首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of ionic strength on the fluidity of rabbit intestinal brush-border membranes has been studied using two fluorescence probes, pyrene and 1-anilino-8-naphthalene sulfonate (ANS). The imposition of a potential gradient on the pyrene-probed membrane vesicles (out > in) with increasing NaCl concentration in the medium resulted in a marked enhancement of the excimer formation efficiency, accompanied by a decrease in the ratio of fluorescence intensities of the probe at 392 and 375 nm. Fluorescence polarization of the pyrene-membrane complex is independent of temperature in the absence of salts, while it is dependent on temperature from 10 to 47°C in the presence of salts, as shown by the thermal Perrin plots of polarization. It has been demonstrated that there is a linear relationship between the changes in the pyrene excimer formation efficiency in the membranes and of the values of the binding parameters of ANS for the membranes. From these results, it is suggested that the lipid phase of the membranes becomes more fluid by shielding negatively charged groups of the membrane surface and that there is a fairly close correlation between the membrane organization and the membrane surface charge density.  相似文献   

2.
An investigation has been carried out of the relationship between changes in the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) and concomittant changes in the lateral diffusion of proteins and lipid probes in membranes. Plasma membranes from lymphocytes and a CH1 mouse lymphoma line were treated with up to 70 mol% (relative to the total membrane phospholipid) of oleic or linoleic fatty acids. Under these conditions the fluorescence polarization of DPH decreased by between 8 and 15% which, in the framework of the microviscosity approach, suggests a membrane fluidity change of between 20 and 50%. The lateral diffusion coefficients of surface immunoglobin and the lipid probes 3,3′-dioctadecylindocarbocyanine and pyrene were also measured in these membranes using the fluorescence photobleaching recovery technique and the rate of pyrene excimer formation. The diffusion rates were found to be unaffected by the presence of free fatty acids. Hence despite large ‘microviscosity’ changes as reported by depolarization of DPH fluorescence, lateral diffusion coefficients are essentially unchanged. This finding is consistent with the idea that perturbing agents such as free fatty acids do not cause a general fluidization of the membrane but act locally to alter, for example, protein function. It is also consistent with the suggestion that lateral mobility of membrane proteins is not modulated by the lipid viscosity.  相似文献   

3.
Kinetic and steady-state measurements of pyrene fluorescence in a variety of model membranes are evaluated in terms of the theory of collisional excimer formation. In the region of 10(-3)-0.1 M pyrene, molecular fluorescence decay in membranes is biphasic and the two component lifetimes do not depend on the pyrene concentration. The lifetime data are consistent with the rate constant for collisional excimer formation being of the order 10(6) M-1 X s-1 or less. The concentration dependence of the component amplitudes is inconsistent with the theory of collisional excimer formation and suggests that pyrene exists in two forms in membranes: a slowly diffusing monomeric form and an aggregated form. The component of molecular fluorescence decay associated with aggregated pyrene is highly correlated with steady-state excimer fluorescence, suggesting that excimer fluorescence in membranes arises from aggregated pyrene in which excimers are formed by a static rather than a collisional mechanism. It is suggested that the concentration dependence of excimer to molecular fluorescence intensity ratios in membranes is related to the equilibrium constant for exchange between monomeric and aggregated pyrene forms rather than to the collisional excimer formation rate constant.  相似文献   

4.
The effects of ionic strength on the conformation around the SH groups of the proteins and the lipid fluidity of porcine intestinal brush border membranes were studied using two fluorescent dyes, N-[7-dimethylamino-4-methylcoumarinyl]maleimide (DACM) and pyrene. The extent of DACM labeling to the SH groups of the membrane proteins was accelerated depending on the KCl concentrations in medium. A quenching study of DACM-labeled membranes with acrylamide showed that the proximity of the quencher to the fluorescence-labeled SH groups in the membrane proteins is increased with increasing ionic strength of medium. An implication of the conformational changes around SH groups in the membrane proteins with increase of ionic strength was also obtained from the stimulation of guanidine effect on the fluorescence parameters of DACM-labeled membranes by addition of KCl. On the other hand, the results of the quenching study with KI, excimer fluorescence, and polarization measurements of pyrene-labeled membranes suggested an increase of membrane fluidity on addition of KCl to medium. The temperature dependence of polarization of the complex strongly suggested that the rotational freedom of pyrene molecules embedded into the lipid layers of the membranes is increased by addition of KCl. In fact, the harmonic means of the rotational relaxation times of pyrene molecules in the membranes with and without 100 mM KCl were estimated to be about 2900 and 9000 ns at 25 degrees C, respectively. Based on these results, the salt-induced alterations of the conformation in the vicinity of the bound dyes of the membrane proteins and of the membrane fluidity are discussed.  相似文献   

5.
本文以红细胞膜为材料,用了三种稳态荧光探针研究了HB光敏作用引起人红细胞膜流动性的改变.实验结果表明在HB光敏作用下,膜的旋转扩散速度和侧向扩散速度均发生明显变化,ANS和DPH探针测得HB引起膜流动性降低,也就是膜粘度增加,用芘探针结果则表明膜的侧向扩散变慢.本文还对HB光敏作用的机理进行了探讨,我们观察了数种单重态氧猝灭剂,羟自山基猝灭剂和抗氧化剂对于光敏作用的影响,分别测定了膜流动性和膜的内源荧光的变化,发现在HB光敏作用中,除了~1O_2的作用之外,还存在其它自由基的作用.在HB与HA光敏能力的比较中发现,在比较高一些浓度条件下,存在着HB大于HA的趋向.  相似文献   

6.
Effects of ionic strength and temperature on the interaction between Tb3+ and porcine intestinal brush-border membrane vesicles were studied. When Tb3+ was added to the vesicle suspension, Tb3+ fluorescence increased with increasing concentration of Tb3+, showing a saturation. The apparent dissociation constant of one of at least two components of this binding reaction was estimated to be about 12.5 microM at 25 degrees C, pH 7.4. But the affinity of Tb3+ for the membrane vesicles was variable with changes of ionic strength and temperature. The affinity was lowered by addition of KCl to medium and by increase of temperature above 30 degrees C. In addition, temperature-induced change in the affinity of Tb3+ for the membranes was reversible over a temperature range from 13 to 46 degrees C. Temperature-dependence profiles of the excimer formation efficiency of pyrene-labeled membranes and of the harmonic mean of the rotational relaxation times of pyrene molecules in the membranes revealed that the phase transition of the membrane lipids occurs at about 30 degrees C. Based on these results, characteristics of Tb3+ binding to the membranes are discussed in relation to the nature of lipid phase and surface charges of the membranes.  相似文献   

7.
The presence of proteins in lipid bilayers always decreases the excimer formation rate of pyrene and pyrene lipid analogues in a way that is related to the protein-to-lipid ratio. Energy transfer measurements from intrinsic tryptophans to pyrene have shown (Engelke et al., 1994), that in microsomal membranes, the excimer formation rate of pyrene and pyrene fatty acids is heterogeneous within the membrane plane, because a lipid layer of reduced fluidity surrounds the microsomal proteins. This study investigates whether of not liposomes prepared from egg yolk phosphatidylcholine with incorporated gramicidin A give results comparable to those from microsomal membranes. The results indicate that the influence of proteins on the lipid bilayer cannot be described by one unique mechanism: Small proteins such as gramicidin A obviously reduce the excimer formation rate by occupying neighboring positions of the fluorescent probe and thus decrease the pyrene collision frequency homogeneously in the whole membrane plane, while larger proteins are surrounded by a lipid boundary layer of lower fluidity than the bulk lipid. The analysis of the time-resolved tryptophan fluorescence of gramicidin A incorporated liposomes reveals, that the tryptophan quenching by pyrene is stronger for tryptophans located closely below the phospholipid headgroup region because of the pyrene enrichment in this area of the lipid bilayer. Received: 29 December 1996/Revised: 15 May 1996  相似文献   

8.
The effect of chronic administration of lithium salts on the lipid composition and physical properties of the synaptosomal plasma membrane was examined in rat brain. The effect of lithium treatment has been studied on the fluorescence polarization of synaptosomal plasma membrane and artificial lipid vesicles and on the lipid composition of the membranes. Fluorescence polarization of lipophilic probes was used to study membrane lipid structure. Steady-state polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), a probe of the hydrophobic core, was significantly lower in plasma membranes from lithium-treated animals. Altered DPH polarization was due to a decrease in the order parameter of the probe. The lithium-treatment also changed the fluorescence of 1-anilino-8-naphthalene sulfonate (ANS), a probe that binds to the polar head group of the phospholipids and to proteins on the membrane surface. Synaptic plasma membranes from treated rats presented no significant changes on the cholesterol-to-phospholipid ratio, although the phospholipid class distribution was altered and the membrane phospholipid unsaturation increased. In summary, the neural plasma membranes became disorder after chronic lithium administration at therapeutic levels. This structural change may be due to changes in plasma membrane phospholipid distribution and to the degree of unsaturation of phospholipid fatty acids.  相似文献   

9.
Interaction of glucagon with dimyristoyl glycerophosphocholine   总被引:2,自引:0,他引:2  
Glucagon can form amphipathic helices and can interact with dimyristoyl glycerophosphocholine at temperatures below the phase transition leading to a shift in the fluorescence emission maximum of tryptophan from 350 to 338 nm and a 3-fold enhancement of fluorescence intensity as well as a change in the polarization of fluorescence. The circular dichroism properties of the lipid-associated glucagon indicates that it has an increased content of alpha-helix. The phase transition temperature of the lipid as monitored by pyrene excimer fluorescence is not altered by interaction with glucagon although at higher glucagon/lipid ratios a decrease in excimer formation is noted at low temperature. Above the phase transition temperature, the addition of lipid has no effect on the fluorescence emission or circular dichroism of glucagon. Thus this hormone can interact with dimyristoyl glycerophosphocholine and this interaction is stronger below the phase transition temperature than above it.  相似文献   

10.
To follow microviscosity changes in membranes associated with fibrinogen binding to human platelets, specific fluorescent probes were used and their fluorescence anisotropy was analysed. The degree of fluorescence anisotropy of diphenylhexatriene, anilinonaphthalene sulfonate (ANS) and fluorescamine increased significantly when fibrinogen reacted with its membrane receptors. Fluorescence polarization analyses showed that fibrinogen binding to platelet membranes is accompanied by an increase in the membrane lipid rigidity. On the other hand, changes in the fluorescence anisotropy of membrane tryptophans and N-(3-pyrene)maleimide suggest augmented mobility of the membrane proteins. The binding of fibrinogen to the membrane receptors is not accompanied by any change in the fluorescence intensity of ANS attached to the membranes. This may suggest that covering of platelets with fibrinogen molecules does not influence the surface membrane charge.  相似文献   

11.
The fluorescence probes 1-aniline-8-naphthalene sulfonate (ANS) and pyrene were applied for characterisation of the light-induced changes in etioplast inner membranes (EPIMs) from 7 d-old dark-grown wheat seedlings (Triticum aestivum L. cv. Pobeda). The major aim was to obtain information about the localisation of membrane proteins in the EPIMs, using probes situated in different regions of the membranes. The quenching of tryptophan fluorescence showed tha the main parts of proteins were accessible to the pyrene buried in the lipid bilayer which suggests that most of the proteins also enter the lipid bilayer. The substantial quenching of the tryptophan fluorescence by the surface-situated ANS demonstrated that a part of the tryptophan residues was probably localised close to the membrane surface. The registered changes after irradiation could be explained by the presence of large aggregates of NADPH-protochlorophyllide oxidoreductase (POR), protochlorophyllide (PChlide) and NADPH in membranes that start to disconnect and redistribute along the prothylakoids. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Alterations in the membrane organization caused by fibrinogen binding to human blood platelets and their isolated membranes were analyzed by fluorescence and electron spin resonance measurements. The degree of fluorescent anisotropy of DPH, ANS and fluorescamine increased significantly when fibrinogen reacted with its membrane receptors. Both fluorescence and ESR analyses showed that fibrinogen binding to platelet membranes is accompanied by an increase of the membrane lipid rigidity. This effect seems to be indirect in nature and is mediated by altered membrane protein interactions. As it has been shown that an increased membrane lipid rigidity leads to a greater exposure of membrane proteins, including fibrinogen receptors, this might facilitate a formation of molecular linkages between neighboring platelets. On the other hand, changes of fluorescence anisotropy of membrane tryptophans and N-(3-pyrene) maleimide suggest the augmented mobility of the membrane proteins. Evidence is presented which indicated that the binding of fibrinogen to the membrane receptors is not accompanied by any changes in the fluorescence intensity of ANS attached to the membranes. It may suggest that the covering of platelets with fibrinogen does not influence the surface membrane charge. In contrast to fibrinogen, calcium ions caused an increase of the fluorescence intensity resulting from the more efficient binding of ANS to the platelet membranes.  相似文献   

13.
The structural changes of human erythrocyte membranes after X-irradiation were investigated with the aid of fluorescent probes. It was found that the fluorescence characteristics (intensity, polarization and the dissociation constant) of 1-anilino-8-naphthalene sulphonate (ANS) bound to X-irradiated (up to 40 Gy) membranes were quite different from those in unirradiated ones. Sulphydryl (SH)-oxidizing reagents showed the same effects as X-rays on the ANS fluorescence. In addition, pretreatment of the membranes with SH reagents completely blocked the radiation-induced fluorescence changes. These results demonstrated that the initial cause of the radiation effect on membranes is the oxidation of membrane SH groups. There were two different steps in the development of the radiation effect on membrane structure; one is the radiation chemical reaction of SH groups, which is independent of the post-irradiation incubation temperature, and the other is markedly influenced by the temperature, particularly between 12 and 26 degrees C. Therefore it was concluded that structural disorganization of the membranes, including rearrangement of membrane components, might take place following exposure to radiation. This was supported by the fact that treatment with detergents mimicked the effect of X-irradiation. The reaction of OH and/or O2- from the aqueous environment was shown to be responsible for the membrane effect of radiation.  相似文献   

14.
Pyrenedecanoic acid and pyrene lecithin are optical probes well suited to investigate lipid bilayer membranes. The method is based on the determination of the formation of excited dimers or excimers. The rate of excimer formation yields information on the dynamic molecular properties of artificial as well as of natural membranes. This article will review applications of the excimer-forming probes.Pyrene lipid probes are used to determine the coefficient of the lateral diffusion in fluid lipid membranes. Results in artificial membranes are comparable to the values obtained in erythrocyte membranes.Moreover, the excimer formation rate is a very sensitive measure of changes in membrane fluidity. Membrane fluidity is an important regulator of membrane functional proteins. For example, there is a correlation between membrane fluidity and enzyme activities of the adenylate cyclase system.The excimer formation technique is not restricted to the measurement of lateral mobility in membranes. It can also be used to determine the transversal mobility, that is, the lipid exchange between the lipid layers of one bilayer or between bilayers of different vesicles. Again, artificial as well as natural membranes can be investigated by this technique.Another important area of investigation in membrane research is the interaction between lipids and proteins. Lipids, in the presence of a protein, show a different dynamic behavior from free lipids. Because of changes in fluidity and a modified solubility of the pyrene probes within different membrane regions, our methods could also be applied to the examination of phase separation phenomena and to lipid-protein interactions.  相似文献   

15.
The fluorescent probes pyrene, pyrene butyric acid and N-phenyl 1-naphthylamine were used to study membranes of normal cells, RSV-transformed cells, cells treated with a proteolytic enzyme, and cells persistently infected with lymphocytic choriomeningitis virus. The lifetimes of excited pyrene and pyrene butyric acid showed only minor changes when these probes were in normal, transformed, trypsinized or persistently infected cells. However, pyrene, but not pyrene butyric acid, lifetimes are shorter in cell membranes than in homogeneous solvents. The quenching of excited pyrene in cells by quencher molecules was slower than corresponding reactions in homogeneous solutions indicating that the probe was screened from the quenchers by the membrane. However, quenching reactions with the pyrene butyric acid probe were similar in cells and homogeneous solvents. This indicates that pyrene and pyrene butyric acid reside in different lipid regions of the membrane. Transformed and trypsinized cells showed increased membrane fluidity compared to normal and persistently infected cells. Membrane fluidity was determined from the excimer/monomer fluorescence ratios of pyrene, and by the polarization of N-phenyl 1-naphthylamine fluorescence. Several techniques distinguished between normal and transformed or trypsinized cells; however, the only parameter unique to viral transformation was a blue shift of the fluorescence maxima of N-phenyl 1-naphthylamine. This shift reflected a less polar environment for N-phenyl 1-naphthylamine in virus-transformed cells.  相似文献   

16.
Here we have studied how the length of the pyrene-labeled acyl chain (n) of a phosphatidylcholine, sphingomyelin, or galactosylceramide affects the partitioning of these lipids between 1), gel and fluid domains coexisting in bovine brain sphingomyelin (BB-SM) or BB-SM/spin-labeled phosphatidylcholine (PC) bilayers or 2), between liquid-disordered and liquid-ordered domains in BB-SM/spin-labeled PC/cholesterol bilayers. The partitioning behavior was deduced either from modeling of pyrene excimer/monomer ratio versus temperature plots, or from quenching of the pyrene monomer fluorescence by spin-labeled PC. New methods were developed to model excimer formation and pyrene lipid quenching in segregated bilayers. The main result is that partition to either gel or liquid-ordered domains increased significantly with increasing length of the labeled acyl chain, probably because the pyrene moiety attached to a long chain perturbs these ordered domains less. Differences in partitioning were also observed between phosphatidylcholine, sphingomyelin, and galactosylceramide, thus indicating that the lipid backbone and headgroup-specific properties are not severely masked by the pyrene moiety. We conclude that pyrene-labeled lipids could be valuable tools when monitoring domain formation in model and biological membranes as well as when assessing the role of membrane domains in lipid trafficking and sorting.  相似文献   

17.
In this work we have applied a kinetic scheme derived from fluorescence kinetics of pyrene-labeled phosphatidylcholine in phosphatidylcholine membrane to explain the fluorescence quenching of 1-palmitoyl-2-(10-[pyrenl-yl]-sn-glycerol-3-phosphatidylchol ine (PPDPC) liposomes by tetracyanoquinodimethane (TCNQ). The scheme was also found to be applicable to neat PPDPC and the effect of the quencher could be attributed to certain steps of the proposed mechanism. The TCNQ molecules influence the fluorescence of pyrene moieties in PPDPC liposome in two ways. Firstly, an interaction between the quencher molecule and the pyrene monomer in the excited state quenches monomer fluorescence and effectively prevents the diffusional formation of the excimer. Secondly, an interaction between the quencher molecule and the excited dimer quenches the excimer fluorescence. The TCNQ molecule does not prevent the formation of the excimer in pyrene moieties aggregated in such a way that they require only a small rotational motion to attain excimer configuration. The diffusional quenching rate constant is calculated to be 1.0 x 10(8) M-1 s-1 for the pyrene monomer quenching and 1.3 x 10(7) M-1 s-1 for the pyrene excimer quenching. The diffusion constant of TCNQ is 1.5 x 10(-7) cm2 s-1 for the interaction radii of 0.8-0.9 nm. The TCNQ molecules are practically totally partitioned in the membrane phase.  相似文献   

18.
A method for estimating the fluidity of natural membranes from the pyrene excimer/monomer fluorescence ratio (Ie/Im) is proposed. The method makes it possible to exclude artefacts such as fluorescence quenching, aggregation, and redistribution of the probe in lipid mains with different microviscosity. It is shown that, upon variation of intramembrane pyrene concentration [pyr], the occurrence of a common crossover point in pyrene fluorescence spectra normalized to the corresponding probe concentration (isoemission or isobestic point) or, as a consequence, the linear dependence of Ie/[pyr] on Im/[pyr] can serve as a criterion of diffusion (fluidity)-controlled excimerization of pyrene. The isobestic point can be used for determining the range of working concentrations of the probe in membrane suspension. It was found from the intensity of pyrene fluorescence in the isobestic point and quenching with potassium iodide that at t < 30 degrees C, the probe is uniformly distributed throughout the membrane, and its excimerization is mainly controlled by the microviscosity of environment.  相似文献   

19.
We have investigated the effect of bulk viscosity on lipid translational diffusion using the excimer formation technique. In contrast to a study by Vaz et al. (1987), performed with the fluorescence recovery after photobleaching technique, we observed only a minor decrease of less than a factor of two for pyrene labelled phosphatidylcholine in glycerinated phosphatidylcholine bilayer membranes compared to an aqueous dispersion. Even the diffusion of pyrene labelled gangliosides with an oligosaccharide head-group that protrudes from the membrane surface is not strongly restricted by the increased bulk viscosity. We conclude that the viscosity of the fluid bounding the lipid bilayers is of minor importance for the diffusion of membrane lipids.Abbreviations DPPC 1-2 dipalmitoyl-sn-glycero-3-phosphocholine - DSPC 1-2 distearoyl-sn-glycero-3-phosphocholine - PyPC 1-acyl-2-[10(-1-pyrene)decanoyl]-sn-glycero-3-phosphocholine - PyGM1 N-12-(1-pyrene)dodecanoyl-lyso GM1 - PyGM2 N-12-(1-pyrene)dodecanoyl-lyso GM2 - PyGM3 N-12-(1-pyrene) dodecanoyl-lyso GM3 - IM fluorescence intensity of the monomeric pyrene probe - ID fluorescence intensity of the excimer  相似文献   

20.
In order to determine the microviscosity of human erythrocyte membrane suspensions, a method has been developed which is based on pyrene excimer formation. First, measurements of partitioning of pyrene into membranes, in conjunction with known values for the volume of the lipid compartment of erythrocyte ghosts are used to determine the concentration of pyrene in the membrane lipid. Secondly, reported measurements of the diffusion constants of aromatic hydrocarbons similar in structure to pyrene, are used to derive an empirical equation relating solvent viscosity and the diffusion constant of pyrene. Then, measurements of pyrene excimer formation in a series of solvents ranging up to several poise in viscosity are used to determine that the interaction diameter of the excimer formation reaction is 3 +/- 1 A. Finally all these data are brought together in order to conclude that the viscosity of the lipid in the human erythrocyte ghost is 8.0, 4.0 and 1.6 P at 10, 25 and 40 degrees C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号