首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I argue that there is no fundamental conflict between economic growth and biodiversity. Humans can maintain and produce biological diversity just as we can maintain and produce other goods. Efforts to preserve and enhance biodiversity add to the size and growth of the economy. We are losing biodiversity because of human preferences and human inefficiencies, not because of economic growth. Inefficiency occurs when our actions do not reflect our real preferences, and is mainly due to failures of social coordination. To alleviate the problem of biodiversity loss we should address these failures.  相似文献   

2.
李京梅  韩然然  许志华 《生态学报》2022,42(11):4665-4675
海洋生物多样性是海洋生态系统服务的基础,保护海洋生物多样性不仅对维持地球生态系统的功能至关重要,也与人类福祉密切相关。基于沿海11个省区生态系统亚健康程度指标和物种多样性损害指标,运用面板回归模型对中国沿海地区经济增长与海洋生物多样性损害的关系进行实证考察。研究结果表明:(1)海洋生态系统亚健康程度与沿海地区经济增长之间存在显著的线性关系,随着经济增长,典型海洋生态系统亚健康状态占比呈现出持续上升趋势。此外,实施排污费制度和建立海洋自然保护区有利于抑制海洋生态系统的恶化。(2)海洋物种多样性损害与沿海地区经济增长之间存在显著“倒U”型关系,随着经济增长,海洋物种多样性损害呈现先上升后下降的态势,转折点为人均GDP 45145元,目前海南省、广西壮族自治区、河北省未跨过转折点。此外,排污费制度有利于抑制海洋物种多样性损害,而沿海地区目前的产业结构加重了海洋物种多样性损害。根据实证分析结果,海洋生态系统健康尚未出现拐点,沿海地区经济增长如果建立在对生态环境破坏的基础上,则势必会造成生物多样性的损害。因此从规范海域利用方式,完善海岸生态保护红线划定,加强生态系统的监测与管理,保持绿色可持续的...  相似文献   

3.
Economic inequality predicts biodiversity loss   总被引:1,自引:0,他引:1  
Human activity is causing high rates of biodiversity loss. Yet, surprisingly little is known about the extent to which socioeconomic factors exacerbate or ameliorate our impacts on biological diversity. One such factor, economic inequality, has been shown to affect public health, and has been linked to environmental problems in general. We tested how strongly economic inequality is related to biodiversity loss in particular. We found that among countries, and among US states, the number of species that are threatened or declining increases substantially with the Gini ratio of income inequality. At both levels of analysis, the connection between income inequality and biodiversity loss persists after controlling for biophysical conditions, human population size, and per capita GDP or income. Future research should explore potential mechanisms behind this equality-biodiversity relationship. Our results suggest that economic reforms would go hand in hand with, if not serving as a prerequisite for, effective conservation.  相似文献   

4.
Recent publications and political assessments point to the ongoing loss of global biological diversity. Identifying entry points for improved biodiversity policies requires us to improve our knowledge on the complex, anthropogenic factors that lead to biodiversity loss. This article approaches this challenge by analysing the causes and effects that experts from Peruvian political regions connect to biodiversity loss. In four workshops, 219 experts from 20 Peruvian political regions were asked to discuss the problem in focus groups. Besides observing the focus group discussions, meaning and context of mentioned aspects was further clarified in individual interviews.Performing a qualitative content analysis the aspects collected in focus groups have been clustered into groups of causes (environmental changes, economic land use issues, human expansion, ignorance and unawareness and weak political structures) and effects (environmental effects, loss of ecosystem services, economic effects and negative feedback effects). The results section presents all causes and effects in their local socio-economic context. Discussing the relevance of the results for policy making, I propose structuring the assessment of the biodiversity governance process in political output, social outcome and ecological impact to both highlighting the causal linkage of those dimensions and tracking the step-wise progress. This way, I break down the complex problem of biodiversity loss into tangible aspects and relate them to specific processes of economic development. I conclude that learning from regional experts and practitioners can help finding local approaches to improve policy processes under given capacities and conditions.  相似文献   

5.
An enormous recent research effort focused on how plant biodiversity (notably species richness) influences ecosystem functioning, usually through experiments in which diversity is varied through random draws of species from a species pool. Such experiments are increasingly used to predict how species losses influence ecosystem functioning in ‘real’ ecosystems. However, this assumes that comparisons of experimental communities with low vs high species richness are analogous to comparisons of natural communities from which species either have or have not been lost. I explore the validity of this assumption, and highlight difficulties in using such experiments to draw conclusions about the ecosystem consequences of biodiversity loss in natural systems. Notably, these experiments do not mimic what happens in real ecosystems either when local extinctions occur or when species losses are offset by gains of new species. Despite limitations, this single experimental approach for studying how biodiversity loss affects ecosystems has often been advocated and implemented at the expense of other approaches; this limits understanding of how natural ecosystems respond to biodiversity loss. I conclude that a broader spectrum of approaches, and more explicit consideration of how species losses and gains operate in concert to influence ecosystems, will help progress this field.  相似文献   

6.
Ecosystem functioning and intrinsic value of biodiversity   总被引:4,自引:0,他引:4  
Alexei M. Ghilarov 《Oikos》2000,90(2):408-412
Trying to show the importance of biodiversity for ecosystem functioning, ecologists are repeatedly looking for a possible connection between species diversity and intensity of various ecosystem processes. However it appears that simple "proof" of such a connection cannot easily be demonstrated and involves a lot of contingencies. The different meanings of "ecosystem functioning" may be crucial for attempts to show the importance of biodiversity and to assess possible redundancy. If "ecosystem functioning" means only total production of organic matter or consumption of CO2 then some degree of redundancy in species diversity of autotrophs will be obvious in most cases. However if "ecosystem functioning" includes the synthesis of all compounds that plants, animals and other organisms of a given community contain in their bodies or release in the environment, then any decrease in species diversity will be meaningful and any redundancy will be impossible by definition. In accordance with such a definition biodiversity obviously cannot be diminished without some loss of ecosystem functioning. I emphasize that attempts to conserve biodiversity do not need special justification in possible relationships between diversity and ecosystem services. If biodiversity has intrinsic value it means that it could in principle be "useless" for human needs or for "ecosystem functioning".  相似文献   

7.
The unprecedented loss of biological diversity has negative impacts on ecosystems and the associated benefits which they provide to humans. Bromeliads have high diversity throughout the Neotropics, but they have been negatively affected by habitat loss and fragmentation, climate change, invasive species, and commercialization for ornamental purpose. These plants provide direct benefits to the human society, and they also form microecosystems in which accumulated water and nutrients support the communities of aquatic and terrestrial species, thus maintaining local diversity. We performed a systematic review of the contribution of bromeliads to ecosystem services across their native geographical distribution. We showed that bromeliads provide a range of ecosystem services such as maintenance of biodiversity, community structure, nutrient cycling, and the provisioning of food and water. Moreover, bromeliads can regulate the spread of diseases, and water and carbon cycling, and they have the potential to become important sources of chemical and pharmaceutical products. The majority of this research was performed in Brazil, but future research from other Neotropical countries with a high diversity of bromeliads would fill the current knowledge gaps and increase the generality of these findings. This systematic review identified that future research should focus on provisioning, regulating, and cultural services that have been currently overlooked. This would enhance our understanding of how bromeliad diversity contributes to human welfare, and the negative consequences that loss of bromeliad plants can have on communities of other species and the healthy functioning of the entire ecosystems.  相似文献   

8.
The importance of genetic variation for maintaining biological diversity and evolutionary processes has been recognized by researchers for decades. This realization has prompted agreements by world leaders to conserve genetic diversity, and this is an explicit goal of the Convention on Biological Diversity (CBD). Nevertheless, very limited action has been taken to protect genetic diversity on a global scale. International conservation efforts to halt biodiversity loss focus on habitats and species, whereas little or no attention is paid to gene level variation. By this year, 2010, world leaders have agreed that a significant reduction of the rate of biodiversity loss should have been achieved. However, gene level diversity is still not monitored, indicators that can help identify threats to genetic variation are missing, and there is no strategy for how genetic aspects can be included in biodiversity targets beyond 2010. Important findings and conclusions from decades of conservation genetic research are not translated into concrete conservation action in the arena of international policy development. There is an urgent need for conservation geneticists worldwide to become involved in policy and practical conservation work beyond the universities and research institutions.  相似文献   

9.
Although recent research has shown that non-indigenous species often increase local-scale species richness, few have documented how such increases translate into compositional changes across biological scales. In particular, transformations of biodiversity patterns may be acute within regions that are simultaneously extinction and invasion hotspots (i.e. double-hotspots), such as the Hawaiian Islands. Nevertheless, modification of diversity relationships in such places are rarely quantified. Here, I utilize passerine non-indigenous species introductions and native species extinctions on Hawaii to quantitatively explore the changing relationship between within- (alpha), between- (beta), and across-island (gamma) diversity. My results indicate that, even after incorporating the enrichment effects of non-indigenous species invasions, across-island passerine diversity has dropped substantially. Nevertheless, within-island diversity has remained largely unchanged, or in some cases increased. Perhaps the more profound changes in diversity have come from the loss of between-island diversity. Because nearly all native Hawaiian passerines are extinct or near extinction, the current diversity relationships are inordinately influenced by patterns in the transportation and establishment of non-indigenous birds. These human-induced ‘dispersal’ patterns are markedly different from natural ones. In addition, these dispersal patterns may be unique to vagile species such as birds, thus indicating that transformations of diversity within other groups (e.g. plants or freshwater fishes) currently inhabiting Hawaii may differ. These results suggest the need to explore how alteration of diversity relationships translate into the loss of ecosystem services, or other valued components of biodiversity.  相似文献   

10.
系统发育多样性测度及其在生物多样性保护中的应用   总被引:1,自引:1,他引:1  
生物多样性保护面临两个基本问题:如何确定生物多样性测度以及如何保护生物多样性。传统的生物多样性测度是以物种概念为基础的,用生态学和地理学方法确定各种生物多样性指数。其测度依赖于样方面积的大小,并且所有的物种在分类上同等对待。系统发育多样性测度基于系统发育和遗传学的理论和方法,能确定某一物种对类群多样性的贡献大小。该方法比较复杂,只有在类群的系统发育或遗传资料比较齐全时方能应用。本文认为,物种生存力途径和系统发育多样性测度相结合有助于确定物种和生态系统保护的优先秩序。  相似文献   

11.
The Convention on Biological Diversity aims to encourage and enable countries to conserve biological diversity, to use its components sustainably and to share benefits equitably. Species richness and endemism are two key attributes of biodiversity that reflect the complexity and uniqueness of natural ecosystems. National data on vertebrates and higher plants indicate global concentrations of biodiversity and can assist in defining priorities for action. Projections indicate that species and ecosystems will be at maximum risk from human activities during the next few decades. Prompt action by the world community can minimise the eventual loss of species. Highest priorities should be to: (i) strengthen the management of ecosystems containing a large proportion of global biodiversity; (ii) help developing countries complete their biodiversity strategies and action plans, monitor their own biodiversity, and establish and maintain adequate national systems of conservation areas; (iii) support actions at the global level, providing benefit to all countries in managing their own biodiversity. Generally, resources will best be spent in safeguarding ecosystems and habitats that are viable and important for global biodiversity, and which are threatened by factors that can be controlled cost-effectively. Other important criteria are representativeness, complementarity and insurance.  相似文献   

12.
SYNOPSIS. Though only a few naturalists have read much economictheory, current understandings of how biological diversity isbeing lost are largely framed by the models developed by economistsover the past two centuries. There is more than a touch of ironyhere. While conservation biologists are challenging the courseof economic development, their perception of the process ofbiodiversity loss is driven by historic patterns of economicreasoning that have become a part of popular consciousness.To be sure, the early economic models were designed to addressthe development of agriculture and the use of land. But agricultureis the most dependent on biodiversity. At the same time, thegeographic expansion of agricultural activities and the choiceof agricultural technologies have been the key driving forceof biodiversity loss. Laterm economic models addressed the limitsof markets to provide guiding signals for human interactionwith the complexities of ecosystems. Even the way we frame howwe should respond to the greatest long-term threat to biodiversity,the likelihood of climate change, is rooted in the economicsof more than half a century ago. This article elaborates these economic framings of the interactionof economic systems with the environment and discusses theirpolicy implications. One of the major problems is that evenexisting economic understandings of the processes of biodiversityloss are only accepted within a part of the economics professionbecause these understandings conflict with political ideologiesheld by most American economists. Thus processes of biodiversityloss are maintained, not for a lack of knowledge, but for adesire among people to maintain simple views of biological systems.Even the patterns of reasoning held by economists who do ponderbiological systems, however, are inadequate. The paper concludeswith suggestions of additional ways of modeling the interactionsbetween human activity and biological systems which may providefurther insight into how we might better maintain biologicaldiversity.  相似文献   

13.
The Millennium Ecosystem Assessment and other commentators have warned about the impacts that biodiversity decline will have on human health. There is no doubting that the natural world provides mankind with the majority of the resources required to sustain life and health. Many species provide food, fuel, medicines; with the potential for many more (as of yet) undiscovered uses for various species. Despite this, there have been very few attempts to actually investigate relationships between biodiversity (i.e. number of species, rather than the ability of specific species to provide health benefits) and human health. This paper reviews the available evidence and demonstrates that while the links between biodiversity and health seem intuitive, they are very difficult to prove. Socio-economics has a huge influence on health status and the exploitation of natural resources (leading to eventual biodiversity loss) tends to have a positive economic effects. More direct effects of biodiversity on health include the diversity of the internal microbiome, the effect of natural diversity on our mental health and well-being (although this has large social aspects with many people feeling fearful in very diverse environments). Still to be elucidated are the tipping points where the level of global biodiversity loss is such that human health can no longer be sustained.  相似文献   

14.
15.
Habitat destruction is driving biodiversity loss in remaining ecosystems, and ecosystem functioning and services often directly depend on biodiversity. Thus, biodiversity loss is likely creating an ecosystem service debt: a gradual loss of biodiversity‐dependent benefits that people obtain from remaining fragments of natural ecosystems. Here, we develop an approach for quantifying ecosystem service debts, and illustrate its use to estimate how one anthropogenic driver, habitat destruction, could indirectly diminish one ecosystem service, carbon storage, by creating an extinction debt. We estimate that c. 2–21 Pg C could be gradually emitted globally in remaining ecosystem fragments because of plant species loss caused by nearby habitat destruction. The wide range for this estimate reflects substantial uncertainties in how many plant species will be lost, how much species loss will impact ecosystem functioning and whether plant species loss will decrease soil carbon. Our exploratory analysis suggests that biodiversity‐dependent ecosystem service debts can be globally substantial, even when locally small, if they occur diffusely across vast areas of remaining ecosystems. There is substantial value in conserving not only the quantity (area), but also the quality (biodiversity) of natural ecosystems for the sustainable provision of ecosystem services.  相似文献   

16.
Concern over declining biodiversity and the implications for continued provision of ecosystem services has led, recently, to intense research effort to describe relationships between biodiversity and ecosystem functioning. Here we extend this effort to the relationship between natural enemy species diversity and natural pest control. From simple modelled food‐webs and simulations of natural enemy species loss we derive specific predictions concerning the effect of herbivore life‐history traits, such as life‐cycle type and concealment, on the shape (reflecting diversity effects) and variance (reflecting species composition effects) of the relationship between natural enemy diversity and pest‐control. We show that these predictions are consistent with the emergence of different pest types following intensification of rice production in Asia. We suggest that basic biological insights can help define the structure of ecological processes and allow more accurate predictions of the effect of species loss on the delivery of ecosystem services.  相似文献   

17.
Biodiversity can be measured at different hierarchical levels, from genetic diversity within species to diversity of ecosystems, though policy-makers tend to use species richness. The 2010 goal of reducing biodiversity loss, agreed by the subscribers to the Convention on Biological Diversity, requires simple and reliable protocols to evaluate biodiversity at any level in a given ecosystem. Stakeholders, particularly policy makers, need to understand how ecosystem components interact to produce social and economic benefits on the long run, whilst scientists are expected to fulfil this demand by testing and modelling ideally simple (low diversity) ecosystems, and by monitoring key species. This work emphasizes the unique opportunity offered by inland, isolated salt lakes and the brine shrimp Artemia, an example of biodiversity contained at the intra-specific level, as simple models to understand and monitor biodiversity, as well as to assess its predicted positive association with ecosystem stability. In addition to having well identified species and strains and even clones, that allow to test reproductive effects (sexual versus asexual), Artemia benefits from the possibility to set up experimental testing at both laboratory scale and outdoor pond systems, for which a comprehensive cyst bank with sufficient amount of samples from all over the world is available.  相似文献   

18.
Biodiversity loss not only implies the loss of species but also entails losses in other dimensions of biodiversity, such as functional, phylogenetic and interaction diversity. Yet, each of those facets of biodiversity may respond differently to extinctions. Here, we examine how extinction, driven by climate and land-use changes may affect those different facets of diversity by combining empirical data on anuran–prey interaction networks, species distribution modelling and extinction simulations in assemblages representing four Neotropical ecoregions. We found a mismatch in the response of functional, phylogenetic and interaction diversity to extinction. In spite of high network robustness to extinction, the effects on interaction diversity were stronger than those on phylogenetic and functional diversity, declining linearly with species loss. Although it is often assumed that interaction patterns are reflected by functional diversity, assessing species interactions may be necessary to understand how species loss translates into the loss of ecosystem functions.  相似文献   

19.
The efforts to protect biological diversity must be prioritized because resources for nature conservation are limited. Conservation prioritization can be based on numerous criteria, from ecological integrity to species representation, but in this review I address only species-level prioritization. Criteria used for species prioritization range from aesthetical to evolutionary considerations, but I focus on the aspects that are biologically relevant. I distinguish between two main aspects of diversity that are used as objectives: Maintenance of biodiversity pattern, and maintenance of biodiversity process. I identify two additional criteria typically used in species prioritization that serve for achieving the objectives: The species’ need of protection, and cost and effectiveness of conservation actions. I discuss how these criteria could be combined with either of the objectives in a complementarity-based benefit function framework for conservation prioritization. But preserving evolutionary process versus current diversity pattern may turn out to be conflicting objectives that have to be traded-off with each other, if pursued simultaneously. Although many reasonable criteria and methods exist, species prioritization is hampered by uncertainties, most of which stem from the poor quality of data on what species exist, where they occur, and what are the costs and benefits of protecting them. Surrogate measures would be extremely useful but their performance is still largely unknown. Future challenges in species prioritization lie in finding ways to compensate for missing information.  相似文献   

20.
Lankau RA 《Molecular ecology》2011,20(10):2035-2037
Biodiversity consists of multiple scales, including functional diversity in ecological traits, species diversity and genetic diversity within species, and is declining across the globe, largely in response to human activities. While species extinctions are the most obvious aspect of this, there has also been a more insidious loss of genetic diversity within species. While a vast literature concerns each of these scales of biodiversity, less is known about how different scales affect one another. In particular, genetic and species diversity may influence each other in numerous ways, both positively and negatively. However, we know little about the mechanism behind these patterns. In this issue of Molecular Ecology, Nestmann et al. (2011) experimentally explore the effect of species and functional diversity and composition of grassland plant communities on the genetic structure of one of the component species. Increasing species richness led to greater changes in the genetic composition of the focal populations over 4 years, primarily because of genetic drift in smaller population sizes. However, there were also genetic changes in response to particular plant functional groups, indicating selective differences driven by plant community composition. These results suggest that different levels of biodiversity can trade-off in communities, which may prove a challenge for conservation biologists seeking to preserve all aspects of biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号