development on oil shale post-mining area, and silver birch is a promising tree species for reclamation of alkaline mining spoil.  相似文献   

10.
The impact of temperature on bacterial activity and community composition was investigated in arctic lakes and streams in northern Alaska. Aquatic bacterial communities incubated at different temperatures had different rates of production, as measured by 14C‐leucine uptake, indicating that populations within the communities had different temperature optima. Samples from Toolik Lake inlet and outlet were collected at water temperatures of 14.2°C and 15.9°C, respectively, and subsamples incubated at temperatures ranging from 6°C to 20°C. After 5 days, productivity rates varied from 0.5 to ~13.7 µg C l?1 day?1 and two distinct activity optima appeared at 12°C and 20°C. At these optima, activity was 2‐ to 11‐fold higher than at other incubation temperatures. The presence of two temperature optima indicates psychrophilic and psychrotolerant bacteria dominate under different conditions. Community fingerprinting via denaturant gradient gel electrophoresis (DGGE) of 16S rRNA genes showed strong shifts in the composition of communities driven more by temperature than by differences in dissolved organic matter source; e.g. four and seven unique operational taxonomic units (OTUs) were found only at 2°C and 25°C, respectively, and not found at other incubation temperatures after 5 days. The impact of temperature on bacteria is complex, influencing both bacterial productivity and community composition. Path analysis of measurements of 24 streams and lakes sampled across a catchment 12 times in 4 years indicates variable timing and strength of correlation between temperature and bacterial production, possibly due to bacterial community differences between sites. As indicated by both field and laboratory experiments, shifts in dominant community members can occur on ecologically relevant time scales (days), and have important implications for understanding the relationship of bacterial diversity and function.  相似文献   

11.
The distribution and activity of the bulk picoplankton community and, using microautoradiography combined with catalysed reported deposition fluorescence in situ hybridization (MICRO-CARD-FISH), of the major prokaryotic groups (Bacteria, marine Crenarchaeota Group I and marine Euryarchaeota Group II) were determined in the water masses of the subtropical North Atlantic. The bacterial contribution to total picoplankton abundance was fairly constant, comprising approximately 50% of DAPI-stainable cells. Marine Euryarchaeota Group II accounted always for < 5% of DAPI-stainable cells. The percentage of total picoplankton identified as marine Crenarchaeota Group I was approximately 5% in subsurface waters (100 m depth) and between 10% and 20% in the oxygen minimum layer (250-500 m) and deep waters [North East Atlantic Deep Water (NEADW) and Lower Deep Water (LDW), 2750-4800 m depth]. Single-cell activity, determined via a quantitative MICRO-CARD-FISH approach and taking only substrate-positive cells into account, ranged from 0.05 to 0.5 amol D-aspartic acid (Asp) cell(-1) day(-1) and 0.1-2 amol L-Asp cell(-1) day(-1), slightly decreasing with depth. In contrast, the D-Asp:L-Asp cell-specific uptake ratio increased with depth. By combining data reported previously using the same method as applied here and data reported here, we found a decreasing relative abundance of marine Crenarchaeota Group I throughout the meso- and bathypelagic water column from 65 degrees N to 5 degrees N in the eastern basin of the North Atlantic. Thus, the relative contribution of marine Crenarchaeota Group I to deep-water prokaryotic communities might be more variable than previous studies have suggested. This apparent variability in the contribution of marine Crenarchaeota Group I to total picoplankton abundance might be related to successions and ageing of deep-water masses in the large-scale meridional ocean circulation and possibly, the appearance of crenarchaeotal clusters other than the marine Crenarchaeota Group I in the (sub)tropical North Atlantic.  相似文献   

12.
We investigated the abundance and activity of SAR11 on a monthly time scale between January 2008 and October 2008 in the oligotrophic NW Mediterranean Sea. Applying MICRO-CARD-FISH, we observed that SAR11 had a large contribution to bulk abundance (37 ± 6% of DAPI-stained cells) and to bulk bacterial heterotrophic production (BHP), as estimated from leucine incorporation (55 ± 15% of DAPI-cells assimilating leucine) in surface waters (5 m) throughout the study period. SAR11 contributed also substantially to the assimilation of glucose, ATP, and a combination of amino acids (44 ± 17%, 37 ± 14%, and 43 ± 12% of DAPI cells assimilating these compounds, respectively), organic compounds that provide either single or combined sources of C, P, and N. Temporal changes in the abundance of SAR11 cells that assimilated leucine, glucose, amino acids, and ATP revealed a pattern consistent with that of substrate-active DAPI cells, suggesting that the activity of SAR11 can explain to a large extent the variability in total cells contributing to the utilization of these compounds. Short-term nutrient enrichment experiments performed on each sampling date revealed a strong co-limitation of at least two of the three elements analyzed (C, N, P), in particular, during summer and early autumn. The in situ abundance of SAR11 cells assimilating leucine appeared to increase with P limitation as determined in the nutrient enrichment experiments (r = 0.81, p = 0.015). Our results demonstrate that SAR11 is an important component of the active bacterial community in the NW Mediterranean Sea. Our observations further indicate that the activity of the bulk bacterial community is linked to the activity of SAR11, possibly due to its adaptation to nutrient limitation.  相似文献   

13.
14.
Bacterial production is a key parameter for the understanding of carbon cycling in aquatic ecosystems, yet it remains difficult to measure in many aquatic habitats. We therefore tested the applicability of the [14C]leucine incorporation technique for the measurement of bulk bacterial production in various habitats of a lowland river ecosystem. To evaluate the method, we determined (i) extraction efficiencies of bacterial protein from the sediments, (ii) substrate saturation of leucine in sediments, the biofilms on aquatic plants (epiphyton), and the pelagic zone, (iii) bacterial activities at different leucine concentrations, (iv) specificity of leucine uptake by bacteria, and (v) the effect of the incubation technique (perfused-core incubation versus slurry incubation) on leucine incorporation into protein. Bacterial protein was best extracted from sediments and precipitated by hot trichloroacetic acid treatment following ultrasonication. For epiphyton, an alkaline-extraction procedure was most efficient. Leucine incorporation saturation occurred at 1 μM in epiphyton and 100 nM in the pelagic zone. Saturation curves in sediments were difficult to model but showed the first level of leucine saturation at 50 μM. Increased uptake at higher leucine concentrations could be partly attributed to eukaryotes. Addition of micromolar concentrations of leucine did not enhance bacterial electron transport activity or DNA replication activity. Similar rates of leucine incorporation into protein calculated for whole sediment cores were observed after slurry and perfused-core incubations, but the rates exhibited strong vertical gradients after the core incubation. We conclude that the leucine incorporation method can measure bacterial production in a wide range of aquatic habitats, including fluvial sediments, if substrate saturation and isotope dilution are determined.  相似文献   

15.
1. Microbial parameters were determined at five sampling sites in the River Danube up-and downstream of Vienna, Austria, twice monthly over an annual cycle. Bacterial production (BP) was estimated from thymidine and leucine incorporations; additionally, the effect of turbulence on BP and the conversion factors for converting incorporation rates into bacterial cell production were determined using the cumulative approach. 2. BP under turbulent conditions was not significantly different from that under stagnant conditions. For thymidine, a mean annual conversion factor of 3.2 ± 1018 cells mol?1 thymidine incorporated was calculated. For leucine, the corresponding factor was 0.07 ± 1018 cells mol?1 leucine. Average annual BP calculated by thymidine incorporation was significantly higher than BP calculated from leucine incorporation and ranged from 47.2 to 77.5 μg C 1-?1 day?1 depending on the tracer and the conversion factor used. 3. Bacterial growth rates ranged from 0.1 day?1 during winter to 1.7 day?1 in the summer. A strong correlation was found between temperature as well as chlorophyll a and bacterial growth when temperature was greater than 5 °C; a major spring phytoplankton bloom at a temperature below 5 °C did not increase BP. 4. Dissolved organic carbon (DOC) concentrations varied between 2 and 7.2 mg C 1-?1 and comprised between 50 and 92% of the total organic carbon pool in the River Danube, Based on the DOC concentration and an assumed bacterial growth yield of 20% we calculated mean DOC turnover times of around 60 days in the winter and less than 8 days during the summer.  相似文献   

16.
Increased mass transfer to microorganisms with fluid motion   总被引:2,自引:0,他引:2  
The effect of fluid flow and laminar shear on bacterial uptake was examined under conditions representative of the fluid environment of unattached and attached cells in wastewater treatment bioreactors. Laminar shear rates below 50 s(-1) did not increase leucine uptake by suspended cultures of Zoogloea ramigera. However, leucine uptake by cells fixed in a flow field of approximately 1 mm s(-1) was 55-65% greater than uptake by suspended cells. Enhanced microbial uptake with advective motion is consistent with mass transfer rates calculated using Sherwood number correlations. Advective flow increases microbial uptake by increasing collisions between substrate molecules and cells through compression of the concentration boundary layer surrounding a cell. The rate of leucine uptake suggests that binding proteins used to transport leucine into the cell can occupy approximately 1% of the cell surface area.  相似文献   

17.
Dispersal can modify how bacterial community composition (BCC) changes in response to environmental perturbations, yet knowledge about the functional consequences of dispersal is limited. Here we hypothesized that changes in bacterial community production in response to a salinity disturbance depend on the possibility to recruit cells from different dispersal sources. To investigate this, we conducted an in situ mesocosm experiment where bacterial communities of an oligotrophic lake were exposed to different salinities (0, 18, 36 psu) for 2 weeks and subjected to dispersal of cells originating from sediments, air (mesocosms open to air deposition), both or none. BCC was determined using 454 pyrosequencing of the 16S rRNA gene and bacterial production was measured by 3H leucine uptake. Bacterial production differed significantly among salinity treatments and dispersal treatments, being highest at high salinity. These changes were associated with changes in BCC and it was found that the identity of the main functional contributors differed at different salinities. Our results further showed that after a salinity perturbation, the response of bacterial communities depended on the recruitment of taxa, including marine representatives (e.g., Alphaproteobacteria Loktanella, Erythrobacter and the Gammaproteobacterium Rheiheimera) from dispersal sources, in which atmospheric deposition appeared to play a major role.  相似文献   

18.
The growth activity of Pseudomonas putida cells colonizing the rhizosphere of barley seedlings was estimated at the single-cell level by monitoring ribosomal contents and synthesis rates. Ribosomal synthesis was monitored by using a system comprising a fusion of the ribosomal Escherichia coli rrnBP1 promoter to a gene encoding an unstable variant of the green fluorescent protein (Gfp). Gfp expression in a P. putida strain carrying this system inserted into the chromosome was strongly dependent on the growth phase and growth rate of the strain, and cells growing exponentially at rates of ≥0.17 h−1 emitted growth rate-dependent green fluorescence detectable at the single-cell level. The single-cell ribosomal contents were very heterogeneous, as determined by quantitative hybridization with fluorescently labeled rRNA probes in P. putida cells extracted from the rhizosphere of 1-day-old barley seedlings grown under sterile conditions. After this, cells extracted from the root system had ribosomal contents similar to those found in starved cells. There was a significant decrease in the ribosomal content of P. putida cells when bacteria were introduced into nonsterile bulk or rhizosphere soil, and the Gfp monitoring system was not induced in cells extracted from either of the two soil systems. The monitoring system used permitted nondestructive in situ detection of fast-growing bacterial microcolonies on the sloughing root sheath cells of 1- and 2-day-old barley seedlings grown under sterile conditions, which demonstrated that it may be possible to use the unstable Gfp marker for studies of transient gene expression in plant-microbe systems.  相似文献   

19.
In the Kongsfjorden–Krossfjorden system (Spitsbergen), increasing temperatures enhance glacier melting and concomitant intrusion of freshwater. These altered conditions affect the timing, intensity, and composition of the phytoplankton spring bloom in Kongsfjorden; yet, the effects on prokaryotes (bacteria and archaea) are not well understood. The aim of this study was to examine springtime prokaryote communities in both fjords as a function of hydrographic and phytoplankton variability. Prokaryote community composition was studied in two consecutive years by molecular fingerprinting of the 16S rRNA gene. In addition, we measured bacterial abundance, productivity (3H-Leucine uptake), and single-cell activity using catalyzed reporter deposition fluorescence in situ hybridization combined with microautoradiography. Differences in bacterial and archaeal communities were found between Kongsfjorden and Krossfjorden. Furthermore, an increase in productivity, abundance, and proportion of active bacterial cells was observed during the course of spring. Bacteroidetes were the most abundant bacterial group among the assessed taxa in both Kongsfjorden and Krossfjorden. Multivariate analysis of the microbial community fingerprints revealed a strong temporal shaping of both the bacterial and archaeal communities in addition to a spatial separation between the two fjords. A significant part of the observed bacterial variation could be explained by cyanobacterial biomass, as deduced from pigment analysis, and by phosphate concentration. Archaea were mainly controlled by abiotic factors. We speculate that the bacterial response to hydrographic changes and glacier meltwater is mediated through shifts in phytoplankton abundance and composition, whereas archaea are directly influenced by abiotic environmental variables.  相似文献   

20.
Understanding the transport and behavior of bacteria in the environment has broad implications in diverse areas, ranging from agriculture to groundwater quality, risk assessment, and bioremediation. The ability to reliably track and enumerate specific bacterial populations in the context of native communities and environments is key to developing this understanding. We report a novel bacterial tracking approach, based on altering the stable carbon isotope value (δ13C) of bacterial cells, which provides specific and sensitive detection and quantification of those cells in environmental samples. This approach was applied to the study of bacterial transport in saturated porous media. The transport of introduced organisms was indicated by mass spectrometric analysis of groundwater samples, where the presence of 13C-enriched bacteria resulted in increased δ13C values of the samples, allowing specific and sensitive detection and enumeration of the bacteria of interest. We demonstrate the ability to produce highly 13C-enriched bacteria, present data indicating that results obtained with this approach accurately represent intact introduced bacteria, and include field data on the use of this stable isotope approach to monitor in situ bacterial transport. This detection strategy allows sensitive detection of an introduced, unmodified bacterial strain in the presence of the indigenous bacterial community, including itself in its unenriched form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号