首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we examine the effects of Dermatophagoides farinae (Der f), a major source of airborne allergens, on alveolar macrophages (AMs), and we also test its contribution to allergic responses in mice. Der f activated NF-kappaB of AMs and, unlike OVA or LPS stimulation, up-regulated IL-6, TNF-alpha, and NO. In addition, it down-regulated antioxidants, but affected neither the expression nor production of IL-12. Der f-stimulated AMs expressed enhanced levels of costimulatory B7 molecules, supported T cell proliferation, and promoted Th2 cell development. The enhanced accessory function was suppressed by blockade mAbs to B7.2, IL-6, and TNF-alpha and by N-monomethyl-L-arginine, an NO synthase inhibitor, and N-acetylcysteine, a thiol antioxidant, whereas it was augmented by (+/-)-S-nitroso-N-acetylpenicillamine, an NO donor. Arg-Gly-Asp-Ser peptide and neo-glycoproteins galactose-BSA and mannose-BSA inhibited the Der f-induced IL-6 and TNF-alpha productions and enhanced accessory function of AMs. Der f was more potent than OVA for inducing pulmonary eosinophilic inflammation, NO, and serum allergen-specific IgG1 Ab production in mice. AMs from Der f-challenged mice expressed enhanced levels of B7 and augmented T cell proliferation ex vivo. In Der f-challenged mice, respiratory syncytial virus infection (5 x 10(5) pfu; 3 days before Der f instillation) augmented Der f-specific Ab production, whereas dexamethasone (50 mg/kg; 1 h before Der f instillation) diminished the allergic airway inflammation and Ab response. We conclude that AMs are sensitive targets for Der f and that the Der f-induced proinflammatory responses may represent an important mechanism in mediating the development of allergic sensitization and inflammation.  相似文献   

2.
Mast cells have classically been implicated in the triggering of allergic and anaphylactic reactions. However, recent findings have elucidated the ability of these cells to selectively release a variety of cytokines leading to bacterial clearance through neutrophil and dendritic cell mobilization, and suggest an important role in innate host defenses. Our laboratory has established a primary bone marrow derived mast cell-macrophage co-culture system and found that mast cells mediated a significant inhibition of Francisella tularensis live vaccine strain (LVS) uptake and replication within macrophages through contact and the secreted product interleukin-4 (IL-4). In this study, we utilized P815 mast cells and J774 macrophages to further investigate whether mast cell activation by non-FcεR driven signals could produce IL-4 and control intramacrophage LVS replication. P815 supernatants collected upon activation by the mast cell activating peptide MP7, as well as P815 cells co-cultured with J774 macrophages, exhibited marked inhibition of bacterial uptake and replication, which correlated with the production of IL-4. The inhibition noted in vitro was titratable and preserved at ratios relevant to cellular infiltration events following pulmonary challenge. Collectively, our data suggest that both primary mast cell and P815 mast cell (lacking FcεR) secreted IL-4 can control intramacrophage Francisella replication.  相似文献   

3.
Picryl (trinitrophenyl) chloride (PCL) contact sensitization of mice induces T cells that release an antigen-binding T cell factor (PCLF) that plays an important role in the initiation of contact sensitivity responses, in part via activation of mast cells. The current study employs an in vitro indirect rosette assay to demonstrate that PCLF can interact with the mast cell surface. Sheep red blood cells (SRBC) were hapten conjugated with trinitrophenyl (TNP), dinitrophenyl (DNP), or oxazolone (OX). When TNP-conjugated SRBC were coated with PCLF, monoclonal anti-DNP IgE, or anti-DNP IgG1, they produced 40 to 50% rosettes with purified normal mouse peritoneal mast cells. Analogous antigen-binding factors, from lymphoid cells of OX and dinitrofluorobenzene contact-sensitized mice, gave similar mast cell rosetting levels with OX-SRBC and DNP-SRBC, respectively. PCLF demonstrated a high degree of hapten specificity in that it formed rosettes with TNP-SRBC but not with DNP-SRBC, unlike IgE and IgG1, or DNPF, which formed rosettes with either SRBC type. Similarly, soluble TNP-BSA could inhibit PCLF rosette-forming capacity, but soluble DNP-BSA could not. In addition to mouse mast cells, PCLF formed rosettes with rat basophil leukemia cells, mouse peritoneal exudate macrophages, mouse alveolar macrophages, and J 774 cultured mouse macrophages; it did not form rosettes with rat mast cells, rat alveolar macrophages, or mouse spleen cells. Thus, PCLF-formed rosettes were antigen specific, relatively species specific, and mast cell/macrophage specific. PCLF-mediated rosette-forming activity could be detected in the presence of nanogram quantities of PCLF. More than 10 times greater IgE was needed to produce IgE-mediated rosettes. Reduction and alkylation eliminated the rosetting activity of IgE, but the rosetting activity of PCLF was not affected. PCLF, but not IgE rosette-forming activity, could be removed by and eluted from affinity columns linked with a monoclonal antibody specific for T cell-derived antigen-binding factors, whereas PCLF rosetting activity was not retained by an anti-immunoglobulin affinity column. Preincubation of mast cells with rat myeloma IgE or mouse monoclonal IgE of various specificities blocked IgE rosettes but not PCLF-induced rosettes. Other immunoglobulin isotypes likewise did not block PCLF rosettes. However, PCLF rosettes could be blocked by preincubation of mast cells with OX factor (OXF),and OXF-mediated rosettes could be blocked similarly by PCLF. These results suggest that the antigen-binding T cell factor PCLF interacts with a unique receptor on the surface of mouse mast cells.  相似文献   

4.
GM-CSF has been showed to be able to induce up-regulated receptor and cytokine expression in mast cells in inflammatory conditions. However, little is known of its effects on protease activated receptor (PAR) expression and Th2 cytokine secretion from mast cells. In the present study, we examined potential influence of GM-CSF on mast cell PAR expression and IL-4 and IL-10 release by using flow cytometry analysis, quantitative real time PCR, ELISA and cellular activation of signaling ELISA (CASE) techniques. The results showed that GM-CSF induced up to 3.0-fold increase in IL-4 release from P815 cells, and FSLLRY-NH2 and trans-cinnamoyl (tc)-YPGKF-NH2 did not affect GM-CSF induced IL-4 release. GM-CSF reduced tryptase and trypsin induced IL-4 release by up to approximately 55.8% and 70.3%, respectively. GM-CSF elicited the upregulated expression of PAR-1, PAR-2, PAR-3 and PAR-4 mRNAs, but enhanced only PAR-4 protein expression in P815 cells. U0126, PD98059 and LY204002 almost completely abolished GM-CSF induced IL-4 release when they were preincubated with P815 cells for 30 min, indicating ERK and Akt cell signaling pathways may be involved in the event. In conclusion, GM-CSF can stimulate IL-4 release from mast cells through an ERK and Akt cell signaling pathway dependent, but PAR independent mechanism. GM-CSF may serve as a regulator for IL-4 production in mast cells and through which participates in the mast cell related inflammation.  相似文献   

5.
IL-17 is a pivotal proinflammatory molecule in asthmatics. However, the cellular source of IL-17 in asthma has not been identified to date. In this study, we report that macrophages rather than Th17 cells are the main producer of IL-17 in allergic inflammation related to asthma. After OVA challenge in a mouse model mimicking allergic asthma, the increased IL-17(+) cells in the lung were mainly CD11b(+)F4/80(+) macrophages, instead of T cells or others. Importantly, IL-17(+) alveolar macrophages (AMs), but not IL-17(+) interstitial macrophages, were significantly increased after allergen challenge. The increase of IL-17(+) AMs was not due to the influx of IL-17(+) macrophages from circulation or other tissues, but ascribed to the activation of AMs by mediator(s) secreted by IgE/OVA-activated mast cells. Depleting alveolar macrophages or neutralizing IL-17 prevented the initiation of OVA-induced asthma-related inflammation by inhibiting the increase of inflammatory cells and inflammatory factors in bronchoalveolar lavage fluid. Th2 cytokine IL-10 could down-regulate IL-17 expression in alveolar macrophages. The increased IL-17 and the decreased IL-10 in bronchoalveolar lavage fluid were further confirmed in asthmatic patients. These findings suggest that IL-17 is mainly produced by macrophages but not Th17 cells in allergic inflammation related to asthma. Mast cell-released mediators up-regulate the expression of IL-17 by macrophages, whereas IL-10 down-regulates IL-17 expression.  相似文献   

6.
7.
Increased levels of macrophage migration inhibitory factor (MIF) in serum, sputum, and bronchioalveolar lavage fluid (BALF) from asthmatic patients and time/dose-dependent expression of MIF in eosinophils in response to phorbol myristate acetate suggest the participation of MIF in airway inflammation. In this study, we examined inflammation in OVA-sensitized mouse lungs in wild-type and MIF-deficient mice (MIF(-/-)). We report increased MIF in the lung and BALF of sensitized wild-type mice. MIF(-/-) mice demonstrated significant reductions in serum IgE and alveolar inflammatory cell recruitment. Reduced Th1/Th2 cytokines and chemokines also were detected in serum or BALF from MIF(-/-) mice. Importantly, alveolar macrophages and mast cells, but not dendritic cells or splenocytes, from MIF(-/-) mice demonstrated impaired CD4+ T cell activation, and the reconstitution of wild-type mast cells in MIF(-/-) mice restored the phenotype of OVA-induced airway inflammation, revealing a novel and essential role of mast cell-derived MIF in experimentally induced airway allergic diseases.  相似文献   

8.
Cytokines produced by activated macrophages and Th2 cells within the lung play a key role in asthma-associated airway inflammation. Additionally, recent studies suggest that the molecule CD40 modulates lung immune responses. Because airway epithelial cells can act as immune effector cells through the expression of inflammatory mediators, the epithelium is now considered important in the generation of asthma-associated inflammation. Therefore, the goal of the present study was to examine the effects of proinflammatory and Th2-derived cytokines on the function of CD40 in airway epithelia. The results show that airway epithelial cells express CD40 and that engagement of epithelial CD40 induces a significant increase in expression of the chemokines RANTES, monocyte chemoattractant protein (MCP-1), and IL-8 and the adhesion molecule ICAM-1. Cross-linking epithelial CD40 had no effect on expression of the adhesion molecule VCAM-1. The proinflammatory cytokines TNF-alpha and IL-1beta and the Th2-derived cytokines IL-4 and IL-13 modulated the positive effects of CD40 engagement on inflammatory mediator expression in airway epithelial cells. Importantly, CD40 ligation enhanced the sensitivity of airway epithelial cells to the effects of TNF-alpha and/or IL-1beta on expression of RANTES, MCP-1, IL-8, and VCAM-1. In contrast, neither IL-4 nor IL-13 modified the effects of CD40 engagement on the expression of RANTES, MCP-1, IL-8, or VCAM-1; however, both IL-4 and IL-13 attenuated the effects of CD40 cross-linking on ICAM-1 expression. Together, these findings suggest that interactions between CD40-responsive airway epithelial cells and CD40 ligand+ leukocytes, such as activated T cells, eosinophils, and mast cells, modulate asthma-associated airway inflammation.  相似文献   

9.
Bacterial colonization is a secondary feature of many lung disorders associated with elevated cytokine levels and increased leukocyte recruitment. We hypothesized that, alongside macrophages, the epithelium would be an important source of these mediators. We investigated the effect of LPS (0, 10, 100, and 1000 ng/ml LPS, up to 24 h) on primary human lung macrophages and alveolar type II epithelial cells (ATII; isolated from resected lung tissue). Although macrophages produced higher levels of the cytokines TNF-alpha and IL-1beta (p < 0.0001), ATII cells produced higher levels of chemokines MCP-1, IL-8, and growth-related oncogene alpha (p < 0.001), in a time- and concentration-dependent manner. Macrophage (but not ATII cell) responses to LPS required activation of ERK1/2 and p38 MAPK signaling cascades; phosphorylated ERK1/2 was constitutively up-regulated in ATII cells. Blocking Abs to TNF-alpha and IL-1beta during LPS exposure showed that ATII cell (not macrophage) MCP-1 release depended on the autocrine effects of IL-1beta and TNF-alpha (p < 0.003, 24 h). ATII cell release of IL-6 depended on autocrine effects of TNF-alpha (p < 0.006, 24 h). Macrophage IL-6 release was most effectively inhibited when both TNF-alpha and IL-1beta were blocked (p < 0.03, 24 h). Conditioned media from ATII cells stimulated more leukocyte migration in vitro than conditioned media from macrophages (p < 0.0002). These results show differential activation of cytokine and chemokine release by ATII cells and macrophages following LPS exposure. Activated alveolar epithelium is an important source of chemokines that orchestrate leukocyte migration to the peripheral lung; early release of TNF-alpha and IL-1beta by stimulated macrophages may contribute to alveolar epithelial cell activation and chemokine production.  相似文献   

10.
Role of IL-10 in the resolution of airway inflammation   总被引:1,自引:0,他引:1  
IL-10 can be considered an important agent in the resolution of inflammation. Originally named "cytokine synthesis inhibitory factor" for its ability to inhibit IFN-gamma and IL-2 production in Th2 cells, it is secreted by monocytes, macrophages, mast cells, T and B lymphocytes, and dendritic cells (DCs). IL-10 production and release by monocytic cells in response to allergic challenge is upregulated by TNF-alpha, and by negative feedback regulation of itself. However, it is also secreted by T regulatory cells (Tregs), under the control of IL-2. Importantly in the context of asthma, IL-10 inhibits eosinophilia, by suppression of IL-5 and GM-CSF, by direct effects on eosinophil apoptosis, and effects on cell proliferation through down-regulation of IL-1. A number of its cytokine suppressive characteristics are now thought to occur through its upregulation of suppressor of cytokine signaling (SOCS)-3. IL-10 is also a suppressor of nitric oxide (NO) production, which may have ramifications for its role in airway inflammatory diseases. Initial clinical trials have demonstrated relative safety and few clinically adverse events at doses of recombinant human IL-10 below 50 microg/kg, with mixed success in treatment of patients with inflammatory bowel disease and psoriasis. However, both steroid therapy and allergen specific immunotherapy are known to elevate endogenous IL-10 levels, which may account for their efficacy, suggesting that further study of IL-10 as a target for treatment of airway inflammatory diseases such as asthma and COPD is warranted.  相似文献   

11.
The current study characterizes the cytokine protein (ELISA) and mRNA (gene array and RT-PCR) profiles of skin-derived mast cells cultured under serum-free conditions when activated by cross-linking of Fc epsilonRI. Prior to mast cell activation, mRNA only for TNF-alpha was detected, while after activation mRNA for IL-5, IL-6, IL-13, TNF-alpha, and GM-CSF substantially increased, and for IL-4 it minimally increased. However, at the protein level certain recombinant cytokines, as measured by ELISAs, were degraded by proteases released by these skin-derived mast cells. IL-6 and IL-13 were most susceptible, followed by IL-5 and TNF-alpha; GM-CSF was completely resistant. These observations also held for the endogenous cytokines produced by activated mast cells. By using protease inhibitors, chymase and cathepsin G, not tryptase, were identified in the mast cell releasates as the likely culprits that digest these cytokines. Their cytokine-degrading capabilities were confirmed with purified chymase and cathepsin G. Soy bean trypsin inhibitor, when added to mast cell releasates, prevented the degradation of exogenously added cytokines and, when added to mast cells prior to their activation, prevented degradation of susceptible endogenous cytokines without affecting either degranulation or GM-CSF production. Consequently, substantial levels of IL-5, IL-6, IL-13, TNF-alpha, and GM-CSF were detected 24-48 h after mast cells had been activated, while none were detected 15 min after activation, by which time preformed granule mediators had been released. IL-4 was not detected at any time point. Thus, unless cytokines are protected from degradation by endogenous proteases, cytokine production by human mast cells with chymase and cathepsin G cells may be grossly underestimated.  相似文献   

12.
IL-33 (or IL-1F11) was recently identified as a ligand for the previously orphaned IL-1 family receptor T1/ST2. Previous studies have established that IL-33 and T1/ST2 exert key functions in Th2 responses. In this study, we demonstrate that IL-33 induces the production of pro-inflammatory mediators in mast cells. IL-33 dose and time-dependently stimulated IL-6 secretion by P815 mastocytoma cells and primary mouse bone marrow-derived mast cells (BMMC). This effect was dependent on T1/ST2 binding. In addition, IL-33 also induced IL-1β, TNF-α, MCP-1, and PGD2 production in BMMC. By RNase protection assay, we demonstrated that IL-33 increased IL-6 and IL-1β mRNA expression. These effects of IL-33 appeared to occur independently of mast cell degranulation, The results of this study show for the first time that IL-33, a novel member of the IL-1 family of cytokines, stimulates the production of pro-inflammatory mediators by mast cells in addition to its effect on T helper 2 responses. These findings open new perspectives for the treatment of inflammatory diseases by targeting IL-33.  相似文献   

13.
Agents that increase intracellular cAMP have been shown to reduce joint inflammation in experimental arthritis, presumably by lowering the release of proinflammatory cytokines, such as TNF-alpha. Recent studies suggest that, in joints of patients with rheumatoid arthritis, TNF-alpha release from macrophages is triggered by their interaction with IL-15-stimulated T lymphocytes. In this report, we analyze the effect of rolipram, a cAMP-specific phosphodiesterase inhibitor, on TNF-alpha production in this experimental system. Cocultures of U937 cells with IL-15-stimulated T cells, but not control T cells, resulted in increased release of TNF-alpha. Pretreatment of T cells with rolipram or cAMP analogues inhibited the IL-15-stimulated increases in proliferation, expression of cell surface molecules CD69, ICAM-1, and LFA-1, and release of TNF-alpha from macrophages. Addition of PMA to T cells dramatically increased the expression of cell surface molecules, but had little or no effect on TNF-alpha release from either T cells or from cocultures, suggesting that other surface molecules must also be involved in T cell/macrophage contact-mediated production of TNF-alpha. Addition of PMA synergistically increased the proliferation of IL-15-stimulated T cells and the secretion of TNF-alpha from IL-15-stimulated T cell/macrophage cocultures. Rolipram and 8-(4-chlorophenylthio)-cAMP (CPT-cAMP) blocked these increases. Measurement of protein kinase A (PKA) activity and the use of inhibitory cAMP analogues (RpCPT-cAMP) confirmed that rolipram worked by stimulating PKA. These data suggest that PKA-activating agents, such as rolipram, can block secretion of TNF-alpha from macrophages by inhibiting T cell activation and expression of surface molecules.  相似文献   

14.
15.
The Tec family tyrosine kinase, IL-2-inducible T cell kinase (Itk), is expressed in T cells and mast cells. Mice lacking Itk exhibit impaired Th2 cytokine secretion; however, they have increased circulating serum IgE, but exhibit few immunological symptoms of allergic airway responses. We have examined the role of Itk in mast cell function and FcepsilonRI signaling. We report in this study that Itk null mice have reduced allergen/IgE-induced histamine release, as well as early airway hyperresponsiveness in vivo. This is due to the increased levels of IgE in the serum of these mice, because the transfer of Itk null bone marrow-derived cultured mast cells into mast cell-deficient W/W(v) animals is able to fully rescue histamine release in the W/W(v) mice. Further analysis of Itk null bone marrow-derived cultured mast cells in vitro revealed that whereas they have normal degranulation responses, they secrete elevated levels of cytokines, including IL-13 and TNF-alpha, particularly in response to unliganded IgE. Analysis of biochemical events downstream of the FcepsilonRI revealed little difference in overall tyrosine phosphorylation of specific substrates or calcium responses; however, these cells express elevated levels of NFAT, which was largely nuclear. Our results suggest that the reduced mast cell response in vivo in Itk null mice is due to elevated levels of IgE in these mice. Our results also suggest that Itk differentially modulates mast cell degranulation and cytokine production in part by regulating expression and activation of NFAT proteins in these cells.  相似文献   

16.
Interleukin (IL)-29 is a relatively newly discovered cytokine, which has been shown to be actively involved in the pathogenesis of allergic inflammation. However, little is known of the effects of IL-29 on protease activated receptor (PAR) expression and potential mechanisms of cytokine production in mast cells. In the present study, we examined potential influence of IL-29 on PAR expression and cytokine production in P815 and bone marrow derived mast cells (BMMCs) by using flow cytometry analysis, quantitative real time PCR, and ELISA techniques. The results showed that IL-29 downregulated the expression of PAR-1 by up to 56.2%, but had little influence on the expression of PAR-2, PAR-3 and PAR-4. IL-29 also induced downregulation of expression of PAR-1 mRNA. However, when mast cells were pre-incubated with IL-29, thrombin-, trypsin- and tryptase-induced expression of PAR-2, PAR-3 and PAR-4 was upregulated, respectively. IL-29 provoked approximately up to 1.9-fold increase in IL-4 release when mast cells was challenged with IL-29. Administration of IL-29 blocking antibody, AG490 or LY294002 abolished IL-29-induced IL-4 release from P815 cells. It was found that IL-29 diminished trypsin- and tryptase-induced IL-4 release from P815 cells following 16 h incubation. In conclusion, IL-29 can regulate expression of PARs and tryptase- and trypsin-induced IL-4 production in mast cells, through which participates in the mast cell related inflammation.  相似文献   

17.
Dendritic cells (DCs) act as APCs in the airway and play a critical role in allergy. Cysteinyl leukotrienes (cysLTs) synthesized from arachidonic acid are primary mediators of immediate asthmatic reaction. The aim of this study was to investigate the effects of cysLTs on Dermatophagoides farinae (Der f)-pulsed mouse myeloid DCs in inducing allergic airway inflammation in vitro and in vivo. Control DC (medium-pulsed), Der f-pulsed DC, cysLT-pulsed DC, Der f- and cysLT-pulsed DC, and Der f-pulsed and cysLT receptor antagonist (LTRA)-treated DC were prepared from murine bone marrow, and the production of cytokines ws compared. Subsequently, these DCs were intranasally instilled into another group of naive mice, followed by intranasal Der f challenge to induce allergic airway inflammation in vivo. Der f-pulsed DC produced significantly higher amounts of IL-10 and IL-12 compared with control DC. Der f- and cysLT-pulsed DC further increased IL-10 production compared with Der f-pulsed DC. In contrast, treatment of Der f-pulsed DC with LTRA increased IL-12 and decreased IL-10. Intranasal instillation of Der f-pulsed DC resulted in airway eosinophilia associated with a significant rise in IL-5 levels in the airway compared with control DC. Pulmonary eosinophilia and excess IL-5 were further enhanced in Der f- and cysLT-pulsed DC-harboring mice. In contrast, Der f-pulsed and LTRA-treated DC significantly inhibited airway eosinophilia, reduced IL-5, and increased IFN-gamma in the airway. Our results suggest that cysLTs play an important role in the development of allergic airway inflammation by regulating the immunomodulatory functions of DCs.  相似文献   

18.
Suplatast tosilate (IPD-1151T) is an antiallergic agent that suppresses airway eosinophil infiltration in asthma. We investigated the effects of IPD-1151T on proliferative response and cytokine production by human antigen-specific T cell lines. Purified protein derivatives (PPD)-specific T helper 1 (Th1) cell lines and Dermatophagoides farinae (Der f)-specific T helper 2 (Th2) cell lines were established from patients with asthma sensitized with house dust mite. Stimulation of PPD-specific and Der f-specific T cell lines with relevant antigens resulted in production of mostly interferon (IFN)-gamma and of interleukin (IL)-4 and IL-5, respectively. IPD-1151T did not inhibit the proliferative responses of either the Th1 or Th2 cell line to antigens. Although IPD-1151T did not inhibit IFN-gamma production by PPD-specific Th1 cell lines, it did inhibit IL-4 and IL-5 production by antigen-stimulated Der f-specific Th2 cell lines in a dose-dependent manner. IPD-1151T directly inhibited cytokine production by Der f-specific Th2 cell lines stimulated with immobilized anti-CD3 antibodies. Although IPD-1151T did not inhibit the clonal expansion of memory T cells among PBMCs into PPD-specific Th1 and Th2 cell lines, it did inhibit IL-4 and IL-5 production by Der f-specific Th2 cell lines but not IFN-gamma production by PPD-specific Th1 cell lines. These results suggest that IPD-1151T selectively inhibits Th2-type cytokine production.  相似文献   

19.
Extracellular ATP and other nucleotides act through specific cell surface receptors and regulate a wide variety of cellular responses in many cell types and tissues. In this study, we demonstrate that murine mast cells express several P2Y and P2X receptor subtypes including P2X(7), and describe functional responses of these cells to extracellular ATP. Stimulation of bone marrow-derived mast cells (BMMC), as well as MC/9 and P815 mast cell lines with millimolar concentrations of ATP, resulted in Ca(2+) influx across the cellular membrane and cell permeabilization. Moreover, brief exposures to ATP were sufficient to induce apoptosis in BMMCs, MC/9, and P815 cells which involved activation of caspase-3 and -8. However, in the time period between commitment to apoptosis and actual cell death, ATP triggered rapid but transient phosphorylation of multiple signaling molecules in BMMCs and MC/9 cells, including ERK, Jak2, and STAT6. In addition, ATP stimulation enhanced the expression of several proinflammatory cytokines, such as IL-4, IL-6, IL-13, and TNF-alpha. The effects of ATP were mimicked by submillimolar concentrations of 3-O-(4'-benzoyl)-benzoyl-benzoyl-ATP, and were inhibited by pretreatment of mast cells with a selective blocker of human and mouse P2X(7) receptor, 1[N,O-bis(5-isoquinolinesulphonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine, as well as oxidized ATP. The nucleotide selectivity and pharmacological profile data support the role for P2X(7) receptor as the mediator of the ATP-induced responses. Given the importance of mast cells in diverse pathological conditions, the ability of extracellular ATP to induce the P2X(7)-mediated apoptosis in these cells may facilitate the development of new strategies to modulate mast cell activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号